/external/tensorflow/tensorflow/python/keras/ |
D | regularizers.py | 59 regularization = 0. 61 regularization += math_ops.reduce_sum(self.l1 * math_ops.abs(x)) 63 regularization += math_ops.reduce_sum(self.l2 * math_ops.square(x)) 64 return regularization
|
/external/libopus/silk/float/ |
D | residual_energy_FLP.c | 47 silk_float tmp, nrg = 0.0f, regularization; in silk_residual_energy_covar_FLP() local 52 regularization = REGULARIZATION_FACTOR * ( wXX[ 0 ] + wXX[ D * D - 1 ] ); in silk_residual_energy_covar_FLP() 75 matrix_c_ptr( wXX, i, i, D ) += regularization; in silk_residual_energy_covar_FLP() 78 regularization *= 2.0f; in silk_residual_energy_covar_FLP()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SdcaShrinkL1.pbtxt | 19 Symmetric l1 regularization strength. 25 Symmetric l2 regularization strength. Should be a positive float. 28 summary: "Applies L1 regularization shrink step on the parameters."
|
D | api_def_ResourceApplyProximalGradientDescent.pbtxt | 18 L1 regularization. Must be a scalar. 24 L2 regularization. Must be a scalar.
|
D | api_def_ApplyProximalGradientDescent.pbtxt | 18 L1 regularization. Must be a scalar. 24 L2 regularization. Must be a scalar.
|
D | api_def_BoostedTreesCenterBias.pbtxt | 25 l1 regularization factor on leaf weights, per instance based. 31 l2 regularization factor on leaf weights, per instance based.
|
D | api_def_ResourceApplyProximalAdagrad.pbtxt | 24 L1 regularization. Must be a scalar. 30 L2 regularization. Must be a scalar.
|
D | api_def_ResourceApplyAdagradDA.pbtxt | 36 L1 regularization. Must be a scalar. 42 L2 regularization. Must be a scalar.
|
D | api_def_ApplyProximalAdagrad.pbtxt | 24 L1 regularization. Must be a scalar. 30 L2 regularization. Must be a scalar.
|
D | api_def_ResourceSparseApplyProximalGradientDescent.pbtxt | 18 L1 regularization. Must be a scalar. 24 L2 regularization. Must be a scalar.
|
D | api_def_ApplyAdagradDA.pbtxt | 36 L1 regularization. Must be a scalar. 42 L2 regularization. Must be a scalar.
|
D | api_def_SparseApplyProximalGradientDescent.pbtxt | 18 L1 regularization. Must be a scalar. 24 L2 regularization. Must be a scalar.
|
D | api_def_SparseApplyAdagradDA.pbtxt | 42 L1 regularization. Must be a scalar. 48 L2 regularization. Must be a scalar.
|
D | api_def_ResourceSparseApplyProximalAdagrad.pbtxt | 24 L1 regularization. Must be a scalar. 30 L2 regularization. Must be a scalar.
|
D | api_def_ResourceSparseApplyAdagradDA.pbtxt | 42 L1 regularization. Must be a scalar. 48 L2 regularization. Must be a scalar.
|
D | api_def_SparseApplyProximalAdagrad.pbtxt | 24 L1 regularization. Must be a scalar. 30 L2 regularization. Must be a scalar.
|
D | api_def_ResourceSparseApplyFtrl.pbtxt | 42 L1 regularization. Must be a scalar. 48 L2 regularization. Must be a scalar.
|
D | api_def_SparseApplyFtrl.pbtxt | 42 L1 regularization. Must be a scalar. 48 L2 regularization. Must be a scalar.
|
/external/tensorflow/tensorflow/core/kernels/ |
D | sdca_internal.cc | 156 const Regularizations& regularization, const int num_weight_vectors) const { in ComputeWxAndWeightedExampleNorm() argument 160 squared_norm_ / regularization.symmetric_l2(); in ComputeWxAndWeightedExampleNorm() 180 feature_value * regularization.Shrink(sparse_weight); in ComputeWxAndWeightedExampleNorm() 181 result.wx[l] += feature_value * regularization.Shrink(feature_weight); in ComputeWxAndWeightedExampleNorm() 200 regularization.EigenShrinkVector( in ComputeWxAndWeightedExampleNorm() 207 regularization.EigenShrinkVector( in ComputeWxAndWeightedExampleNorm() 217 regularization.EigenShrinkMatrix(dense_weights.nominals()) in ComputeWxAndWeightedExampleNorm() 220 regularization.EigenShrinkMatrix(feature_weights) in ComputeWxAndWeightedExampleNorm() 236 const int num_loss_partitions, const Regularizations& regularization, in SampleAdaptiveProbabilities() argument 254 model_weights, regularization, in SampleAdaptiveProbabilities() [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/training/functions/ |
D | gbdt_batch_test.py | 222 learner_config.regularization.l1 = 0 223 learner_config.regularization.l2 = 0 325 learner_config.regularization.l1 = 0 326 learner_config.regularization.l2 = 0 482 learner_config.regularization.l1 = 0 483 learner_config.regularization.l2 = 0 589 learner_config.regularization.l1 = 0 590 learner_config.regularization.l2 = 0 694 learner_config.regularization.l1 = 0 695 learner_config.regularization.l2 = 0 [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/python/ops/ |
D | factorization_ops_test.py | 176 regularization=0.01, 199 (_, process_input_op, unregularized_loss, regularization, 202 factor_loss = unregularized_loss + regularization 271 (_, process_input_op, unregularized_loss, regularization, 274 factor_loss = unregularized_loss + regularization 345 regularization=0.01, 374 (_, process_input_op, unregularized_loss, regularization, 377 factor_loss = unregularized_loss + regularization 450 (_, process_input_op, unregularized_loss, regularization, 453 factor_loss = unregularized_loss + regularization [all …]
|
D | factorization_ops_test_utils.py | 98 def calculate_loss(input_mat, row_factors, col_factors, regularization=None, argument 122 reg = (regularization if regularization is not None
|
D | factorization_ops.py | 192 regularization=None, argument 252 self._regularization = regularization 254 regularization * linalg_ops.eye(self._n_components) 255 if regularization is not None else None) 1000 regularization = self._regularization * ( 1004 regularization = constant_op.constant(0.) 1016 return (new_left_values, update_op, unregularized_loss, regularization,
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator_test.py | 405 learner_config.regularization.l2 = 1.0 / _QUANTILE_REGRESSION_SIZE 406 learner_config.regularization.l1 = 1.0 / _QUANTILE_REGRESSION_SIZE 407 learner_config.regularization.tree_complexity = ( 438 learner_config.regularization.l2 = 1.0 / _QUANTILE_REGRESSION_SIZE 439 learner_config.regularization.l1 = 1.0 / _QUANTILE_REGRESSION_SIZE 440 learner_config.regularization.tree_complexity = ( 675 learner_config.regularization.l2 = 1.0 / _QUANTILE_REGRESSION_SIZE 676 learner_config.regularization.l1 = 1.0 / _QUANTILE_REGRESSION_SIZE 677 learner_config.regularization.tree_complexity = (
|
/external/tensorflow/tensorflow/contrib/image/python/kernel_tests/ |
D | sparse_image_warp_test.py | 77 for regularization in (0, 0.01): 79 self.assertZeroShift(order, regularization, num_boundary_points) 81 def assertZeroShift(self, order, regularization, num_boundary_points): argument 107 regularization_weight=regularization,
|