Home
last modified time | relevance | path

Searched refs:sp_a (Results 1 – 9 of 9) sorted by relevance

/external/tensorflow/tensorflow/python/kernel_tests/
Dsets_test.py195 sp_a = _dense_to_sparse(a_values, dtype=dtype)
196 intersection = self._set_intersection(sp_a, sp_b)
204 self._set_intersection_count(sp_a, sp_b))
268 sp_a = _dense_to_sparse(a_values, dtype=dtype)
269 intersection = self._set_intersection(sp_a, sp_b)
277 self._set_intersection_count(sp_a, sp_b))
321 sp_a = sparse_tensor_lib.SparseTensor(
372 self._set_intersection(sp_a, sp_b)
417 intersection = self._set_intersection(sp_a, sp_b)
425 self._set_intersection_count(sp_a, sp_b))
[all …]
Dsparse_concat_op_test.py141 for sp_a in (self._SparseTensorValue_3x3(), self._SparseTensor_3x3()):
145 sp_concat = sparse_ops.sparse_concat(concat_dim, [sp_a])
164 for sp_a in (self._SparseTensorValue_3x3(), self._SparseTensor_3x3()):
167 sp_concat = sparse_ops.sparse_concat(concat_dim, [sp_a, sp_b])
189 sp_a = self._SparseTensor_3x3()
193 sp_concat = sparse_ops.sparse_concat(concat_dim, [sp_a, sp_d])
213 sp_a = self._SparseTensor_3x3()
218 sp_concat = sparse_ops.sparse_concat(concat_dim, [sp_a, sp_b, sp_c])
238 sp_a = self._SparseTensor_String3x3()
242 sp_concat = sparse_ops.sparse_concat(concat_dim, [sp_a, sp_b])
[all …]
Dsparse_matmul_op_test.py48 sp_a=True, argument
60 a_is_sparse=sp_a,
117 for sp_a in [True, False]:
129 sp_a,
137 def _testGradients(self, tr_a, tr_b, sp_a, sp_b, a_dtype, b_dtype, delta, argument
155 a_is_sparse=sp_a,
172 for sp_a in [True, False]:
182 name = "sparse_matmul_%s_%s_%s_%s" % (tr_a, tr_b, sp_a, sp_b)
183 self._testGradients(tr_a, tr_b, sp_a, sp_b, a_dtype, b_dtype,
Dsparse_add_op_test.py90 for sp_a in (self._SparseTensorValue_3x3(), self._SparseTensor_3x3()):
92 sp_sum = sparse_ops.sparse_add(sp_a, sp_b)
104 sp_a = self._SparseTensor_3x3()
107 sp_sum = sparse_ops.sparse_add(sp_a, sp_b, 0.1)
117 sp_a = self._SparseTensor_3x3()
126 sp_sum = sparse_ops.sparse_add(sp_a, sp_b, thresh=0.21)
135 sp_sum = sparse_ops.sparse_add(sp_a, sp_b, thresh=0.11)
149 sp_a, nnz_a = self._randomTensor([n, m], np.float32)
151 sp_sum = sparse_ops.sparse_add(sp_a, sp_b)
155 [sp_a.values, sp_b.values], [(nnz_a,), (nnz_b,)], sp_sum.values,
Dsparse_ops_test.py971 sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5)
975 maximum_tf = sparse_ops.sparse_maximum(sp_a, sp_b)
978 minimum_tf = sparse_ops.sparse_minimum(sp_a, sp_b)
982 a_densified = sparse_ops.sparse_tensor_to_dense(sp_a).eval()
/external/tensorflow/tensorflow/python/ops/
Dsparse_ops.py2132 def sparse_tensor_dense_matmul(sp_a, argument
2335 sp_a = _convert_to_sparse_tensor(sp_a)
2337 [sp_a.indices, sp_a.values, b]) as name:
2340 a_indices=sp_a.indices,
2341 a_values=sp_a.values,
2342 a_shape=sp_a.dense_shape,
2406 def sparse_maximum(sp_a, sp_b, name=None): argument
2430 [sp_a.indices, sp_a.values, sp_b.indices, sp_b.values]) as name:
2432 sp_a.indices,
2433 sp_a.values,
[all …]
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.sparse.pbtxt45 …argspec: "args=[\'sp_a\', \'b\', \'adjoint_a\', \'adjoint_b\', \'name\'], varargs=None, keywords=N…
49 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
57 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
117 …argspec: "args=[\'sp_a\', \'b\', \'adjoint_a\', \'adjoint_b\', \'name\'], varargs=None, keywords=N…
Dtensorflow.pbtxt2085 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
2093 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
2157 …argspec: "args=[\'sp_a\', \'b\', \'adjoint_a\', \'adjoint_b\', \'name\'], varargs=None, keywords=N…
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.sparse.pbtxt45 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
49 … argspec: "args=[\'sp_a\', \'sp_b\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
97 …argspec: "args=[\'sp_a\', \'b\', \'adjoint_a\', \'adjoint_b\', \'name\'], varargs=None, keywords=N…