Home
last modified time | relevance | path

Searched refs:num_skips (Results 1 – 4 of 4) sorted by relevance

/external/tensorflow/tensorflow/examples/tutorials/word2vec/
Dword2vec_basic.py111 def generate_batch(batch_size, num_skips, skip_window): argument
113 assert batch_size % num_skips == 0
114 assert num_skips <= 2 * skip_window
123 for i in range(batch_size // num_skips):
125 words_to_use = random.sample(context_words, num_skips)
127 batch[i * num_skips + j] = buffer[skip_window]
128 labels[i * num_skips + j, 0] = buffer[context_word]
139 batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
149 num_skips = 2 # How many times to reuse an input to generate a label.
239 batch_inputs, batch_labels = generate_batch(batch_size, num_skips,
/external/tensorflow/tensorflow/core/lib/random/
Drandom_distributions.h266 void Skip(uint64 num_skips) { in Skip() argument
267 if (!num_skips) { in Skip()
271 if (num_skips <= num_unused_results) { in Skip()
272 used_result_index_ += num_skips; in Skip()
275 num_skips -= num_unused_results; in Skip()
277 SkipFromGenerator(num_skips / kNativeElementCount); in Skip()
278 num_skips = num_skips % kNativeElementCount; in Skip()
279 if (num_skips) { in Skip()
281 used_result_index_ = num_skips; in Skip()
290 void SkipFromGenerator(uint64 num_skips) { in SkipFromGenerator() argument
[all …]
Drandom_distributions.cc22 void SingleSampleAdapter<PhiloxRandom>::SkipFromGenerator(uint64 num_skips) { in SkipFromGenerator() argument
24 generator_->Skip(num_skips); in SkipFromGenerator()
/external/tensorflow/tensorflow/examples/udacity/
D5_word2vec.ipynb335 "def generate_batch(batch_size, num_skips, skip_window):\n",
337 " assert batch_size % num_skips == 0\n",
338 " assert num_skips <= 2 * skip_window\n",
346 " for i in range(batch_size // num_skips):\n",
349 " for j in range(num_skips):\n",
353 " batch[i * num_skips + j] = buffer[skip_window]\n",
354 " labels[i * num_skips + j, 0] = buffer[target]\n",
361 "for num_skips, skip_window in [(2, 1), (4, 2)]:\n",
363 …" batch, labels = generate_batch(batch_size=8, num_skips=num_skips, skip_window=skip_window)\n",
364 " print('\\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))\n",
[all …]