/external/tensorflow/tensorflow/contrib/training/ |
D | __init__.py | 48 from tensorflow.contrib.training.python.training.bucket_ops import * 49 from tensorflow.contrib.training.python.training.device_setter import * 50 from tensorflow.contrib.training.python.training.evaluation import checkpoints_iterator 51 from tensorflow.contrib.training.python.training.evaluation import evaluate_once 52 from tensorflow.contrib.training.python.training.evaluation import evaluate_repeatedly 53 from tensorflow.contrib.training.python.training.evaluation import get_or_create_eval_step 54 from tensorflow.contrib.training.python.training.evaluation import StopAfterNEvalsHook 55 from tensorflow.contrib.training.python.training.evaluation import SummaryAtEndHook 56 from tensorflow.contrib.training.python.training.evaluation import wait_for_new_checkpoint 57 from tensorflow.contrib.training.python.training.feeding_queue_runner import FeedingQueueRunner [all …]
|
D | BUILD | 20 "python/training/__init__.py", 21 "python/training/bucket_ops.py", 22 "python/training/device_setter.py", 23 "python/training/evaluation.py", 24 "python/training/feeding_queue_runner.py", 25 "python/training/hparam.py", 26 "python/training/resample.py", 27 "python/training/sampling_ops.py", 28 "python/training/sequence_queueing_state_saver.py", 29 "python/training/training.py", [all …]
|
/external/tensorflow/tensorflow/python/training/ |
D | training.py | 30 from tensorflow.python.training.adadelta import AdadeltaOptimizer 31 from tensorflow.python.training.adagrad import AdagradOptimizer 32 from tensorflow.python.training.adagrad_da import AdagradDAOptimizer 33 from tensorflow.python.training.proximal_adagrad import ProximalAdagradOptimizer 34 from tensorflow.python.training.adam import AdamOptimizer 35 from tensorflow.python.training.ftrl import FtrlOptimizer 36 from tensorflow.python.training.momentum import MomentumOptimizer 37 from tensorflow.python.training.moving_averages import ExponentialMovingAverage 38 from tensorflow.python.training.optimizer import Optimizer 39 from tensorflow.python.training.rmsprop import RMSPropOptimizer [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/resnet50/ |
D | resnet50.py | 73 def call(self, input_tensor, training=False): argument 75 x = self.bn2a(x, training=training) 79 x = self.bn2b(x, training=training) 83 x = self.bn2c(x, training=training) 148 def call(self, input_tensor, training=False): argument 150 x = self.bn2a(x, training=training) 154 x = self.bn2b(x, training=training) 158 x = self.bn2c(x, training=training) 161 shortcut = self.bn_shortcut(shortcut, training=training) 275 def call(self, inputs, training=True): argument [all …]
|
/external/tensorflow/tensorflow/contrib/opt/ |
D | __init__.py | 22 from tensorflow.contrib.opt.python.training.adam_gs_optimizer import * 23 from tensorflow.contrib.opt.python.training.adamax import * 24 from tensorflow.contrib.opt.python.training.addsign import * 25 from tensorflow.contrib.opt.python.training.agn_optimizer import * 26 from tensorflow.contrib.opt.python.training.drop_stale_gradient_optimizer import * 27 from tensorflow.contrib.opt.python.training.elastic_average_optimizer import * 28 from tensorflow.contrib.opt.python.training.external_optimizer import * 29 from tensorflow.contrib.opt.python.training.lars_optimizer import * 30 from tensorflow.contrib.opt.python.training.ggt import * 31 from tensorflow.contrib.opt.python.training.lazy_adam_optimizer import * [all …]
|
D | BUILD | 17 "python/training/adam_gs_optimizer.py", 18 "python/training/adamax.py", 19 "python/training/addsign.py", 20 "python/training/agn_optimizer.py", 21 "python/training/drop_stale_gradient_optimizer.py", 22 "python/training/elastic_average_optimizer.py", 23 "python/training/external_optimizer.py", 24 "python/training/ggt.py", 25 "python/training/lars_optimizer.py", 26 "python/training/lazy_adam_gs_optimizer.py", [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | blocks.py | 87 def call(self, h, training=True): argument 91 h = block(h, training=training) 94 def backward_grads(self, x, y, dy, training=True): argument 103 x, y, dy, training=True) 105 y, dy, grads = block.backward_grads(y, dy, training=training) 170 def call(self, x, training=True): argument 173 f_x2 = self.f(x2, training=training) 179 g_y1 = self.g(y1, training=training) 184 def backward_grads(self, y, dy, training=True): argument 191 gy1 = self.g(y1, training=training) [all …]
|
D | revnet.py | 96 def call(self, inputs, training=True): argument 100 if training: 103 h = self._init_block(inputs, training=training) 104 if training: 108 h = block(h, training=training) 109 if training: 112 logits = self._final_block(h, training=training) 114 return (logits, saved_hidden) if training else (logits, None) 132 def compute_gradients(self, saved_hidden, labels, training=True, l2_reg=True): argument 157 logits = self._final_block(x, training=training) [all …]
|
D | blocks_test.py | 67 y_tr, y_ev = block(x, training=True), block(x, training=False) 78 y_tr, y_ev = block(x, training=True), block(x, training=False) 104 y_tr, y_ev = block(x, training=True), block(x, training=False) 111 y_tr, y_ev = block(x, training=True), block(x, training=False) 147 y1, y2 = block((x1, x2), training=True) 151 x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) 176 y1, y2 = block((x1, x2), training=True) 180 x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) 210 y1, y2 = block((x1, x2), training=True) 218 x=(x1, x2), y=(y1, y2), dy=(dy1, dy2), training=True) [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/densenet/ |
D | densenet.py | 69 def call(self, x, training=True): argument 70 output = self.batchnorm1(x, training=training) 74 output = self.batchnorm2(output, training=training) 77 output = self.dropout(output, training=training) 107 def call(self, x, training=True): argument 108 output = self.batchnorm(x, training=training) 141 def call(self, x, training=True): argument 143 output = self.blocks[i](x, training=training) 275 def call(self, x, training=True): argument 279 output = self.batchnorm1(output, training=training) [all …]
|
/external/tensorflow/tensorflow/contrib/checkpoint/python/ |
D | BUILD | 15 "//tensorflow/python/training/tracking:data_structures", 25 "//tensorflow/python/training/tracking:base", 26 "//tensorflow/python/training/tracking:data_structures", 39 "//tensorflow/python/training/tracking:base", 40 "//tensorflow/python/training/tracking:util", 50 "//tensorflow/python/training/tracking:base", 67 "//tensorflow/python/training/tracking:util", 78 "//tensorflow/python:training", 79 "//tensorflow/python/training/tracking:base", 92 "//tensorflow/python/training/tracking:base", [all …]
|
/external/tensorflow/tensorflow/contrib/checkpoint/ |
D | __init__.py | 52 from tensorflow.python.training.checkpoint_management import CheckpointManager 53 from tensorflow.python.training.tracking.base import Trackable as CheckpointableBase 54 from tensorflow.python.training.tracking.data_structures import List 55 from tensorflow.python.training.tracking.data_structures import Mapping 56 from tensorflow.python.training.tracking.data_structures import NoDependency 57 from tensorflow.python.training.tracking.python_state import PythonState as PythonStateWrapper 58 from tensorflow.python.training.tracking.tracking import AutoTrackable as Checkpointable 59 from tensorflow.python.training.tracking.util import capture_dependencies 60 from tensorflow.python.training.tracking.util import list_objects 61 from tensorflow.python.training.tracking.util import object_metadata
|
/external/tensorflow/tensorflow/python/layers/ |
D | normalization_test.py | 37 from tensorflow.python.training import gradient_descent 38 from tensorflow.python.training import saver as saver_lib 54 training = not freeze_mode 55 bn = bn_layer.apply(conv, training=training) 264 training = array_ops.placeholder(dtype='bool') 265 outputs = bn.apply(inputs, training=training) 291 training = array_ops.placeholder(dtype='bool') 292 outputs = bn.apply(inputs, training=training) 321 training = array_ops.placeholder(dtype='bool') 322 outputs = bn.apply(inputs, training=training) [all …]
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | training_test.py | 27 from tensorflow.contrib.training.python.training import training 38 from tensorflow.python.training import basic_session_run_hooks 39 from tensorflow.python.training import checkpoint_management 40 from tensorflow.python.training import gradient_descent 41 from tensorflow.python.training import monitored_session 42 from tensorflow.python.training import saver as saver_lib 62 clipped_gradients_to_variables = training.clip_gradient_norms( 75 clipped_gradients_to_variables = training.clip_gradient_norms_fn(3.0)( 101 train_op = training.create_train_op(loss, optimizer) 119 train_op = training.create_train_op(loss, optimizer) [all …]
|
/external/tensorflow/tensorflow/python/autograph/pyct/static_analysis/ |
D | type_info_test.py | 32 from tensorflow.python.training import training 86 opt = training.GradientDescentOptimizer(0.1) 89 node = self._parse_and_analyze(test_fn, {'training': training}) 92 self.assertEquals(training.GradientDescentOptimizer, 94 self.assertEquals((training.__name__, 'GradientDescentOptimizer'), 110 opt = training.GradientDescentOptimizer(0.1) 113 node = self._parse_and_analyze(test_fn, {'training': training}) 115 self.assertEquals(training.GradientDescentOptimizer.minimize, 138 opt = training.GradientDescentOptimizer(0.1) 140 opt = training.GradientDescentOptimizer(0.01) [all …]
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | BUILD | 32 ":training", 38 name = "training", 55 "//tensorflow/python:training", 68 ":training", 86 ":training", 102 ":training", 117 ":training", 128 "//tensorflow/python:training", 143 ":training", 160 ":training", [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | noise.py | 64 def call(self, inputs, training=None): argument 70 return K.in_train_phase(noised, inputs, training=training) 112 def call(self, inputs, training=None): argument 120 return K.in_train_phase(noised, inputs, training=training) 173 def call(self, inputs, training=None): argument 196 return K.in_train_phase(dropped_inputs, inputs, training=training)
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | checkpointing_test.py | 27 from tensorflow.python.keras.engine import training 30 from tensorflow.python.training import adam as adam_v1 31 from tensorflow.python.training import checkpoint_management 32 from tensorflow.python.training import training_util 33 from tensorflow.python.training.tracking import tracking 34 from tensorflow.python.training.tracking import util as trackable_utils 45 class Subclassed(training.Model):
|
/external/tensorflow/tensorflow/contrib/quantize/ |
D | README.md | 1 # Quantization-aware training 3 Quantization-aware model training ensures that the forward pass matches precision 4 for both training and inference. There are two aspects to this: 6 * Operator fusion at inference time are accurately modeled at training time. 7 * Quantization effects at inference are modeled at training time. 23 during training. This allows a model trained with quantization in the loop to be 29 training graph. To create a fake quantized training graph: 35 # Call the training rewrite which rewrites the graph in-place with 36 # FakeQuantization nodes and folds batchnorm for training. It is 38 # with this training tool. When training from scratch, quant_delay [all …]
|
/external/tensorflow/tensorflow/python/saved_model/ |
D | BUILD | 118 "//tensorflow/python:training", 179 "//tensorflow/python:training", 278 "//tensorflow/python/training/tracking:base", 312 "//tensorflow/python/training/saving:functional_saver", 313 "//tensorflow/python/training/tracking", 314 "//tensorflow/python/training/tracking:base", 315 "//tensorflow/python/training/tracking:graph_view", 316 "//tensorflow/python/training/tracking:object_identity", 317 "//tensorflow/python/training/tracking:util", 358 "//tensorflow/python/training/tracking", [all …]
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | util.py | 90 def call(self, x, training=None): argument 97 if training is None: 98 training = tf.keras.backend.learning_phase() # Could be a tensor. 99 result = smart_cond.smart_cond(training, 100 lambda: f(training=True), 101 lambda: f(training=False))
|
/external/tensorflow/tensorflow/lite/g3doc/convert/ |
D | quantization.md | 7 # Post-training: Quantizing models for CPU model size 21 # During training: Quantizing models for integer-only execution. 25 Currently, this requires training a model with 39 specify how those uint8 values map to the float input values used while training 45 For most users, we recommend using post-training quantization. We are working on 46 new tools for post-training and during training quantization that we hope will
|
/external/tensorflow/tensorflow/contrib/gan/python/estimator/python/ |
D | gan_estimator_test.py | 48 from tensorflow.python.training import input as input_lib 49 from tensorflow.python.training import learning_rate_decay 50 from tensorflow.python.training import sync_replicas_optimizer 51 from tensorflow.python.training import training 52 from tensorflow.python.training import training_util 142 cls._generator_optimizer = training.GradientDescentOptimizer(1.0) 143 cls._discriminator_optimizer = training.GradientDescentOptimizer(1.0) 178 training.GradientDescentOptimizer(learning_rate=1.0), 219 return training.GradientDescentOptimizer(lr) 221 gopt = make_opt if lr_decay else training.GradientDescentOptimizer(1.0) [all …]
|
D | tpu_gan_estimator_test.py | 46 from tensorflow.python.training import learning_rate_decay 47 from tensorflow.python.training import training 48 from tensorflow.python.training import training_util 102 training.GradientDescentOptimizer(1.0)) 104 training.GradientDescentOptimizer(1.0)) 160 return training.GradientDescentOptimizer(lr) 162 gopt = make_opt if lr_decay else training.GradientDescentOptimizer(1.0) 163 dopt = make_opt if lr_decay else training.GradientDescentOptimizer(1.0) 270 generator_optimizer=training.GradientDescentOptimizer(1.0), 271 discriminator_optimizer=training.GradientDescentOptimizer(1.0), [all …]
|
/external/tensorflow/tensorflow/python/estimator/ |
D | training.py | 26 from tensorflow_estimator.python.estimator import training 30 training.__all__ = [s for s in dir(training) if not s.startswith('__')] 32 from tensorflow_estimator.python.estimator.training import *
|