/external/tensorflow/tensorflow/core/kernels/ |
D | avgpooling_op.cc | 62 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in AvgPoolingOp() 63 OP_REQUIRES(context, ksize_.size() == 4, in AvgPoolingOp() 71 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in AvgPoolingOp() 78 PoolParameters params{context, ksize_, stride_, in Compute() 99 std::vector<int32> ksize_; member in tensorflow::AvgPoolingOp 125 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in AvgPoolingOp() 126 OP_REQUIRES(context, ksize_.size() == 4, in AvgPoolingOp() 134 const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N'); in AvgPoolingOp() 143 PoolParameters params{context, ksize_, stride_, in Compute() 159 DnnPoolingOp<T>::Compute(context, se::dnn::PoolingMode::kAverage, ksize_, in Compute() [all …]
|
D | maxpooling_op.cc | 226 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MaxPoolingGradOp() 227 OP_REQUIRES(context, ksize_.size() == 4, in MaxPoolingGradOp() 234 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MaxPoolingGradOp() 238 context, ksize_[3] == 1 && stride_[3] == 1, in MaxPoolingGradOp() 270 std::vector<int32> ksize = ksize_; in Compute() 314 std::vector<int32> ksize_; member in tensorflow::MaxPoolingGradOp 357 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MaxPoolingGradOp() 358 OP_REQUIRES(context, ksize_.size() == 4, in MaxPoolingGradOp() 365 const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N'); in MaxPoolingGradOp() 394 std::vector<int32> ksize = ksize_; in Compute() [all …]
|
D | pooling_ops_3d.cc | 145 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in Pooling3DOp() 146 OP_REQUIRES(context, ksize_.size() == 5, in Pooling3DOp() 155 (GetTensorDim(ksize_, data_format_, 'N') == 1 && in Pooling3DOp() 160 (GetTensorDim(ksize_, data_format_, 'C') == 1 && in Pooling3DOp() 179 std::array<int64, 3> window{{GetTensorDim(ksize_, data_format_, '2'), in Compute() 180 GetTensorDim(ksize_, data_format_, '1'), in Compute() 181 GetTensorDim(ksize_, data_format_, '0')}}; in Compute() 200 std::vector<int32> ksize_; member in tensorflow::Pooling3DOp 318 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MaxPooling3dGradOp() 319 OP_REQUIRES(context, ksize_.size() == 5, in MaxPooling3dGradOp() [all …]
|
D | quantized_pooling_ops.cc | 41 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in QuantizedAvgPoolingOp() 42 OP_REQUIRES(context, ksize_.size() == 4, in QuantizedAvgPoolingOp() 50 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in QuantizedAvgPoolingOp() 57 PoolParameters params{context, ksize_, stride_, in Compute() 103 std::vector<int32> ksize_; member in tensorflow::QuantizedAvgPoolingOp
|
D | mkl_avgpooling_op.cc | 54 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MklAvgPoolingOp() 55 OP_REQUIRES(context, ksize_.size() == 4, in MklAvgPoolingOp() 63 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MklAvgPoolingOp() 81 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() 84 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() 211 std::vector<int32> ksize_; member in tensorflow::MklAvgPoolingOp 229 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MklAvgPoolingGradOp() 230 OP_REQUIRES(context, ksize_.size() == 4, in MklAvgPoolingGradOp() 238 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MklAvgPoolingGradOp() 258 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() [all …]
|
D | mkl_maxpooling_op.cc | 55 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MklMaxPoolingOp() 56 OP_REQUIRES(context, ksize_.size() == 4, in MklMaxPoolingOp() 64 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MklMaxPoolingOp() 86 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() 93 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() 191 std::vector<int32> ksize_; member in tensorflow::MklMaxPoolingOp 214 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MklMaxPoolingGradOp() 215 OP_REQUIRES(context, ksize_.size() == 4, in MklMaxPoolingGradOp() 223 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MklMaxPoolingGradOp() 253 pool_params.Init(context, ksize_, stride_, padding_, data_format_, in Compute() [all …]
|
D | mkl_pooling_ops_common.h | 460 OP_REQUIRES_OK(context, context->GetAttr("ksize", &this->ksize_)); in MklPoolingOpBase() 461 OP_REQUIRES(context, this->ksize_.size() == 4 || this->ksize_.size() == 5, in MklPoolingOpBase() 469 OP_REQUIRES(context, this->ksize_[0] == 1 && this->stride_[0] == 1, in MklPoolingOpBase() 472 bool is_pool2d = (this->ksize_.size() == 4); in MklPoolingOpBase() 492 if (this->ksize_.size() == 4) { in GetOutputDims() 513 pool_params->Init(context, this->ksize_, this->stride_, this->padding_, in InitMklPoolParameters() 516 pool_params->Init(context, this->ksize_, this->stride_, this->padding_, in InitMklPoolParameters() 588 std::vector<int32> ksize_; variable 617 (this->ksize_.size() == 4) in ConfigureInput() 625 if (this->ksize_.size() == 5) { in ConfigureInput() [all …]
|
D | pooling_ops_common.h | 95 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); in MaxPoolingOp() 96 OP_REQUIRES(context, ksize_.size() == 4, in MaxPoolingOp() 104 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, in MaxPoolingOp() 111 PoolParameters params{context, ksize_, stride_, in Compute() 258 std::vector<int32> ksize_; variable 307 OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); 308 OP_REQUIRES(context, ksize_.size() == 4, 315 OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, 325 std::vector<int32> ksize = ksize_; 505 std::vector<int32> ksize_;
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | pooling_ops.cc | 60 ksize_.push_back(ksize_int[i]); in PoolingOp() 77 return ksize_; in GetKernelSize() 125 std::vector<int64> ksize_; member in tensorflow::__anon05e5a9280111::PoolingOp 271 OP_REQUIRES_OK(ctx, ctx->GetAttr("ksize", &ksize_)); in MaxPoolGradOp() 289 OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(3, &ksize_)); in Compile() 299 OP_REQUIRES(ctx, ksize_.size() == num_dims(), in Compile() 338 xla::SelectAndScatter(input, select, ksize_, stride_, xla_padding, in Compile() 346 std::vector<int64> ksize_; member in tensorflow::__anon05e5a9280111::MaxPoolGradOp 380 OP_REQUIRES_OK(ctx, ctx->GetAttr("ksize", &ksize_)); in AvgPoolGradOp() 381 OP_REQUIRES(ctx, ksize_.size() == num_dims(), in AvgPoolGradOp() [all …]
|