/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | alpha_dropout_test.py | 33 x_dim, y_dim = 40, 30 36 t = random_ops.random_normal([x_dim, y_dim]) 38 self.assertEqual([x_dim, y_dim], output.get_shape()) 46 x_dim = 40 49 t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) 51 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim + 10]) 53 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim, 5]) 55 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim + 3]) 57 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim]) 62 _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, 1]) [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/l2hmc/ |
D | l2hmc_test.py | 31 x_dim=2, 67 shape=[n_samples, dynamics.x_dim], dtype=tf.float32) 106 x_dim=hparams.x_dim, 110 samples = tf.random_normal(shape=[hparams.n_samples, hparams.x_dim]) 122 x_dim=hparams.x_dim, 126 x = tf.placeholder(tf.float32, shape=[None, hparams.x_dim]) 128 samples = npr.normal(size=[hparams.n_samples, hparams.x_dim]) 154 x = tf.random_normal([hparams.n_samples, hparams.x_dim], 157 x_dim=hparams.x_dim, 205 x_dim=hparams.x_dim, [all …]
|
D | neural_nets.py | 39 def __init__(self, x_dim, factor, n_hidden=10): argument 48 self.scale_layer = _custom_dense(x_dim, .001) 50 initial_value=tf.zeros([1, x_dim]), name='coeff_scale', trainable=True) 52 self.translation_layer = _custom_dense(x_dim, factor=.001) 54 self.transformation_layer = _custom_dense(x_dim, .001) 56 initial_value=tf.zeros([1, x_dim]),
|
D | l2hmc.py | 38 x_dim, argument 55 self.x_dim = x_dim 62 self.position_fn = neural_nets.GenericNet(x_dim, factor=2.) 63 self.momentum_fn = neural_nets.GenericNet(x_dim, factor=1.) 259 idx = npr.permutation(np.arange(self.x_dim))[:self.x_dim // 2] 260 mask = np.zeros((self.x_dim,))
|
D | main.py | 46 x_dim = 2 55 x_dim=x_dim, minus_loglikelihood_fn=energy_fn, n_steps=n_steps, eps=eps) 78 samples = tf.random_normal(shape=[n_samples, x_dim]) 111 samples = tf.random_normal(shape=[n_samples, x_dim])
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_test.py | 311 x_dim = 40 315 t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) 318 self.assertEqual([x_dim, y_dim], dropout.get_shape()) 328 expected_count = x_dim * y_dim * keep_prob * num_iter 338 x_dim = 40 * 30 342 t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32) 343 dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1]) 344 self.assertEqual([x_dim, y_dim], dropout.get_shape()) 355 expected_count = x_dim * y_dim * keep_prob * num_iter 362 x_dim = 40 [all …]
|
/external/tensorflow/tensorflow/contrib/image/ops/ |
D | single_image_random_dot_stereograms_ops.cc | 55 DimensionHandle x_dim = c->Dim(output_image_shape, 0); in __anonbda156eb0102() local 63 {y_dim, x_dim, colors > 256 ? c->MakeDim(3) : c->MakeDim(1)})); in __anonbda156eb0102()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | tensor_signature.py | 81 for dim, (x_dim, y_dim) in enumerate(zip(this.dims, other.dims)): 84 if not x_dim.is_compatible_with(y_dim):
|
/external/tensorflow/tensorflow/python/framework/ |
D | tensor_shape.py | 1054 for x_dim, y_dim in zip(self._dims, other.dims): 1055 if not x_dim.is_compatible_with(y_dim):
|
/external/libcups/cups/ |
D | ppd-cache.c | 2953 *x_dim, *y_dim; /* Media dimensions */ in _ppdCreateFromIPP() local 3235 x_dim = ippFindAttribute(media_size, "x-dimension", IPP_TAG_INTEGER); in _ppdCreateFromIPP() 3238 …if (x_dim && y_dim && (pwg = pwgMediaForSize(ippGetInteger(x_dim, 0), ippGetInteger(y_dim, 0))) !=… in _ppdCreateFromIPP() 3266 x_dim = ippFindAttribute(media_size, "x-dimension", IPP_TAG_INTEGER); in _ppdCreateFromIPP() 3269 pwg = pwgMediaForSize(ippGetInteger(x_dim, 0), ippGetInteger(y_dim, 0)); in _ppdCreateFromIPP() 3306 x_dim = ippFindAttribute(media_size, "x-dimension", IPP_TAG_INTEGER); in _ppdCreateFromIPP() 3309 pwg = pwgMediaForSize(ippGetInteger(x_dim, 0), ippGetInteger(y_dim, 0)); in _ppdCreateFromIPP() 3342 x_dim = ippFindAttribute(media_size, "x-dimension", IPP_TAG_INTEGER); in _ppdCreateFromIPP() 3345 pwg = pwgMediaForSize(ippGetInteger(x_dim, 0), ippGetInteger(y_dim, 0)); in _ppdCreateFromIPP()
|
/external/tensorflow/tensorflow/core/ops/ |
D | array_ops.cc | 1750 int64 x_dim = c->Value(c->Dim(shape_x, 0)); in __anon7c94107b2902() local 1754 c->set_output(0, c->Vector(std::max(x_dim, y_dim))); in __anon7c94107b2902()
|