/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/ops/ |
D | training_ops.py | 113 dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) 114 dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) 115 dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0) 192 dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) 193 dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) 194 dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0) 270 dl_dx = math_ops.reduce_mean(dl_du * du_df * df_dx, 1) 271 dl_dt = math_ops.reduce_mean(dl_du * du_df * df_dt, 0) 272 dl_db = math_ops.reduce_mean(array_ops.squeeze(dl_du * du_df * df_db, [2]), 0)
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 116 ragged_reduce_op=ragged_math_ops.reduce_mean, 174 ragged_reduce_op=ragged_math_ops.reduce_mean, 200 ragged_reduce_op=ragged_math_ops.reduce_mean, 293 ragged_reduce_op=ragged_math_ops.reduce_mean, 298 ragged_reduce_op=ragged_math_ops.reduce_mean, 303 ragged_reduce_op=ragged_math_ops.reduce_mean, 324 reduced = ragged_math_ops.reduce_mean(rt_input, axis=1) 330 reduced = ragged_math_ops.reduce_mean(tensor, axis=1)
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | mvn_diag_plus_low_rank_test.py | 180 sample_mean = math_ops.reduce_mean(samps, 0) 184 sample_kl_identity = math_ops.reduce_mean( 188 sample_kl_scaled = math_ops.reduce_mean( 192 sample_kl_diag = math_ops.reduce_mean( 196 sample_kl_chol = math_ops.reduce_mean( 207 sample_kl_identity_diag_baseline = math_ops.reduce_mean( 212 sample_kl_scaled_diag_baseline = math_ops.reduce_mean( 217 sample_kl_diag_diag_baseline = math_ops.reduce_mean( 221 sample_kl_chol_diag_baseline = math_ops.reduce_mean(
|
D | independent_test.py | 109 sample_mean = math_ops.reduce_mean(x, axis=0) 110 sample_var = math_ops.reduce_mean( 113 sample_entropy = -math_ops.reduce_mean(ind.log_prob(x), axis=0)
|
D | onehot_categorical_test.py | 186 kl_sample = math_ops.reduce_mean(p.log_prob(x) - q.log_prob(x), 0) 202 sample_mean = math_ops.reduce_mean(x, 0) 230 sample_mean = math_ops.reduce_mean(x, 0) # elementwise mean
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | test_util.py | 130 sample_mean = math_ops.reduce_mean(x, axis=0) 131 sample_variance = math_ops.reduce_mean( 295 return math_ops.reduce_mean( 361 sample_mean = math_ops.reduce_mean(x, axis=0) 362 sample_covariance = math_ops.reduce_mean(
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | classifier_metrics_impl.py | 393 q = math_ops.reduce_mean(p, axis=0) 396 log_score = math_ops.reduce_mean(kl) 569 m = math_ops.reduce_mean(real_activations, 0) 570 m_w = math_ops.reduce_mean(generated_activations, 0) 705 m = math_ops.reduce_mean(real_activations, 0) 706 m_w = math_ops.reduce_mean(generated_activations, 0) 1099 return (-2 * math_ops.reduce_mean(k_rg) + 1106 mn = math_ops.reduce_mean(ests)
|
D | sliced_wasserstein_impl.py | 172 wdist = math_ops.reduce_mean(math_ops.abs(proj_a - proj_b)) 174 return math_ops.reduce_mean(means) 196 wdist = math_ops.reduce_mean(math_ops.abs(proj_a - proj_b))
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/ops/ |
D | monte_carlo_impl.py | 331 return math_ops.reduce_mean(f(samples), axis=axis, keepdims=keep_dims) 351 return math_ops.reduce_mean(fx, axis=axis, keepdims=keep_dims) 356 return math_ops.reduce_mean(values, axis=[0])
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/ |
D | hybrid_model.py | 70 return math_ops.reduce_mean( 116 mean_squared_error = math_ops.reduce_mean(diff * diff) 120 loss = math_ops.reduce_mean(
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | custom_loss_head.py | 58 average_loss = math_ops.reduce_mean(weighted_loss) 59 return average_loss, average_loss / math_ops.reduce_mean(weight_tensor)
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | summaries.py | 92 standard_ops.reduce_mean( 99 standard_ops.reduce_mean(
|
D | target_column.py | 230 return math_ops.reduce_mean(loss_unweighted, name=name) 232 return math_ops.reduce_mean(loss_weighted, name=name) 255 return math_ops.reduce_mean(loss_unweighted, name="loss")
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist_with_summaries.py | 69 mean = tf.reduce_mean(var) 72 stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) 135 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/training/functions/ |
D | gbdt_batch_test.py | 260 loss=math_ops.reduce_mean( 353 loss=math_ops.reduce_mean( 524 loss=math_ops.reduce_mean( 628 loss=math_ops.reduce_mean( 732 loss=math_ops.reduce_mean( 803 loss=math_ops.reduce_mean( 867 loss=math_ops.reduce_mean( 1109 loss=math_ops.reduce_mean( 1213 loss=math_ops.reduce_mean( 1305 loss=math_ops.reduce_mean( [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/metric_learning/ |
D | metric_loss_ops.py | 115 return math_ops.reduce_mean( 272 reg_anchor = math_ops.reduce_mean( 274 reg_positive = math_ops.reduce_mean( 296 xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy') 380 reg_anchor = math_ops.reduce_mean( 382 reg_positive = math_ops.reduce_mean( 402 xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy')
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | virtual_batchnorm_impl.py | 67 shift = array_ops.stop_gradient(math_ops.reduce_mean(y, axes, keepdims=True)) 69 shifted_mean = math_ops.reduce_mean(y - shift, axes, keepdims=True) 71 mean_squared = math_ops.reduce_mean(math_ops.square(y), axes, keepdims=True)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | tensorflow_op_layer_test.py | 86 x = math_ops.reduce_mean(inputs, axis=1, keepdims=True) 93 x = math_ops.reduce_mean(inputs, axis=1, keepdims=True) 187 outputs = math_ops.reduce_mean(inputs, axis=1)
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 70 tf.reduce_mean( 73 tf.reduce_mean( 75 self.assertAllEqual(tf.reduce_mean(a, [0, 1]).eval(), 3.5)
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | reduce_ops_test.py | 150 self._testReduction(math_ops.reduce_mean, np.mean, np.float32, 155 self._testReduction(math_ops.reduce_mean, np.mean, np.float16, self.ONES, 159 self._testReduction(math_ops.reduce_mean, np.mean, np.complex64,
|
/external/tensorflow/tensorflow/python/debug/examples/ |
D | debug_mnist.py | 109 cross_entropy = tf.reduce_mean(diff) 119 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/ |
D | __init__.py | 128 reduce_mean = _ops.reduce_mean variable
|
/external/tensorflow/tensorflow/contrib/autograph/examples/benchmarks/ |
D | cartpole_benchmark.py | 175 grad_list[i] = tf.reduce_mean(g * r, axis=0) 197 mean_steps_per_iteration.append(tf.reduce_mean(steps_per_game)) 357 grad_list[i] = tf.reduce_mean(g * r, axis=0) 376 mean_steps_per_iteration.append(tf.reduce_mean(steps_per_game))
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | multinomial_test.py | 275 sample_mean = math_ops.reduce_mean(x, 0) 277 sample_cov = math_ops.reduce_mean(math_ops.matmul( 314 sample_mean = math_ops.reduce_mean(x, 0) 344 sample_mean = math_ops.reduce_mean(x, 0)
|
D | dirichlet_test.py | 171 sample_mean = math_ops.reduce_mean(x, 0) 173 sample_cov = math_ops.reduce_mean(math_ops.matmul( 282 kl_sample = math_ops.reduce_mean(d1.log_prob(x) - d2.log_prob(x), 0)
|