/external/tensorflow/tensorflow/python/util/ |
D | tfprof.i | 44 %unignore tensorflow::tfprof; 45 %unignore tensorflow::tfprof::PrintModelAnalysis; 46 %unignore tensorflow::tfprof::NewProfiler; 47 %unignore tensorflow::tfprof::ProfilerFromFile; 48 %unignore tensorflow::tfprof::DeleteProfiler; 49 %unignore tensorflow::tfprof::AddStep; 50 %unignore tensorflow::tfprof::SerializeToString; 51 %unignore tensorflow::tfprof::WriteProfile; 52 %unignore tensorflow::tfprof::Profile;
|
/external/tensorflow/tensorflow/core/profiler/internal/ |
D | tfprof_utils.cc | 31 namespace tfprof { namespace 116 tensorflow::tfprof::Options* opts) { in ParseCmdLine() 129 if (pieces[i] == string(tensorflow::tfprof::kOptions[0])) { in ParseCmdLine() 135 } else if (pieces[i] == tensorflow::tfprof::kOptions[1]) { in ParseCmdLine() 141 } else if (pieces[i] == tensorflow::tfprof::kOptions[2]) { in ParseCmdLine() 147 } else if (pieces[i] == tensorflow::tfprof::kOptions[3]) { in ParseCmdLine() 153 } else if (pieces[i] == tensorflow::tfprof::kOptions[4]) { in ParseCmdLine() 159 } else if (pieces[i] == tensorflow::tfprof::kOptions[5]) { in ParseCmdLine() 165 } else if (pieces[i] == tensorflow::tfprof::kOptions[6]) { in ParseCmdLine() 172 } else if (pieces[i] == tensorflow::tfprof::kOptions[7]) { in ParseCmdLine() [all …]
|
D | tfprof_utils.h | 29 namespace tfprof { 39 tensorflow::tfprof::Options* opts);
|
D | tfprof_constants.h | 20 namespace tfprof {
|
/external/tensorflow/tensorflow/core/profiler/g3doc/ |
D | command_line.md | 4 * [Start `tfprof`](#start-tfprof) 17 tfprof command line tool uses the following input: 45 tensorflow.tfprof.OpLogProto (optional). A proto used to provide extra operation 60 ### Start `tfprof` 62 #### Build `tfprof` argument 72 #### Start `tfprof` Interactive Mode argument 74 # The following commands will start tfprof interactive mode. 121 #### Start `tfprof` Non-interactive Mode. argument 124 # Runs tfprof in one-shot. 135 tfprof> [all …]
|
D | profile_model_architecture.md | 12 For example `_trainable_variables` is created automatically by tfprof Python 18 tfprof> scope -account_type_regexes VariableV2 -max_depth 4 -select params 48 * It must have `RegisterStatistics('flops')` defined in TensorFlow. tfprof 54 shape is only known during runtime. tfprof can fill in the missing shape 59 * If no RunMetadata is provided, tfprof counts float_ops of each graph node 60 once, even if it is defined in a tf.while_loop. This is because tfprof 62 RunMetadata is provided, tfprof calculates float_ops as float_ops * 68 tfprof> scope -min_float_ops 1 -select float_ops -account_displayed_op_only 82 tfprof> op -min_float_ops 1 -select float_ops -account_displayed_op_only -order_by float_ops
|
D | profile_time.md | 3 * [Times in TensorFlow and tfprof](#times-in-tensorflow-and-tfprof) 10 ### Times in TensorFlow and tfprof 23 tfprof reports 3 execution times: 48 tfprof> code -show_name_regexes seq2seq_attention.* -max_depth 10 -select micros -order_by micros 75 tfprof> code -start_name_regexes .*_add_seq2seq.* -show_name_regexes seq2seq_attention.* -max_depth… 84 tfprof> code -max_depth 5 -select micros -order_by micros -start_name_regexes .*_add_seq2seq.* -mi… 118 tfprof> op -select micros,occurrence -order_by micros 134 tfprof> op -select micros,device -order_by micros 153 tfprof options allow users to generate timeline in some advanced ways. 172 tfprof> scope -max_depth 30 -select micros -min_micros 100000 -order_by micros
|
D | profile_memory.md | 8 tfprof> graph -max_depth 10000000 -step 0 -account_type_regexes .* -output timeline:outfile=<filena… 24 tfprof> op -select bytes -order_by bytes 39 tfprof> scope -order_by bytes -select bytes -min_bytes 100000000 59 tfprof> code -max_depth 10 -select bytes -order_by bytes -start_name_regexes .*seq2seq.* -min_byte…
|
D | advise.md | 3 tfprof analyzes profiles and generates advice for common issues. 28 tfprof --graph_path=graph.pbtxt \ 32 tfprof> advise 78 There is no magic behind advise mode. tfprof builds the profiles first, then
|
D | python_api.md | 30 # param_stats can be tensorflow.tfprof.GraphNodeProto or 31 # tensorflow.tfprof.MultiGraphNodeProto, depending on the view. 109 tfprof allows you to profile statistics across multiple steps.
|
D | options.md | 5 For all tfprof views, the profiles are processed with the following procedures 20 (e.g. MatMul, Conv2D). `tfprof` also considers device as operation type. 103 …of the type regexes specified. tfprof allow user to define extra operation types for graph nodes t…
|
/external/tensorflow/tensorflow/contrib/tfprof/ |
D | __init__.py | 27 from tensorflow.contrib.tfprof import model_analyzer 28 from tensorflow.contrib.tfprof import tfprof_logger 30 from tensorflow.contrib.tfprof.model_analyzer import ProfileContext
|
D | BUILD | 8 name = "tfprof",
|
/external/tensorflow/tensorflow/core/profiler/ |
D | README.md | 30 with tf.contrib.tfprof.ProfileContext('/tmp/train_dir') as pctx: 36 tfprof> op -select micros,bytes,occurrence -order_by micros 53 with tf.contrib.tfprof.ProfileContext('/tmp/train_dir', 77 with tf.contrib.tfprof.ProfileContext('/tmp/train_dir', 106 tfprof> code -max_depth 1000 -show_name_regexes .*model_analyzer.*py.* -select micros -account_type… 125 tfprof> scope -account_type_regexes VariableV2 -max_depth 4 -select params 141 tfprof> op -select micros,bytes,occurrence -order_by micros 159 tfprof> advise 219 tfprof> graph -step -1 -max_depth 100000 -output timeline:outfile=<filename> 241 tfprof> code -select accelerator_micros -max_depth 100000 -output pprof:outfile=<filename> -trim_n…
|
D | tfprof_options.proto | 3 package tensorflow.tfprof; 6 // Only used to pass tfprof options from Python to C++.
|
D | tfprof_log.proto | 3 package tensorflow.tfprof; 30 // float_ops is filled by tfprof Python API when called. It requires the 37 // Used to support tfprof "code" view.
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.profiler.-op-log-proto.pbtxt | 10 type_name: ".tensorflow.tfprof.OpLogEntry" 17 type_name: ".tensorflow.tfprof.OpLogProto.IdToStringEntry"
|
D | tensorflow.profiler.-advice-proto.pbtxt | 10 type_name: ".tensorflow.tfprof.AdviceProto.CheckersEntry" 25 type_name: ".tensorflow.tfprof.AdviceProto.Checker"
|
D | tensorflow.profiler.-graph-node-proto.pbtxt | 16 type_name: ".tensorflow.tfprof.TFProfTensorProto" 162 type_name: ".tensorflow.tfprof.GraphNodeProto.InputShapesEntry" 169 type_name: ".tensorflow.tfprof.GraphNodeProto"
|
D | tensorflow.profiler.-multi-graph-node-proto.pbtxt | 124 type_name: ".tensorflow.tfprof.GraphNodeProto" 131 type_name: ".tensorflow.tfprof.MultiGraphNodeProto"
|
D | tensorflow.profiler.-advice-proto.-checkers-entry.pbtxt | 16 type_name: ".tensorflow.tfprof.AdviceProto.Checker"
|
/external/tensorflow/tensorflow/core/profiler/internal/advisor/ |
D | internal_checker_runner_dummy.cc | 18 namespace tfprof { namespace
|
D | internal_checker_runner.h | 24 namespace tfprof {
|
D | checker.h | 24 namespace tfprof {
|
/external/tensorflow/tensorflow/cc/profiler/ |
D | profiler.h | 26 namespace tfprof {
|