/external/eigen/unsupported/doc/examples/ |
D | PolynomialUtils1.cpp | 11 Eigen::Matrix<double,5,1> polynomial; in main() local 12 roots_to_monicPolynomial( roots, polynomial ); in main() 14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; } in main() 15 cout << polynomial[4] << ".x^4" << endl; in main() 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main()
|
D | PolynomialSolver1.cpp | 14 Eigen::Matrix<double,6,1> polynomial; in main() local 15 roots_to_monicPolynomial( roots, polynomial ); in main() 17 PolynomialSolver<double,5> psolve( polynomial ); in main()
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 29 * \brief This module provides a QR based polynomial solver. 44 and a QR based polynomial solver. 48 polynomials, computing estimates about polynomials and next the QR based polynomial 68 evaluates a polynomial at a given point using stabilized Hörner method. 70 …The following code: first computes the coefficients in the monomial basis of the monic polynomial … 71 then, it evaluates the computed polynomial, using a stabilized Hörner method. 81 …um bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e. 91 …(the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e. 98 \section QR polynomial solver class 99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio… [all …]
|
/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/ |
D | GenericPolynomialExtensionField.java | 12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument 15 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
|
/external/bouncycastle/repackaged/bcprov/src/main/java/com/android/org/bouncycastle/math/field/ |
D | GenericPolynomialExtensionField.java | 13 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument 16 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
|
/external/mesa3d/src/gallium/auxiliary/gallivm/ |
D | f.cpp | 88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n, in show_extra() 89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d, in show_extra()
|
/external/e2fsprogs/lib/ext2fs/ |
D | crc32c.c | 149 uint32_t polynomial EXT2FS_ATTR((unused))) in crc32_le_generic() 156 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32_le_generic() 200 uint32_t polynomial EXT2FS_ATTR((unused))) in crc32_be_generic() 208 (crc << 1) ^ ((crc & 0x80000000) ? polynomial : in crc32_be_generic()
|
/external/swiftshader/third_party/LLVM/test/Transforms/LoopStrengthReduce/ |
D | quadradic-exit-value.ll | 3 ; The value of %r is dependent on a polynomial iteration expression.
|
/external/webrtc/webrtc/modules/video_processing/test/ |
D | createTable.m | 13 % is a second-order polynomial intersecting the points (0,0) 15 % 2. From r0 to r1, the compander is a third-order polynomial
|
/external/llvm/test/Transforms/LoopStrengthReduce/ |
D | quadradic-exit-value.ll | 6 ; The value of %r is dependent on a polynomial iteration expression.
|
/external/swiftshader/third_party/LLVM/test/Analysis/ScalarEvolution/ |
D | trip-count10.ll | 78 ; Trip counts for non-polynomial iterations. It's theoretically possible
|
/external/swiftshader/third_party/llvm-7.0/llvm/test/Analysis/IVUsers/ |
D | quadradic-exit-value.ll | 14 ; The value of %r is dependent on a polynomial iteration expression.
|
/external/swiftshader/third_party/llvm-7.0/llvm/test/Analysis/ScalarEvolution/ |
D | trip-count10.ll | 78 ; Trip counts for non-polynomial iterations. It's theoretically possible
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | poisson_lognormal.py | 83 grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size)
|
D | vector_diffeomixture.py | 106 grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size)
|
/external/llvm/test/Analysis/ScalarEvolution/ |
D | trip-count10.ll | 78 ; Trip counts for non-polynomial iterations. It's theoretically possible
|
/external/python/cpython3/Doc/library/ |
D | binascii.rst | 123 initial CRC, and return the result. This uses the CRC-CCITT polynomial
|
/external/llvm/lib/Target/Hexagon/ |
D | HexagonIntrinsicsV4.td | 41 // Vector polynomial multiply halfwords
|
/external/swiftshader/third_party/llvm-7.0/llvm/lib/Target/Hexagon/ |
D | HexagonIntrinsicsV4.td | 41 // Vector polynomial multiply halfwords
|
/external/python/cpython2/Doc/library/ |
D | binascii.rst | 105 returning the result. This uses the CRC-CCITT polynomial
|
/external/skqp/src/compute/skc/platforms/cl_12/kernels/ |
D | rasterize.cl | 2312 // Precompute cubic polynomial coefficients from transformed control 2314 // loop and then evaluate the polynomial in Horner form. 2412 // shuffle in the polynomial coefficients their source lane 2598 // Precompute quadratic polynomial coefficients from control cage so 2600 // then evaluate the polynomial in Horner form. 2694 // shuffle in the polynomial coefficients their source lane
|
/external/skia/src/compute/skc/platforms/cl_12/kernels/ |
D | rasterize.cl | 2312 // Precompute cubic polynomial coefficients from transformed control 2314 // loop and then evaluate the polynomial in Horner form. 2412 // shuffle in the polynomial coefficients their source lane 2598 // Precompute quadratic polynomial coefficients from control cage so 2600 // then evaluate the polynomial in Horner form. 2694 // shuffle in the polynomial coefficients their source lane
|
/external/llvm/lib/Target/AArch64/ |
D | AArch64SchedVulcan.td | 487 // ASIMD polynomial (8x8) multiply long 838 // Crypto polynomial (64x64) multiply long
|
/external/llvm/include/llvm/IR/ |
D | IntrinsicsAArch64.td | 205 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake
|
/external/swiftshader/third_party/llvm-7.0/llvm/include/llvm/IR/ |
D | IntrinsicsAArch64.td | 207 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake
|