/external/icu/icu4c/source/data/rbnf/ |
D | pl.txt | 59 "1000: tysi\u0105c[ >%%spellout-cardinal-masculine-genitive-ones>];", 60 …(cardinal,few{tysi\u0105ce}other{tysi\u0119cy})$[ >%%spellout-cardinal-masculine-genitive-ones>];", 63 "1000000000: miliard[ >%%spellout-cardinal-masculine-genitive-ones>];", 65 "1000000000000: bilion[ >%%spellout-cardinal-masculine-genitive-ones>];", 67 "1000000000000000: biliard[ >%%spellout-cardinal-masculine-genitive-ones>];", 93 "20: <%%spellout-cardinal-tens<[ >%%spellout-cardinal-feminine-ones>];", 94 "100: sto[ >%%spellout-cardinal-feminine-ones>];", 95 "200: dwie\u015Bcie[ >%%spellout-cardinal-feminine-ones>];", 96 "300: <%spellout-cardinal-feminine<sta[ >%%spellout-cardinal-feminine-ones>];", 97 "500: <%spellout-cardinal-feminine<set[ >%%spellout-cardinal-feminine-ones>];", [all …]
|
/external/mesa3d/src/util/ |
D | u_atomic_test.c | 46 #define test_atomic_assign(type, ones) \ argument 50 p_atomic_set(&v, ones); \ 51 assert(v == ones && "p_atomic_set"); \ 54 assert(r == ones && "p_atomic_read"); \ 56 v = ones; \ 58 assert(v == ones && "p_atomic_cmpxchg"); \ 59 assert(r == ones && "p_atomic_cmpxchg"); \ 60 r = p_atomic_cmpxchg(&v, ones, 0); \ 62 assert(r == ones && "p_atomic_cmpxchg"); \ 69 #define test_atomic_8bits(type, ones) \ argument [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
D | generator_io_test.py | 36 'a': np.ones(1) * index, 37 'b': np.ones(1) * index + 32, 38 'label': np.ones(1) * index - 32 69 yield {'a': np.ones(1) * index} 94 'a': np.ones(1) * index, 95 'b': np.ones(1) * index + 32, 96 'label': np.ones(1) * index - 32, 97 'label2': np.ones(1) * index - 64, 132 'a': np.ones((10, 10)) * index, 133 'b': np.ones((5, 5)) * index + 32, [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | inplace_ops_test.py | 38 x = array_ops.ones([7, 3], dtype) 39 y = np.ones([7, 3], dtype.as_numpy_dtype) 41 x = inplace_ops.inplace_update(x, [3], array_ops.ones([1, 3], dtype)) 45 array_ops.ones([1, 3], dtype) * 2) 48 x = inplace_ops.inplace_update(x, 5, array_ops.ones([3], dtype) * 7) 55 x = array_ops.ones([7, 3], dtypes.bool) 56 y = np.ones([7, 3], dtypes.bool.as_numpy_dtype) 58 x = inplace_ops.inplace_update(x, [3], array_ops.ones([1, 3], 74 x = array_ops.ones([7, 3], dtype) 75 y = np.ones([7, 3], dtype.as_numpy_dtype) [all …]
|
D | reduction_ops_test_big.py | 55 arr_ = np.ones([4097, 4097], dtype=np.float32) 65 col_sum = np.ones([size_y], dtype=np.float32) * size_x 66 row_sum = np.ones([size_x], dtype=np.float32) * size_y 67 full_sum = np.ones([], dtype=np.float32) * size_x * size_y 81 arr_ = np.ones([130, 130, 130], dtype=np.float32) 86 sum_y = np.ones([size_x, size_z], dtype=np.float32) 87 sum_xz = np.ones([size_y], dtype=np.float32) 153 arr_ = np.ones([4097, 4097], dtype=np.bool) 163 col_sum = np.ones([size_y], dtype=np.bool) 164 row_sum = np.ones([size_x], dtype=np.bool) [all …]
|
D | metrics_test.py | 171 return np.reshape(np.cumsum(np.ones(shape)), newshape=shape) 181 metrics.mean(array_ops.ones([4, 3])) 188 array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) 195 array_ops.ones([4, 3]), updates_collections=[my_collection_name]) 244 metrics.mean(values, weights=np.ones((1, 1, 1))), 245 metrics.mean(values, weights=np.ones((1, 1, 1, 1))), 246 metrics.mean(values, weights=np.ones((1, 1, 1, 1, 1))), 247 metrics.mean(values, weights=np.ones((1, 1, 4))), 248 metrics.mean(values, weights=np.ones((1, 1, 4, 1))), 249 metrics.mean(values, weights=np.ones((1, 2, 1))), [all …]
|
D | dense_update_ops_no_tsan_test.py | 58 ones = np.ones((1024, 1024)).astype(np.float32) 59 self.assertTrue((vals >= ones).all()) 60 self.assertTrue((vals <= ones * 20).all()) 118 ones = np.ones((1024, 1024)).astype(np.float32) 119 self.assertAllEqual(vals, ones * 20) 150 self.assertAllEqual(vals, np.ones([1024, 1024]) * vals[0, 0])
|
/external/libvpx/libvpx/vpx_dsp/mips/ |
D | loopfilter_masks_dspr2.h | 35 uint32_t ones = 0xFFFFFFFF; in filter_hev_mask_dspr2() local 122 [ones] "r"(ones), [flimit] "r"(flimit)); in filter_hev_mask_dspr2() 134 uint32_t ones = 0xFFFFFFFF; in filter_hev_mask_flatmask4_dspr2() local 233 [thresh] "r"(thresh), [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); in filter_hev_mask_flatmask4_dspr2() 262 [ones] "r"(ones), [flimit] "r"(flimit)); in filter_hev_mask_flatmask4_dspr2() 273 uint32_t ones = 0xFFFFFFFF; in flatmask5() local 346 [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); in flatmask5()
|
/external/libaom/libaom/aom_dsp/mips/ |
D | loopfilter_masks_dspr2.h | 37 uint32_t ones = 0xFFFFFFFF; in filter_hev_mask_dspr2() local 124 [ones] "r"(ones), [flimit] "r"(flimit)); in filter_hev_mask_dspr2() 136 uint32_t ones = 0xFFFFFFFF; in filter_hev_mask_flatmask4_dspr2() local 235 [thresh] "r"(thresh), [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); in filter_hev_mask_flatmask4_dspr2() 264 [ones] "r"(ones), [flimit] "r"(flimit)); in filter_hev_mask_flatmask4_dspr2() 275 uint32_t ones = 0xFFFFFFFF; in flatmask5() local 348 [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); in flatmask5()
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | summaries_test.py | 55 real_data=array_ops.ones([4, 32, 32, 3]), 56 discriminator_real_outputs=array_ops.ones([1, 2, 3]), 57 discriminator_gen_outputs=array_ops.ones([1, 2, 3]), 70 input_data=array_ops.ones([1, 2, 2, 3]), 71 input_data_domain_label=array_ops.ones([1, 2]), 73 array_ops.ones([1, 2, 2, 3]), None), 74 generated_data_domain_target=array_ops.ones([1, 2]), 75 reconstructed_data=array_ops.ones([1, 2, 2, 3]), 76 discriminator_input_data_source_predication=array_ops.ones([1]), 77 discriminator_generated_data_source_predication=array_ops.ones([1]), [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_generator_test.py | 251 val_data = np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) 255 yield np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) 280 return np.zeros([10, 2]), np.ones([10, 4]) 307 val_data = np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) 312 return np.ones([10, 10], np.float32), np.ones([10, 1], np.float32) 326 model.fit(CustomSequence(), y=np.ones([10, 1])) 330 model.fit(CustomSequence(), sample_weight=np.ones([10, 1])) 335 simple_inputs = (np.ones((10, 10)), np.ones((10, 1))) 336 nested_inputs = ((np.ones((10, 10)), np.ones((10, 20))), (np.ones((10, 1)), 337 np.ones((10, 3))))
|
/external/tensorflow/tensorflow/contrib/eager/python/ |
D | remote_test.py | 109 x1 = array_ops.ones([2, 2]) 111 x2 = array_ops.ones([2, 2]) 120 x1 = array_ops.ones([2, 2]) 122 x2 = array_ops.ones([2, 2]) 179 x1 = array_ops.ones([2, 2]) 194 x1 = array_ops.ones([2, 2]) 204 x1 = array_ops.ones([2, 2]) 205 x2 = array_ops.ones([2, 2]) 214 x1 = array_ops.ones([2, 2]) 215 x2 = array_ops.ones([2, 2]) [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/utils/ |
D | losses_test.py | 38 labels_positive = array_ops.ones([10, 1], dtypes.float32) 39 weights = array_ops.ones([10, 1], dtypes.float32) 61 self.assertAllClose(np.exp(np.ones([2, 1])), pos_loss[:2], atol=1e-4) 62 self.assertAllClose(np.exp(-np.ones([2, 1])), neg_loss[:2], atol=1e-4) 67 self.assertAllClose(np.exp(-np.ones([4, 1])), pos_loss[6:10], atol=1e-4) 68 self.assertAllClose(np.exp(np.ones([4, 1])), neg_loss[6:10], atol=1e-4) 83 weights = array_ops.ones([5, 1], dtypes.float32)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | core_test.py | 119 x1 = np.ones([3, 2], np.float32) 120 x2 = np.ones([3, 5], np.float32) 126 l(keras.backend.variable(np.ones((1, 1)))) 134 l(keras.backend.variable(np.ones((1, 1)))) 188 layer(keras.backend.variable(np.ones((1, 1)))) 203 layer(np.ones((10, 10), 'float32')) 225 x, y = np.ones((10, 10), 'float32'), 2 * np.ones((10, 10), 'float32') 239 x = np.ones((10, 10)) 361 layer(keras.backend.variable(np.ones((2, 4)))) 369 layer(keras.backend.variable(np.ones((2, 4)))) [all …]
|
D | simplernn_test.py | 134 x = keras.backend.variable(np.ones((2, 3, 2))) 160 out1 = model.predict(np.ones((num_samples, timesteps))) 165 np.ones((num_samples, timesteps)), np.ones((num_samples, units))) 166 out2 = model.predict(np.ones((num_samples, timesteps))) 174 out3 = model.predict(np.ones((num_samples, timesteps))) 179 out4 = model.predict(np.ones((num_samples, timesteps))) 183 out5 = model.predict(np.ones((num_samples, timesteps))) 189 left_padded_input = np.ones((num_samples, timesteps)) 196 right_padded_input = np.ones((num_samples, timesteps))
|
D | gru_test.py | 141 out1 = model.predict(np.ones((num_samples, timesteps))) 146 np.ones((num_samples, timesteps)), np.ones((num_samples, units))) 147 out2 = model.predict(np.ones((num_samples, timesteps))) 155 out3 = model.predict(np.ones((num_samples, timesteps))) 160 out4 = model.predict(np.ones((num_samples, timesteps))) 164 out5 = model.predict(np.ones((num_samples, timesteps))) 170 left_padded_input = np.ones((num_samples, timesteps)) 177 right_padded_input = np.ones((num_samples, timesteps)) 229 x = keras.backend.variable(np.ones((2, 3, 2)))
|
/external/tensorflow/tensorflow/python/keras/ |
D | model_subclassing_test.py | 208 dummy_data = array_ops.ones((32, 50)) 229 model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2, epochs=2) 308 model(array_ops.ones((32, timesteps, dim))) 326 model(array_ops.ones((32, input_dim))) 344 model(array_ops.ones((32, input_dim))) 362 model(array_ops.ones(batch_input_shape)) 380 model(array_ops.ones((32,) + input_shape)) 428 x1 = array_ops.ones((num_samples, input_dim)) 429 x2 = array_ops.ones((num_samples, input_dim)) 444 model._set_inputs(np.ones((3, 4))) # need to build model first [all …]
|
/external/tensorflow/tensorflow/python/eager/ |
D | function_argument_naming_test.py | 46 fn(array_ops.ones([]), array_ops.ones([])) 70 fn(array_ops.ones([]), array_ops.ones([])) 89 fn(array_ops.ones([])) 146 HasMethod.method(has_method, array_ops.ones([])) 156 has_method.method(array_ops.ones([])) 191 has_method.method(array_ops.ones([], dtype=dtypes.float64)) 213 variadic_fn(array_ops.ones([]), array_ops.ones([])) 242 variadic_fn(array_ops.ones([]), array_ops.ones([]), 243 array_ops.ones([]), array_ops.ones([]))
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | vector_exponential_diag_test.py | 98 diag = np.ones([3]) 122 loc=array_ops.ones([2, 3], dtype=dtypes.float32)) 124 np.diag(np.ones([3], dtype=np.float32)), 128 loc=array_ops.ones([3], dtype=dtypes.float32), 142 loc=array_ops.ones([3], dtype=dtypes.float32), 160 np.ones([3], dtype=np.float32), 164 loc=array_ops.ones([3], dtype=dtypes.float32), 172 loc=array_ops.ones([3], dtype=dtypes.float32), 185 np.ones([3], dtype=np.float32),
|
/external/tensorflow/tensorflow/contrib/checkpoint/python/ |
D | python_state_test.py | 40 save_state.a = numpy.ones([2, 2]) 41 save_state.b = numpy.ones([2, 2]) 44 self.assertAllEqual(numpy.ones([2, 2]), save_state.a) 55 self.assertAllEqual(numpy.ones([2, 2]), load_state.a) 61 self.assertAllEqual(numpy.ones([2, 2]), load_state.a) 74 save_state.a = numpy.ones([2, 2]) 86 save_state.a = numpy.ones([2, 2])
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops_test.py | 165 metrics.streaming_mean(array_ops.ones([4, 3])) 171 array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) 177 array_ops.ones([4, 3]), updates_collections=[my_collection_name]) 323 metrics.streaming_mean_tensor(array_ops.ones([4, 3])) 330 array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) 336 array_ops.ones([4, 3]), updates_collections=[my_collection_name]) 487 predictions=array_ops.ones((10, 1)), 488 labels=array_ops.ones((10, 1)), 496 predictions=array_ops.ones((10, 1)), 497 labels=array_ops.ones((10, 1)), [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | random_grad_test.py | 38 ret = random_grad.add_leading_unit_dimensions(array_ops.ones([3, 2, 1]), 3) 42 ret = random_grad.add_leading_unit_dimensions(array_ops.ones([3, 2, 1]), 0) 55 ret_val = sess.run(ret, {x: np.ones([2, 2]), num_dimensions: 2}) 80 alpha = array_ops.ones([2, 2]) 81 beta = array_ops.ones([1, 2]) 90 alpha = array_ops.ones([2, 2]) 91 beta = array_ops.ones([1, 2]) 105 alpha_val = np.ones([1, 2]) 106 beta_val = np.ones([2, 1])
|
/external/libaom/libaom/av1/common/x86/ |
D | av1_highbd_convolve_sse4.c | 127 const __m128i ones = _mm_set1_epi16(1); in trans_accum_save_4x4() local 141 u[0] = _mm_add_epi16(u[0], ones); in trans_accum_save_4x4() 142 u[1] = _mm_add_epi16(u[1], ones); in trans_accum_save_4x4() 143 u[2] = _mm_add_epi16(u[2], ones); in trans_accum_save_4x4() 144 u[3] = _mm_add_epi16(u[3], ones); in trans_accum_save_4x4() 173 const __m128i ones = _mm_set1_epi16(1); in write2pixelsAccum() local 179 v = _mm_add_epi16(v, ones); in write2pixelsAccum() 194 const __m128i ones = _mm_set1_epi16(1); in write4pixelsAccum() local 200 v = _mm_add_epi16(v, ones); in write4pixelsAccum()
|
/external/tensorflow/tensorflow/contrib/gan/python/estimator/python/ |
D | stargan_estimator_test.py | 69 input_data = array_ops.ones([6, 4, 4, 3]) 124 input_data=array_ops.ones([1, 2, 2, 3]), 125 input_data_domain_label=array_ops.ones([1, 2]), 126 generated_data=array_ops.ones([1, 2, 2, 3]), 127 generated_data_domain_target=array_ops.ones([1, 2]), 128 reconstructed_data=array_ops.ones([1, 2, 2, 3]), 129 discriminator_input_data_source_predication=array_ops.ones([1]) * dis_var, 130 discriminator_generated_data_source_predication=array_ops.ones( 132 discriminator_input_data_domain_predication=array_ops.ones([1, 2 134 discriminator_generated_data_domain_predication=array_ops.ones([1, 2]) *
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | eager_test.py | 183 array_ops.ones([32, 1024, 1024])) 201 def ones(value): function 203 array_ops.ones(value)).numpy() 218 self.assertAllEqual([], ones([])) 219 self.assertAllEqual([3], ones([3])) 220 self.assertAllEqual([2, 2], ones([2, 2])) 221 self.assertAllEqual([2, 1, 2], ones([2, 1, 2])) 236 array_ops.ones([]), 237 array_ops.ones([3]), 238 array_ops.ones([2, 2])]) [all …]
|