/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | kernel_utils.cc | 24 int input_size, int num_units, int batch_size, in RnnBatchStep() argument 31 bias_ptr, input_size, /*aux_input_size=*/0, num_units, in RnnBatchStep() 40 int input_size, int aux_input_size, int num_units, in RnnBatchStep() argument 46 if (output_batch_leading_dim == num_units) { in RnnBatchStep() 48 tensor_utils::VectorBatchVectorAssign(bias_ptr, num_units, batch_size, in RnnBatchStep() 53 input_weights_ptr, num_units, input_size, input_ptr_batch, batch_size, in RnnBatchStep() 59 aux_input_weights_ptr, num_units, aux_input_size, aux_input_ptr_batch, in RnnBatchStep() 65 recurrent_weights_ptr, num_units, num_units, hidden_state_ptr_batch, in RnnBatchStep() 70 output_ptr_batch, num_units * batch_size, activation, output_ptr_batch); in RnnBatchStep() 71 tensor_utils::CopyVector(output_ptr_batch, num_units * batch_size, in RnnBatchStep() [all …]
|
D | kernel_utils.h | 41 int input_size, int num_units, int batch_size, 51 int input_size, int aux_input_size, int num_units, 70 int num_units, int batch_size, int output_batch_leading_dim, 80 const float* bias_ptr, int input_size, int aux_input_size, int num_units,
|
/external/tensorflow/tensorflow/contrib/grid_rnn/python/ops/ |
D | grid_rnn_cell.py | 51 num_units, argument 123 num_units) 130 rnn.LSTMCell, num_units=num_units, state_is_tuple=state_is_tuple) 132 my_cell_fn = lambda: cell_fn(num_units) 245 cell_output_size = total_cell_state_size - conf.num_units 263 [-1, conf.num_units]) 265 state, [0, start_idx + conf.num_units], [-1, cell_output_size]) 268 [-1, conf.num_units]) 301 'project_m_{}'.format(j), [input_sz, conf.num_units], 307 'project_c_{}'.format(j), [input_sz, conf.num_units], [all …]
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/kernel_tests/ |
D | cudnn_rnn_ops_test.py | 66 num_units, argument 100 num_units).astype(dtype.as_numpy_dtype), 105 num_units).astype(dtype.as_numpy_dtype), 121 shape=[input_size + num_units, num_units * 4], 124 "rnn/lstm_cell/bias", shape=[num_units * 4], dtype=dtype) 127 cell = rnn_cell_impl.LSTMCell(num_units, forget_bias=0., reuse=True) 140 num_layers, num_units, input_size) 345 num_units, argument 360 num_units, 387 def test_training(self, num_units, input_size, batch_size, time, num_layers, argument [all …]
|
D | cudnn_rnn_ops_benchmark.py | 66 num_units = config["num_units"] 70 return "y%d_u%d_b%d_q%d" % (num_layers, num_units, batch_size, seq_length) 92 num_units = config["num_units"] 97 model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units) 100 array_ops.ones([seq_length, batch_size, num_units])) 102 array_ops.ones([num_layers, batch_size, num_units])) 104 array_ops.ones([num_layers, batch_size, num_units])) 124 num_units = config["num_units"] 129 inputs = array_ops.zeros([batch_size, seq_length, num_units], 133 [contrib_rnn.BasicLSTMCell(num_units) for _ in range(num_layers)]) [all …]
|
D | cudnn_rnn_test.py | 87 num_units, argument 103 dtype=dtype, shape=[None, None, num_units], name="h") 105 dtype=dtype, shape=[None, None, num_units], name="c") 122 num_units, 169 num_units = self._rnn.num_units 176 num_units).astype(np_dtype) 179 num_units).astype(np_dtype) 188 num_units = self._rnn.num_units 192 num_units)).astype(np_dtype) 195 num_units)).astype(np_dtype) [all …]
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | resnet_v1.py | 227 def resnet_v1_block(scope, base_depth, num_units, stride): argument 244 }] * (num_units - 1) + [{ 260 resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), 261 resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), 262 resnet_v1_block('block3', base_depth=256, num_units=6, stride=2), 263 resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), 286 resnet_v1_block('block1', base_depth=64, num_units=3, stride=2), 287 resnet_v1_block('block2', base_depth=128, num_units=4, stride=2), 288 resnet_v1_block('block3', base_depth=256, num_units=23, stride=2), 289 resnet_v1_block('block4', base_depth=512, num_units=3, stride=1), [all …]
|
D | resnet_v2.py | 240 def resnet_v2_block(scope, base_depth, num_units, stride): argument 257 }] * (num_units - 1) + [{ 273 resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), 274 resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), 275 resnet_v2_block('block3', base_depth=256, num_units=6, stride=2), 276 resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), 299 resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), 300 resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), 301 resnet_v2_block('block3', base_depth=256, num_units=23, stride=2), 302 resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), [all …]
|
/external/tensorflow/tensorflow/contrib/rnn/python/kernel_tests/ |
D | rnn_cell_test.py | 196 num_units = 2 203 c = array_ops.zeros([batch_size, num_units]) 207 num_units=num_units, 218 c.name: 0.1 * np.ones((batch_size, num_units)), 225 self.assertEqual(res[1][0].shape, (batch_size, num_units)) 368 num_units = 2 369 state_size = num_units * 2 385 num_units=num_units, forget_bias=1.0, state_is_tuple=False)(x, m) 402 num_units = 8 403 state_size = num_units * 2 [all …]
|
/external/tensorflow/tensorflow/core/ops/ |
D | cudnn_rnn_ops_test.cc | 44 int num_units = 4; in TEST() local 47 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 49 num_units}; in TEST() 51 num_units * dir_count}; in TEST() 76 int num_units = 4; in TEST() local 79 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 81 num_units}; in TEST() 83 num_units * dir_count}; in TEST() 108 int num_units = 4; in TEST() local 111 std::vector<int> input_shape = {max_seq_length, batch_size, num_units}; in TEST() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | unidirectional_sequence_rnn.cc | 75 const int num_units = input_weights->dims->data[0]; in Prepare() local 87 TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); in Prepare() 95 output_size_array->data[2] = num_units; in Prepare() 160 const int num_units = input_weights->dims->data[0]; in EvalFloat() local 175 float* output_ptr_batch = output->data.f + s * num_units * batch_size; in EvalFloat() 179 input_size, num_units, batch_size, num_units, params->activation, in EvalFloat() 186 float* hidden_state_ptr_batch = hidden_state->data.f + b * num_units; in EvalFloat() 192 output->data.f + b * num_units * max_time + s * num_units; in EvalFloat() 196 input_size, num_units, /*batch_size=*/1, num_units, in EvalFloat() 215 const int num_units = input_weights->dims->data[0]; in EvalHybrid() local [all …]
|
D | svdf.cc | 47 int batch_size, int memory_size, int num_filters, int num_units, int rank, in ApplyTimeWeightsBiasAndActivation() argument 66 tensor_utils::VectorBatchVectorAssign(bias->data.f, num_units, batch_size, in ApplyTimeWeightsBiasAndActivation() 69 tensor_utils::ZeroVector(output->data.f, batch_size * num_units); in ApplyTimeWeightsBiasAndActivation() 74 float* output_ptr_batch = output->data.f + b * num_units; in ApplyTimeWeightsBiasAndActivation() 77 num_units, rank); in ApplyTimeWeightsBiasAndActivation() 82 float* output_ptr_batch = output->data.f + b * num_units; in ApplyTimeWeightsBiasAndActivation() 83 tensor_utils::ApplyActivationToVector(output_ptr_batch, num_units, in ApplyTimeWeightsBiasAndActivation() 150 const int num_units = num_filters / rank; in Prepare() local 158 TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units); in Prepare() 174 output_size_array->data[1] = num_units; in Prepare() [all …]
|
D | unidirectional_sequence_rnn_test.cc | 229 int num_units() { return units_; } in num_units() function in tflite::__anon2f8e60700111::UnidirectionalRNNOpModel 292 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 317 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 343 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 372 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 373 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST() 401 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 402 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST() 431 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 432 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST()
|
D | basic_rnn_test.cc | 217 int num_units() { return units_; } in num_units() function in tflite::__anon35c533a00111::RNNOpModel 275 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 276 float* golden_end = golden_start + rnn.num_units(); in TEST() 302 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 303 float* golden_end = golden_start + rnn.num_units(); in TEST() 330 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 331 float* golden_end = golden_start + rnn.num_units(); in TEST()
|
D | fully_connected.cc | 110 const int num_units = filter->dims->data[0]; in Prepare() local 167 output_size_array->data[1] = num_units; in Prepare() 184 const int num_units = filter->dims->data[0]; in EvalPie() local 188 tensor_utils::VectorBatchVectorAssign(bias->data.f, num_units, batch_size, in EvalPie() 191 tensor_utils::ZeroVector(output->data.f, batch_size * num_units); in EvalPie() 196 filter->data.f, num_units, input_size, input->data.f, batch_size, in EvalPie() 200 tensor_utils::ApplyActivationToVector(output->data.f, batch_size * num_units, in EvalPie() 227 const int num_units = filter->dims->data[0]; in EvalHybrid() local 231 tensor_utils::VectorBatchVectorAssign(bias->data.f, num_units, batch_size, in EvalHybrid() 234 tensor_utils::ZeroVector(output->data.f, batch_size * num_units); in EvalHybrid() [all …]
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/layers/ |
D | cudnn_rnn.py | 159 num_units, argument 209 self._num_units = num_units 225 def num_units(self): member in _CudnnRNN 460 num_units = self._num_units 465 wts_applied_on_inputs = [(num_units, input_size)] * num_gates 468 wts_applied_on_inputs = [(num_units, 2 * num_units)] * num_gates 470 wts_applied_on_inputs = [(num_units, num_units)] * num_gates 471 wts_applied_on_hidden_states = [(num_units, num_units)] * num_gates 489 num_units=self._num_units, 530 num_units=self.num_units, [all …]
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/ops/ |
D | cudnn_rnn_ops.py | 69 def __init__(self, num_units, reuse=None): argument 71 num_units, forget_bias=0, cell_clip=None, use_peephole=False, 111 def __init__(self, num_units, reuse=None, kernel_initializer=None): argument 113 num_units, 185 num_units, argument 208 self._num_units = num_units 240 num_units=self._num_units, 261 num_units=self._num_units, 433 num_units = self._num_units 437 input_weight_width = num_units [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | rnn_common.py | 61 def _get_single_cell(cell_type, num_units): argument 78 return cell_type(num_units=num_units) 81 def construct_rnn_cell(num_units, cell_type='basic_rnn', argument 99 if not isinstance(num_units, (list, tuple)): 100 num_units = (num_units,) 102 cells = [_get_single_cell(cell_type, n) for n in num_units]
|
D | state_saving_rnn_estimator_test.py | 327 num_units = [4] 341 num_units=num_units, 382 num_units = [4] 417 num_units=num_units, 473 num_units = [4] * num_rnn_layers 499 num_units=num_units, 532 num_units = [4] 556 num_units=num_units, 605 num_units = [4] 639 num_units=num_units,
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | rnn_test.py | 722 num_units=input_size, 744 num_units=input_size, 765 num_units = 512 771 np.random.randn(batch_size, num_units).astype(np.float32) 811 def static_vs_dynamic_rnn_benchmark(batch_size, max_time, num_units, use_gpu): argument 819 np.random.randn(batch_size, num_units).astype(np.float32) 845 (batch_size, max_time, num_units, use_gpu, delta_static, delta_dynamic, 855 num_units=input_size, 873 def half_seq_len_vs_unroll_half_rnn_benchmark(batch_size, max_time, num_units, argument 882 np.random.randn(batch_size, num_units).astype(np.float32) [all …]
|
D | rnn_cell_test.py | 384 num_units = 3 392 num_units, initializer=initializer, state_is_tuple=False) 399 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 407 num_units = 3 415 num_units, 426 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 434 self.assertAllEqual(value, np.zeros((batch_size, num_units))) 438 num_units = 3 445 state_saver = TestStateSaver(batch_size, 2 * num_units) 447 num_units, [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNNV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNNBackpropV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNN.pbtxt | 11 when input_size == num_units; 'auto_select' implies 'skip_input' when 12 input_size == num_units; otherwise, it implies 'linear_input'. 20 num_units]. 22 [num_layer * dir, batch, num_units]. For other models, it is ignored. 28 dir * num_units].
|
/external/tensorflow/tensorflow/contrib/rnn/python/ops/ |
D | rnn_cell.py | 136 num_units, argument 186 self._num_units = num_units 203 rnn_cell_impl.LSTMStateTuple(num_units, num_proj) 204 if state_is_tuple else num_units + num_proj) 208 rnn_cell_impl.LSTMStateTuple(num_units, num_units) 209 if state_is_tuple else 2 * num_units) 210 self._output_size = num_units 338 num_units, argument 369 self._num_units = num_units 377 self._state_size = 2 * num_units [all …]
|