1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "index_bss_mapping.h"
36 #include "instrumentation.h"
37 #include "interpreter/interpreter.h"
38 #include "interpreter/interpreter_common.h"
39 #include "interpreter/shadow_frame-inl.h"
40 #include "jit/jit.h"
41 #include "jit/jit_code_cache.h"
42 #include "linear_alloc.h"
43 #include "method_handles.h"
44 #include "mirror/class-inl.h"
45 #include "mirror/dex_cache-inl.h"
46 #include "mirror/method.h"
47 #include "mirror/method_handle_impl.h"
48 #include "mirror/object-inl.h"
49 #include "mirror/object_array-inl.h"
50 #include "mirror/var_handle.h"
51 #include "oat_file.h"
52 #include "oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60
61 namespace art {
62
63 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
64 class QuickArgumentVisitor {
65 // Number of bytes for each out register in the caller method's frame.
66 static constexpr size_t kBytesStackArgLocation = 4;
67 // Frame size in bytes of a callee-save frame for RefsAndArgs.
68 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
69 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
70 // Offset of first GPR arg.
71 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
72 RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
73 // Offset of first FPR arg.
74 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
75 RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76 // Offset of return address.
77 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
78 RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
79 #if defined(__arm__)
80 // The callee save frame is pointed to by SP.
81 // | argN | |
82 // | ... | |
83 // | arg4 | |
84 // | arg3 spill | | Caller's frame
85 // | arg2 spill | |
86 // | arg1 spill | |
87 // | Method* | ---
88 // | LR |
89 // | ... | 4x6 bytes callee saves
90 // | R3 |
91 // | R2 |
92 // | R1 |
93 // | S15 |
94 // | : |
95 // | S0 |
96 // | | 4x2 bytes padding
97 // | Method* | <- sp
98 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
99 static constexpr bool kAlignPairRegister = true;
100 static constexpr bool kQuickSoftFloatAbi = false;
101 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
102 static constexpr bool kQuickSkipOddFpRegisters = false;
103 static constexpr size_t kNumQuickGprArgs = 3;
104 static constexpr size_t kNumQuickFprArgs = 16;
105 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)106 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
107 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
108 }
109 #elif defined(__aarch64__)
110 // The callee save frame is pointed to by SP.
111 // | argN | |
112 // | ... | |
113 // | arg4 | |
114 // | arg3 spill | | Caller's frame
115 // | arg2 spill | |
116 // | arg1 spill | |
117 // | Method* | ---
118 // | LR |
119 // | X29 |
120 // | : |
121 // | X20 |
122 // | X7 |
123 // | : |
124 // | X1 |
125 // | D7 |
126 // | : |
127 // | D0 |
128 // | | padding
129 // | Method* | <- sp
130 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
131 static constexpr bool kAlignPairRegister = false;
132 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
133 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
134 static constexpr bool kQuickSkipOddFpRegisters = false;
135 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
136 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
137 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)138 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
139 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
140 }
141 #elif defined(__mips__) && !defined(__LP64__)
142 // The callee save frame is pointed to by SP.
143 // | argN | |
144 // | ... | |
145 // | arg4 | |
146 // | arg3 spill | | Caller's frame
147 // | arg2 spill | |
148 // | arg1 spill | |
149 // | Method* | ---
150 // | RA |
151 // | ... | callee saves
152 // | T1 | arg5
153 // | T0 | arg4
154 // | A3 | arg3
155 // | A2 | arg2
156 // | A1 | arg1
157 // | F19 |
158 // | F18 | f_arg5
159 // | F17 |
160 // | F16 | f_arg4
161 // | F15 |
162 // | F14 | f_arg3
163 // | F13 |
164 // | F12 | f_arg2
165 // | F11 |
166 // | F10 | f_arg1
167 // | F9 |
168 // | F8 | f_arg0
169 // | | padding
170 // | A0/Method* | <- sp
171 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
172 static constexpr bool kAlignPairRegister = true;
173 static constexpr bool kQuickSoftFloatAbi = false;
174 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
175 static constexpr bool kQuickSkipOddFpRegisters = true;
176 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
177 static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be
178 // passed only in even numbered registers and each
179 // double occupies two registers.
180 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)181 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
183 }
184 #elif defined(__mips__) && defined(__LP64__)
185 // The callee save frame is pointed to by SP.
186 // | argN | |
187 // | ... | |
188 // | arg4 | |
189 // | arg3 spill | | Caller's frame
190 // | arg2 spill | |
191 // | arg1 spill | |
192 // | Method* | ---
193 // | RA |
194 // | ... | callee saves
195 // | A7 | arg7
196 // | A6 | arg6
197 // | A5 | arg5
198 // | A4 | arg4
199 // | A3 | arg3
200 // | A2 | arg2
201 // | A1 | arg1
202 // | F19 | f_arg7
203 // | F18 | f_arg6
204 // | F17 | f_arg5
205 // | F16 | f_arg4
206 // | F15 | f_arg3
207 // | F14 | f_arg2
208 // | F13 | f_arg1
209 // | F12 | f_arg0
210 // | | padding
211 // | A0/Method* | <- sp
212 // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
213 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
214 static constexpr bool kAlignPairRegister = false;
215 static constexpr bool kQuickSoftFloatAbi = false;
216 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
217 static constexpr bool kQuickSkipOddFpRegisters = false;
218 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
219 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs.
220 static constexpr bool kGprFprLockstep = true;
221
GprIndexToGprOffset(uint32_t gpr_index)222 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
223 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
224 }
225 #elif defined(__i386__)
226 // The callee save frame is pointed to by SP.
227 // | argN | |
228 // | ... | |
229 // | arg4 | |
230 // | arg3 spill | | Caller's frame
231 // | arg2 spill | |
232 // | arg1 spill | |
233 // | Method* | ---
234 // | Return |
235 // | EBP,ESI,EDI | callee saves
236 // | EBX | arg3
237 // | EDX | arg2
238 // | ECX | arg1
239 // | XMM3 | float arg 4
240 // | XMM2 | float arg 3
241 // | XMM1 | float arg 2
242 // | XMM0 | float arg 1
243 // | EAX/Method* | <- sp
244 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
245 static constexpr bool kAlignPairRegister = false;
246 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
247 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
248 static constexpr bool kQuickSkipOddFpRegisters = false;
249 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
250 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
251 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)252 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
253 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
254 }
255 #elif defined(__x86_64__)
256 // The callee save frame is pointed to by SP.
257 // | argN | |
258 // | ... | |
259 // | reg. arg spills | | Caller's frame
260 // | Method* | ---
261 // | Return |
262 // | R15 | callee save
263 // | R14 | callee save
264 // | R13 | callee save
265 // | R12 | callee save
266 // | R9 | arg5
267 // | R8 | arg4
268 // | RSI/R6 | arg1
269 // | RBP/R5 | callee save
270 // | RBX/R3 | callee save
271 // | RDX/R2 | arg2
272 // | RCX/R1 | arg3
273 // | XMM7 | float arg 8
274 // | XMM6 | float arg 7
275 // | XMM5 | float arg 6
276 // | XMM4 | float arg 5
277 // | XMM3 | float arg 4
278 // | XMM2 | float arg 3
279 // | XMM1 | float arg 2
280 // | XMM0 | float arg 1
281 // | Padding |
282 // | RDI/Method* | <- sp
283 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
284 static constexpr bool kAlignPairRegister = false;
285 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
286 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
287 static constexpr bool kQuickSkipOddFpRegisters = false;
288 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
289 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
290 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)291 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292 switch (gpr_index) {
293 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298 default:
299 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300 UNREACHABLE();
301 }
302 }
303 #else
304 #error "Unsupported architecture"
305 #endif
306
307 public:
308 // Special handling for proxy methods. Proxy methods are instance methods so the
309 // 'this' object is the 1st argument. They also have the same frame layout as the
310 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311 // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)312 static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
313 REQUIRES_SHARED(Locks::mutator_lock_) {
314 CHECK((*sp)->IsProxyMethod());
315 CHECK_GT(kNumQuickGprArgs, 0u);
316 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
317 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318 GprIndexToGprOffset(kThisGprIndex);
319 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
321 }
322
GetCallingMethod(ArtMethod ** sp)323 static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324 DCHECK((*sp)->IsCalleeSaveMethod());
325 return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
326 }
327
GetOuterMethod(ArtMethod ** sp)328 static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329 DCHECK((*sp)->IsCalleeSaveMethod());
330 uint8_t* previous_sp =
331 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332 return *reinterpret_cast<ArtMethod**>(previous_sp);
333 }
334
GetCallingDexPc(ArtMethod ** sp)335 static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336 DCHECK((*sp)->IsCalleeSaveMethod());
337 constexpr size_t callee_frame_size =
338 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
339 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
340 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
341 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
342 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
343 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
344
345 if (current_code->IsOptimized()) {
346 CodeInfo code_info(current_code, CodeInfo::DecodeFlags::InlineInfoOnly);
347 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
348 DCHECK(stack_map.IsValid());
349 BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
350 if (!inline_infos.empty()) {
351 return inline_infos.back().GetDexPc();
352 } else {
353 return stack_map.GetDexPc();
354 }
355 } else {
356 return current_code->ToDexPc(*caller_sp, outer_pc);
357 }
358 }
359
360 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)361 static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
362 DCHECK((*sp)->IsCalleeSaveMethod());
363 uint8_t* return_adress_spill =
364 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
365 return *reinterpret_cast<uintptr_t*>(return_adress_spill);
366 }
367
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)368 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
369 uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
370 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
371 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
372 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
373 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
374 + sizeof(ArtMethod*)), // Skip ArtMethod*.
375 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
376 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
377 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
378 "Number of Quick FPR arguments unexpected");
379 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
380 "Double alignment unexpected");
381 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
382 // next register is even.
383 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
384 "Number of Quick FPR arguments not even");
385 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
386 }
387
~QuickArgumentVisitor()388 virtual ~QuickArgumentVisitor() {}
389
390 virtual void Visit() = 0;
391
GetParamPrimitiveType() const392 Primitive::Type GetParamPrimitiveType() const {
393 return cur_type_;
394 }
395
GetParamAddress() const396 uint8_t* GetParamAddress() const {
397 if (!kQuickSoftFloatAbi) {
398 Primitive::Type type = GetParamPrimitiveType();
399 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
400 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
401 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
402 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
403 }
404 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
405 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
406 }
407 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
408 }
409 }
410 if (gpr_index_ < kNumQuickGprArgs) {
411 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
412 }
413 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
414 }
415
IsSplitLongOrDouble() const416 bool IsSplitLongOrDouble() const {
417 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
418 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
419 return is_split_long_or_double_;
420 } else {
421 return false; // An optimization for when GPR and FPRs are 64bit.
422 }
423 }
424
IsParamAReference() const425 bool IsParamAReference() const {
426 return GetParamPrimitiveType() == Primitive::kPrimNot;
427 }
428
IsParamALongOrDouble() const429 bool IsParamALongOrDouble() const {
430 Primitive::Type type = GetParamPrimitiveType();
431 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
432 }
433
ReadSplitLongParam() const434 uint64_t ReadSplitLongParam() const {
435 // The splitted long is always available through the stack.
436 return *reinterpret_cast<uint64_t*>(stack_args_
437 + stack_index_ * kBytesStackArgLocation);
438 }
439
IncGprIndex()440 void IncGprIndex() {
441 gpr_index_++;
442 if (kGprFprLockstep) {
443 fpr_index_++;
444 }
445 }
446
IncFprIndex()447 void IncFprIndex() {
448 fpr_index_++;
449 if (kGprFprLockstep) {
450 gpr_index_++;
451 }
452 }
453
VisitArguments()454 void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
455 // (a) 'stack_args_' should point to the first method's argument
456 // (b) whatever the argument type it is, the 'stack_index_' should
457 // be moved forward along with every visiting.
458 gpr_index_ = 0;
459 fpr_index_ = 0;
460 if (kQuickDoubleRegAlignedFloatBackFilled) {
461 fpr_double_index_ = 0;
462 }
463 stack_index_ = 0;
464 if (!is_static_) { // Handle this.
465 cur_type_ = Primitive::kPrimNot;
466 is_split_long_or_double_ = false;
467 Visit();
468 stack_index_++;
469 if (kNumQuickGprArgs > 0) {
470 IncGprIndex();
471 }
472 }
473 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
474 cur_type_ = Primitive::GetType(shorty_[shorty_index]);
475 switch (cur_type_) {
476 case Primitive::kPrimNot:
477 case Primitive::kPrimBoolean:
478 case Primitive::kPrimByte:
479 case Primitive::kPrimChar:
480 case Primitive::kPrimShort:
481 case Primitive::kPrimInt:
482 is_split_long_or_double_ = false;
483 Visit();
484 stack_index_++;
485 if (gpr_index_ < kNumQuickGprArgs) {
486 IncGprIndex();
487 }
488 break;
489 case Primitive::kPrimFloat:
490 is_split_long_or_double_ = false;
491 Visit();
492 stack_index_++;
493 if (kQuickSoftFloatAbi) {
494 if (gpr_index_ < kNumQuickGprArgs) {
495 IncGprIndex();
496 }
497 } else {
498 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
499 IncFprIndex();
500 if (kQuickDoubleRegAlignedFloatBackFilled) {
501 // Double should not overlap with float.
502 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
503 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
504 // Float should not overlap with double.
505 if (fpr_index_ % 2 == 0) {
506 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
507 }
508 } else if (kQuickSkipOddFpRegisters) {
509 IncFprIndex();
510 }
511 }
512 }
513 break;
514 case Primitive::kPrimDouble:
515 case Primitive::kPrimLong:
516 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
517 if (cur_type_ == Primitive::kPrimLong &&
518 #if defined(__mips__) && !defined(__LP64__)
519 (gpr_index_ == 0 || gpr_index_ == 2) &&
520 #else
521 gpr_index_ == 0 &&
522 #endif
523 kAlignPairRegister) {
524 // Currently, this is only for ARM and MIPS, where we align long parameters with
525 // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
526 // R2 (on ARM) or A2(T0) (on MIPS) instead.
527 IncGprIndex();
528 }
529 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
530 ((gpr_index_ + 1) == kNumQuickGprArgs);
531 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
532 // We don't want to split this. Pass over this register.
533 gpr_index_++;
534 is_split_long_or_double_ = false;
535 }
536 Visit();
537 if (kBytesStackArgLocation == 4) {
538 stack_index_+= 2;
539 } else {
540 CHECK_EQ(kBytesStackArgLocation, 8U);
541 stack_index_++;
542 }
543 if (gpr_index_ < kNumQuickGprArgs) {
544 IncGprIndex();
545 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
546 if (gpr_index_ < kNumQuickGprArgs) {
547 IncGprIndex();
548 }
549 }
550 }
551 } else {
552 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
553 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
554 Visit();
555 if (kBytesStackArgLocation == 4) {
556 stack_index_+= 2;
557 } else {
558 CHECK_EQ(kBytesStackArgLocation, 8U);
559 stack_index_++;
560 }
561 if (kQuickDoubleRegAlignedFloatBackFilled) {
562 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
563 fpr_double_index_ += 2;
564 // Float should not overlap with double.
565 if (fpr_index_ % 2 == 0) {
566 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
567 }
568 }
569 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
570 IncFprIndex();
571 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
572 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
573 IncFprIndex();
574 }
575 }
576 }
577 }
578 break;
579 default:
580 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
581 }
582 }
583 }
584
585 protected:
586 const bool is_static_;
587 const char* const shorty_;
588 const uint32_t shorty_len_;
589
590 private:
591 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
592 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
593 uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
594 uint32_t gpr_index_; // Index into spilled GPRs.
595 // Index into spilled FPRs.
596 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
597 // holds a higher register number.
598 uint32_t fpr_index_;
599 // Index into spilled FPRs for aligned double.
600 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
601 // terms of singles, may be behind fpr_index.
602 uint32_t fpr_double_index_;
603 uint32_t stack_index_; // Index into arguments on the stack.
604 // The current type of argument during VisitArguments.
605 Primitive::Type cur_type_;
606 // Does a 64bit parameter straddle the register and stack arguments?
607 bool is_split_long_or_double_;
608 };
609
610 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
611 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)612 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
613 REQUIRES_SHARED(Locks::mutator_lock_) {
614 return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
615 }
616
617 // Visits arguments on the stack placing them into the shadow frame.
618 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
619 public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)620 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
621 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
622 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
623
624 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
625
626 private:
627 ShadowFrame* const sf_;
628 uint32_t cur_reg_;
629
630 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
631 };
632
Visit()633 void BuildQuickShadowFrameVisitor::Visit() {
634 Primitive::Type type = GetParamPrimitiveType();
635 switch (type) {
636 case Primitive::kPrimLong: // Fall-through.
637 case Primitive::kPrimDouble:
638 if (IsSplitLongOrDouble()) {
639 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
640 } else {
641 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
642 }
643 ++cur_reg_;
644 break;
645 case Primitive::kPrimNot: {
646 StackReference<mirror::Object>* stack_ref =
647 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
648 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
649 }
650 break;
651 case Primitive::kPrimBoolean: // Fall-through.
652 case Primitive::kPrimByte: // Fall-through.
653 case Primitive::kPrimChar: // Fall-through.
654 case Primitive::kPrimShort: // Fall-through.
655 case Primitive::kPrimInt: // Fall-through.
656 case Primitive::kPrimFloat:
657 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
658 break;
659 case Primitive::kPrimVoid:
660 LOG(FATAL) << "UNREACHABLE";
661 UNREACHABLE();
662 }
663 ++cur_reg_;
664 }
665
666 // Don't inline. See b/65159206.
667 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)668 static void HandleDeoptimization(JValue* result,
669 ArtMethod* method,
670 ShadowFrame* deopt_frame,
671 ManagedStack* fragment)
672 REQUIRES_SHARED(Locks::mutator_lock_) {
673 // Coming from partial-fragment deopt.
674 Thread* self = Thread::Current();
675 if (kIsDebugBuild) {
676 // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
677 // of the call-stack) corresponds to the called method.
678 ShadowFrame* linked = deopt_frame;
679 while (linked->GetLink() != nullptr) {
680 linked = linked->GetLink();
681 }
682 CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
683 << ArtMethod::PrettyMethod(linked->GetMethod());
684 }
685
686 if (VLOG_IS_ON(deopt)) {
687 // Print out the stack to verify that it was a partial-fragment deopt.
688 LOG(INFO) << "Continue-ing from deopt. Stack is:";
689 QuickExceptionHandler::DumpFramesWithType(self, true);
690 }
691
692 ObjPtr<mirror::Throwable> pending_exception;
693 bool from_code = false;
694 DeoptimizationMethodType method_type;
695 self->PopDeoptimizationContext(/* out */ result,
696 /* out */ &pending_exception,
697 /* out */ &from_code,
698 /* out */ &method_type);
699
700 // Push a transition back into managed code onto the linked list in thread.
701 self->PushManagedStackFragment(fragment);
702
703 // Ensure that the stack is still in order.
704 if (kIsDebugBuild) {
705 class DummyStackVisitor : public StackVisitor {
706 public:
707 explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
708 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
709
710 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
711 // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
712 // logic. Just always say we want to continue.
713 return true;
714 }
715 };
716 DummyStackVisitor dsv(self);
717 dsv.WalkStack();
718 }
719
720 // Restore the exception that was pending before deoptimization then interpret the
721 // deoptimized frames.
722 if (pending_exception != nullptr) {
723 self->SetException(pending_exception);
724 }
725 interpreter::EnterInterpreterFromDeoptimize(self,
726 deopt_frame,
727 result,
728 from_code,
729 DeoptimizationMethodType::kDefault);
730 }
731
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)732 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
733 REQUIRES_SHARED(Locks::mutator_lock_) {
734 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
735 // frame.
736 ScopedQuickEntrypointChecks sqec(self);
737
738 if (UNLIKELY(!method->IsInvokable())) {
739 method->ThrowInvocationTimeError();
740 return 0;
741 }
742
743 JValue tmp_value;
744 ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
745 StackedShadowFrameType::kDeoptimizationShadowFrame, false);
746 ManagedStack fragment;
747
748 DCHECK(!method->IsNative()) << method->PrettyMethod();
749 uint32_t shorty_len = 0;
750 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
751 DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
752 CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
753 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
754
755 JValue result;
756 bool force_frame_pop = false;
757
758 if (UNLIKELY(deopt_frame != nullptr)) {
759 HandleDeoptimization(&result, method, deopt_frame, &fragment);
760 } else {
761 const char* old_cause = self->StartAssertNoThreadSuspension(
762 "Building interpreter shadow frame");
763 uint16_t num_regs = accessor.RegistersSize();
764 // No last shadow coming from quick.
765 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
766 CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
767 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
768 size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
769 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
770 shadow_frame, first_arg_reg);
771 shadow_frame_builder.VisitArguments();
772 const bool needs_initialization =
773 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
774 // Push a transition back into managed code onto the linked list in thread.
775 self->PushManagedStackFragment(&fragment);
776 self->PushShadowFrame(shadow_frame);
777 self->EndAssertNoThreadSuspension(old_cause);
778
779 if (needs_initialization) {
780 // Ensure static method's class is initialized.
781 StackHandleScope<1> hs(self);
782 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
783 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
784 DCHECK(Thread::Current()->IsExceptionPending())
785 << shadow_frame->GetMethod()->PrettyMethod();
786 self->PopManagedStackFragment(fragment);
787 return 0;
788 }
789 }
790
791 result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
792 force_frame_pop = shadow_frame->GetForcePopFrame();
793 }
794
795 // Pop transition.
796 self->PopManagedStackFragment(fragment);
797
798 // Request a stack deoptimization if needed
799 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
800 uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
801 // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
802 // should be done and it knows the real return pc. NB If the upcall is null we don't need to do
803 // anything. This can happen during shutdown or early startup.
804 if (UNLIKELY(
805 caller != nullptr &&
806 caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
807 (self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
808 if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
809 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
810 << caller->PrettyMethod();
811 } else {
812 VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
813 << " to " << caller->PrettyMethod()
814 << (force_frame_pop ? " for frame-pop" : "");
815 DCHECK(!force_frame_pop || result.GetJ() == 0) << "Force frame pop should have no result.";
816 if (force_frame_pop && self->GetException() != nullptr) {
817 LOG(WARNING) << "Suppressing exception for instruction-retry: "
818 << self->GetException()->Dump();
819 }
820 // Push the context of the deoptimization stack so we can restore the return value and the
821 // exception before executing the deoptimized frames.
822 self->PushDeoptimizationContext(
823 result,
824 shorty[0] == 'L' || shorty[0] == '[', /* class or array */
825 force_frame_pop ? nullptr : self->GetException(),
826 /* from_code= */ false,
827 DeoptimizationMethodType::kDefault);
828
829 // Set special exception to cause deoptimization.
830 self->SetException(Thread::GetDeoptimizationException());
831 }
832 }
833
834 // No need to restore the args since the method has already been run by the interpreter.
835 return result.GetJ();
836 }
837
838 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
839 // to jobjects.
840 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
841 public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)842 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
843 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
844 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
845
846 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
847
848 private:
849 ScopedObjectAccessUnchecked* const soa_;
850 std::vector<jvalue>* const args_;
851
852 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
853 };
854
Visit()855 void BuildQuickArgumentVisitor::Visit() {
856 jvalue val;
857 Primitive::Type type = GetParamPrimitiveType();
858 switch (type) {
859 case Primitive::kPrimNot: {
860 StackReference<mirror::Object>* stack_ref =
861 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
862 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
863 break;
864 }
865 case Primitive::kPrimLong: // Fall-through.
866 case Primitive::kPrimDouble:
867 if (IsSplitLongOrDouble()) {
868 val.j = ReadSplitLongParam();
869 } else {
870 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
871 }
872 break;
873 case Primitive::kPrimBoolean: // Fall-through.
874 case Primitive::kPrimByte: // Fall-through.
875 case Primitive::kPrimChar: // Fall-through.
876 case Primitive::kPrimShort: // Fall-through.
877 case Primitive::kPrimInt: // Fall-through.
878 case Primitive::kPrimFloat:
879 val.i = *reinterpret_cast<jint*>(GetParamAddress());
880 break;
881 case Primitive::kPrimVoid:
882 LOG(FATAL) << "UNREACHABLE";
883 UNREACHABLE();
884 }
885 args_->push_back(val);
886 }
887
888 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
889 // which is responsible for recording callee save registers. We explicitly place into jobjects the
890 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
891 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)892 extern "C" uint64_t artQuickProxyInvokeHandler(
893 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
894 REQUIRES_SHARED(Locks::mutator_lock_) {
895 DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
896 DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
897 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
898 const char* old_cause =
899 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
900 // Register the top of the managed stack, making stack crawlable.
901 DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
902 self->VerifyStack();
903 // Start new JNI local reference state.
904 JNIEnvExt* env = self->GetJniEnv();
905 ScopedObjectAccessUnchecked soa(env);
906 ScopedJniEnvLocalRefState env_state(env);
907 // Create local ref. copies of proxy method and the receiver.
908 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
909
910 // Placing arguments into args vector and remove the receiver.
911 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
912 CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
913 << non_proxy_method->PrettyMethod();
914 std::vector<jvalue> args;
915 uint32_t shorty_len = 0;
916 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
917 BuildQuickArgumentVisitor local_ref_visitor(
918 sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
919
920 local_ref_visitor.VisitArguments();
921 DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
922 args.erase(args.begin());
923
924 // Convert proxy method into expected interface method.
925 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
926 DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
927 DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
928 self->EndAssertNoThreadSuspension(old_cause);
929 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
930 DCHECK(!Runtime::Current()->IsActiveTransaction());
931 ObjPtr<mirror::Method> interface_reflect_method =
932 mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
933 if (interface_reflect_method == nullptr) {
934 soa.Self()->AssertPendingOOMException();
935 return 0;
936 }
937 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
938
939 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
940 // that performs allocations or instrumentation events.
941 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
942 if (instr->HasMethodEntryListeners()) {
943 instr->MethodEnterEvent(soa.Self(),
944 soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
945 proxy_method,
946 0);
947 if (soa.Self()->IsExceptionPending()) {
948 instr->MethodUnwindEvent(self,
949 soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
950 proxy_method,
951 0);
952 return 0;
953 }
954 }
955 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
956 if (soa.Self()->IsExceptionPending()) {
957 if (instr->HasMethodUnwindListeners()) {
958 instr->MethodUnwindEvent(self,
959 soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
960 proxy_method,
961 0);
962 }
963 } else if (instr->HasMethodExitListeners()) {
964 instr->MethodExitEvent(self,
965 soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
966 proxy_method,
967 0,
968 result);
969 }
970 return result.GetJ();
971 }
972
973 // Visitor returning a reference argument at a given position in a Quick stack frame.
974 // NOTE: Only used for testing purposes.
975 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
976 public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)977 GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
978 const char* shorty,
979 uint32_t shorty_len,
980 size_t arg_pos)
981 : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
982 cur_pos_(0u),
983 arg_pos_(arg_pos),
984 ref_arg_(nullptr) {
985 CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
986 }
987
Visit()988 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
989 if (cur_pos_ == arg_pos_) {
990 Primitive::Type type = GetParamPrimitiveType();
991 CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
992 ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
993 }
994 ++cur_pos_;
995 }
996
GetReferenceArgument()997 StackReference<mirror::Object>* GetReferenceArgument() {
998 return ref_arg_;
999 }
1000
1001 private:
1002 // The position of the currently visited argument.
1003 size_t cur_pos_;
1004 // The position of the searched argument.
1005 const size_t arg_pos_;
1006 // The reference argument, if found.
1007 StackReference<mirror::Object>* ref_arg_;
1008
1009 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1010 };
1011
1012 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1013 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)1014 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
1015 ArtMethod** sp)
1016 REQUIRES_SHARED(Locks::mutator_lock_) {
1017 ArtMethod* proxy_method = *sp;
1018 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1019 CHECK(!non_proxy_method->IsStatic())
1020 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1021 uint32_t shorty_len = 0;
1022 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1023 GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
1024 ref_arg_visitor.VisitArguments();
1025 StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1026 return ref_arg;
1027 }
1028
1029 // Visitor returning all the reference arguments in a Quick stack frame.
1030 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
1031 public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)1032 GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
1033 bool is_static,
1034 const char* shorty,
1035 uint32_t shorty_len)
1036 : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
1037
Visit()1038 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
1039 Primitive::Type type = GetParamPrimitiveType();
1040 if (type == Primitive::kPrimNot) {
1041 StackReference<mirror::Object>* ref_arg =
1042 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1043 ref_args_.push_back(ref_arg);
1044 }
1045 }
1046
GetReferenceArguments()1047 std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1048 return ref_args_;
1049 }
1050
1051 private:
1052 // The reference arguments.
1053 std::vector<StackReference<mirror::Object>*> ref_args_;
1054
1055 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1056 };
1057
1058 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)1059 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1060 REQUIRES_SHARED(Locks::mutator_lock_) {
1061 ArtMethod* proxy_method = *sp;
1062 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1063 CHECK(!non_proxy_method->IsStatic())
1064 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1065 uint32_t shorty_len = 0;
1066 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1067 GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
1068 ref_args_visitor.VisitArguments();
1069 std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1070 return ref_args;
1071 }
1072
1073 // Read object references held in arguments from quick frames and place in a JNI local references,
1074 // so they don't get garbage collected.
1075 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
1076 public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)1077 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
1078 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
1079 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
1080
1081 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1082
1083 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1084
1085 private:
1086 ScopedObjectAccessUnchecked* const soa_;
1087 // References which we must update when exiting in case the GC moved the objects.
1088 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1089
1090 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1091 };
1092
Visit()1093 void RememberForGcArgumentVisitor::Visit() {
1094 if (IsParamAReference()) {
1095 StackReference<mirror::Object>* stack_ref =
1096 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1097 jobject reference =
1098 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1099 references_.push_back(std::make_pair(reference, stack_ref));
1100 }
1101 }
1102
FixupReferences()1103 void RememberForGcArgumentVisitor::FixupReferences() {
1104 // Fixup any references which may have changed.
1105 for (const auto& pair : references_) {
1106 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1107 soa_->Env()->DeleteLocalRef(pair.first);
1108 }
1109 }
1110
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1111 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1112 mirror::Object* this_object,
1113 Thread* self,
1114 ArtMethod** sp)
1115 REQUIRES_SHARED(Locks::mutator_lock_) {
1116 const void* result;
1117 // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1118 // that part.
1119 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1120 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1121 DCHECK(!method->IsProxyMethod())
1122 << "Proxy method " << method->PrettyMethod()
1123 << " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
1124 << " should not hit instrumentation entrypoint.";
1125 if (instrumentation->IsDeoptimized(method)) {
1126 result = GetQuickToInterpreterBridge();
1127 } else {
1128 // This will get the entry point either from the oat file, the JIT or the appropriate bridge
1129 // method if none of those can be found.
1130 result = instrumentation->GetCodeForInvoke(method);
1131 jit::Jit* jit = Runtime::Current()->GetJit();
1132 DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
1133 DCHECK(jit == nullptr ||
1134 // Native methods come through here in Interpreter entrypoints. We might not have
1135 // disabled jit-gc but that is fine since we won't return jit-code for native methods.
1136 method->IsNative() ||
1137 !jit->GetCodeCache()->GetGarbageCollectCode());
1138 DCHECK(!method->IsNative() ||
1139 jit == nullptr ||
1140 !jit->GetCodeCache()->ContainsPc(result))
1141 << method->PrettyMethod() << " code will jump to possibly cleaned up jit code!";
1142 }
1143
1144 bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1145 bool is_static = method->IsStatic();
1146 uint32_t shorty_len;
1147 const char* shorty =
1148 method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1149
1150 ScopedObjectAccessUnchecked soa(self);
1151 RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1152 visitor.VisitArguments();
1153
1154 instrumentation->PushInstrumentationStackFrame(self,
1155 is_static ? nullptr : this_object,
1156 method,
1157 QuickArgumentVisitor::GetCallingPc(sp),
1158 interpreter_entry);
1159
1160 visitor.FixupReferences();
1161 if (UNLIKELY(self->IsExceptionPending())) {
1162 return nullptr;
1163 }
1164 CHECK(result != nullptr) << method->PrettyMethod();
1165 return result;
1166 }
1167
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1168 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1169 ArtMethod** sp,
1170 uint64_t* gpr_result,
1171 uint64_t* fpr_result)
1172 REQUIRES_SHARED(Locks::mutator_lock_) {
1173 DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1174 CHECK(gpr_result != nullptr);
1175 CHECK(fpr_result != nullptr);
1176 // Instrumentation exit stub must not be entered with a pending exception.
1177 CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1178 << self->GetException()->Dump();
1179 // Compute address of return PC and sanity check that it currently holds 0.
1180 constexpr size_t return_pc_offset =
1181 RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
1182 uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1183 return_pc_offset);
1184 CHECK_EQ(*return_pc, 0U);
1185
1186 // Pop the frame filling in the return pc. The low half of the return value is 0 when
1187 // deoptimization shouldn't be performed with the high-half having the return address. When
1188 // deoptimization should be performed the low half is zero and the high-half the address of the
1189 // deoptimization entry point.
1190 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1191 TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1192 self, return_pc, gpr_result, fpr_result);
1193 if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1194 return GetTwoWordFailureValue();
1195 }
1196 return return_or_deoptimize_pc;
1197 }
1198
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1199 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1200 REQUIRES_SHARED(Locks::mutator_lock_) {
1201 if (dex_pc == static_cast<uint32_t>(-1)) {
1202 CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1203 return "<native>";
1204 } else {
1205 CodeItemInstructionAccessor accessor = method->DexInstructions();
1206 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1207 return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1208 }
1209 }
1210
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1211 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1212 REQUIRES_SHARED(Locks::mutator_lock_) {
1213 std::string storage;
1214 const char* descriptor = klass->GetDescriptor(&storage);
1215 LOG(FATAL_WITHOUT_ABORT) << " " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1216 const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1217 if (oat_dex_file != nullptr) {
1218 const OatFile* oat_file = oat_dex_file->GetOatFile();
1219 const char* dex2oat_cmdline =
1220 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1221 LOG(FATAL_WITHOUT_ABORT) << " OatFile: " << oat_file->GetLocation()
1222 << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1223 }
1224 }
1225
DumpB74410240DebugData(ArtMethod ** sp)1226 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1227 // Mimick the search for the caller and dump some data while doing so.
1228 LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1229
1230 constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1231 CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1232
1233 constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1234 auto** caller_sp = reinterpret_cast<ArtMethod**>(
1235 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1236 constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1237 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1238 (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1239 ArtMethod* outer_method = *caller_sp;
1240
1241 if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1242 LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1243 << " native pc: " << caller_pc << " Instrumented!";
1244 return;
1245 }
1246
1247 const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1248 CHECK(current_code != nullptr);
1249 CHECK(current_code->IsOptimized());
1250 uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1251 CodeInfo code_info(current_code);
1252 StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1253 CHECK(stack_map.IsValid());
1254 uint32_t dex_pc = stack_map.GetDexPc();
1255
1256 // Log the outer method and its associated dex file and class table pointer which can be used
1257 // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1258 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1259 LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1260 << " native pc: " << caller_pc
1261 << " dex pc: " << dex_pc
1262 << " dex file: " << outer_method->GetDexFile()->GetLocation()
1263 << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1264 DumpB74410240ClassData(outer_method->GetDeclaringClass());
1265 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(outer_method, dex_pc);
1266
1267 ArtMethod* caller = outer_method;
1268 BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1269 for (InlineInfo inline_info : inline_infos) {
1270 const char* tag = "";
1271 dex_pc = inline_info.GetDexPc();
1272 if (inline_info.EncodesArtMethod()) {
1273 tag = "encoded ";
1274 caller = inline_info.GetArtMethod();
1275 } else {
1276 uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1277 if (dex_pc == static_cast<uint32_t>(-1)) {
1278 tag = "special ";
1279 CHECK(inline_info.Equals(inline_infos.back()));
1280 caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1281 CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1282 } else {
1283 ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1284 ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1285 caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1286 CHECK(caller != nullptr);
1287 }
1288 }
1289 LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1290 << ": " << tag << caller->PrettyMethod()
1291 << " dex pc: " << dex_pc
1292 << " dex file: " << caller->GetDexFile()->GetLocation()
1293 << " class table: "
1294 << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1295 DumpB74410240ClassData(caller->GetDeclaringClass());
1296 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(caller, dex_pc);
1297 }
1298 }
1299
1300 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1301 extern "C" const void* artQuickResolutionTrampoline(
1302 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1303 REQUIRES_SHARED(Locks::mutator_lock_) {
1304 // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1305 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1306 // does not have the same stack layout as the callee-save method).
1307 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1308 // Start new JNI local reference state
1309 JNIEnvExt* env = self->GetJniEnv();
1310 ScopedObjectAccessUnchecked soa(env);
1311 ScopedJniEnvLocalRefState env_state(env);
1312 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1313
1314 // Compute details about the called method (avoid GCs)
1315 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1316 InvokeType invoke_type;
1317 MethodReference called_method(nullptr, 0);
1318 const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1319 ArtMethod* caller = nullptr;
1320 if (!called_method_known_on_entry) {
1321 caller = QuickArgumentVisitor::GetCallingMethod(sp);
1322 called_method.dex_file = caller->GetDexFile();
1323
1324 {
1325 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1326 CodeItemInstructionAccessor accessor(caller->DexInstructions());
1327 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1328 const Instruction& instr = accessor.InstructionAt(dex_pc);
1329 Instruction::Code instr_code = instr.Opcode();
1330 bool is_range;
1331 switch (instr_code) {
1332 case Instruction::INVOKE_DIRECT:
1333 invoke_type = kDirect;
1334 is_range = false;
1335 break;
1336 case Instruction::INVOKE_DIRECT_RANGE:
1337 invoke_type = kDirect;
1338 is_range = true;
1339 break;
1340 case Instruction::INVOKE_STATIC:
1341 invoke_type = kStatic;
1342 is_range = false;
1343 break;
1344 case Instruction::INVOKE_STATIC_RANGE:
1345 invoke_type = kStatic;
1346 is_range = true;
1347 break;
1348 case Instruction::INVOKE_SUPER:
1349 invoke_type = kSuper;
1350 is_range = false;
1351 break;
1352 case Instruction::INVOKE_SUPER_RANGE:
1353 invoke_type = kSuper;
1354 is_range = true;
1355 break;
1356 case Instruction::INVOKE_VIRTUAL:
1357 invoke_type = kVirtual;
1358 is_range = false;
1359 break;
1360 case Instruction::INVOKE_VIRTUAL_RANGE:
1361 invoke_type = kVirtual;
1362 is_range = true;
1363 break;
1364 case Instruction::INVOKE_INTERFACE:
1365 invoke_type = kInterface;
1366 is_range = false;
1367 break;
1368 case Instruction::INVOKE_INTERFACE_RANGE:
1369 invoke_type = kInterface;
1370 is_range = true;
1371 break;
1372 default:
1373 DumpB74410240DebugData(sp);
1374 LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1375 UNREACHABLE();
1376 }
1377 called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1378 VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1379 << called_method.index;
1380 }
1381 } else {
1382 invoke_type = kStatic;
1383 called_method.dex_file = called->GetDexFile();
1384 called_method.index = called->GetDexMethodIndex();
1385 }
1386 uint32_t shorty_len;
1387 const char* shorty =
1388 called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1389 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1390 visitor.VisitArguments();
1391 self->EndAssertNoThreadSuspension(old_cause);
1392 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1393 // Resolve method filling in dex cache.
1394 if (!called_method_known_on_entry) {
1395 StackHandleScope<1> hs(self);
1396 mirror::Object* dummy = nullptr;
1397 HandleWrapper<mirror::Object> h_receiver(
1398 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1399 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1400 called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1401 self, called_method.index, caller, invoke_type);
1402
1403 // Update .bss entry in oat file if any.
1404 if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1405 size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1406 called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1407 called_method.index,
1408 called_method.dex_file->NumMethodIds(),
1409 static_cast<size_t>(kRuntimePointerSize));
1410 if (bss_offset != IndexBssMappingLookup::npos) {
1411 DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1412 const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1413 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1414 oat_file->BssBegin() + bss_offset));
1415 DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1416 DCHECK_LT(method_entry,
1417 oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1418 *method_entry = called;
1419 }
1420 }
1421 }
1422 const void* code = nullptr;
1423 if (LIKELY(!self->IsExceptionPending())) {
1424 // Incompatible class change should have been handled in resolve method.
1425 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1426 << called->PrettyMethod() << " " << invoke_type;
1427 if (virtual_or_interface || invoke_type == kSuper) {
1428 // Refine called method based on receiver for kVirtual/kInterface, and
1429 // caller for kSuper.
1430 ArtMethod* orig_called = called;
1431 if (invoke_type == kVirtual) {
1432 CHECK(receiver != nullptr) << invoke_type;
1433 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1434 } else if (invoke_type == kInterface) {
1435 CHECK(receiver != nullptr) << invoke_type;
1436 called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1437 } else {
1438 DCHECK_EQ(invoke_type, kSuper);
1439 CHECK(caller != nullptr) << invoke_type;
1440 ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1441 caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1442 if (ref_class->IsInterface()) {
1443 called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1444 } else {
1445 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1446 called->GetMethodIndex(), kRuntimePointerSize);
1447 }
1448 }
1449
1450 CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1451 << mirror::Object::PrettyTypeOf(receiver) << " "
1452 << invoke_type << " " << orig_called->GetVtableIndex();
1453 }
1454
1455 // Ensure that the called method's class is initialized.
1456 StackHandleScope<1> hs(soa.Self());
1457 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1458 linker->EnsureInitialized(soa.Self(), called_class, true, true);
1459 bool force_interpreter = self->IsForceInterpreter() && !called->IsNative();
1460 if (LIKELY(called_class->IsInitialized())) {
1461 if (UNLIKELY(force_interpreter ||
1462 Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1463 // If we are single-stepping or the called method is deoptimized (by a
1464 // breakpoint, for example), then we have to execute the called method
1465 // with the interpreter.
1466 code = GetQuickToInterpreterBridge();
1467 } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1468 // If the caller is deoptimized (by a breakpoint, for example), we have to
1469 // continue its execution with interpreter when returning from the called
1470 // method. Because we do not want to execute the called method with the
1471 // interpreter, we wrap its execution into the instrumentation stubs.
1472 // When the called method returns, it will execute the instrumentation
1473 // exit hook that will determine the need of the interpreter with a call
1474 // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1475 // it is needed.
1476 code = GetQuickInstrumentationEntryPoint();
1477 } else {
1478 code = called->GetEntryPointFromQuickCompiledCode();
1479 }
1480 } else if (called_class->IsInitializing()) {
1481 if (UNLIKELY(force_interpreter ||
1482 Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1483 // If we are single-stepping or the called method is deoptimized (by a
1484 // breakpoint, for example), then we have to execute the called method
1485 // with the interpreter.
1486 code = GetQuickToInterpreterBridge();
1487 } else if (invoke_type == kStatic) {
1488 // Class is still initializing, go to JIT or oat and grab code (trampoline must be
1489 // left in place until class is initialized to stop races between threads).
1490 if (Runtime::Current()->GetJit() != nullptr) {
1491 code = Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteSavedEntryPoint(called);
1492 }
1493 if (code == nullptr) {
1494 code = linker->GetQuickOatCodeFor(called);
1495 }
1496 } else {
1497 // No trampoline for non-static methods.
1498 code = called->GetEntryPointFromQuickCompiledCode();
1499 }
1500 } else {
1501 DCHECK(called_class->IsErroneous());
1502 }
1503 }
1504 CHECK_EQ(code == nullptr, self->IsExceptionPending());
1505 // Fixup any locally saved objects may have moved during a GC.
1506 visitor.FixupReferences();
1507 // Place called method in callee-save frame to be placed as first argument to quick method.
1508 *sp = called;
1509
1510 return code;
1511 }
1512
1513 /*
1514 * This class uses a couple of observations to unite the different calling conventions through
1515 * a few constants.
1516 *
1517 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1518 * possible alignment.
1519 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1520 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1521 * when we have to split things
1522 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1523 * and we can use Int handling directly.
1524 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1525 * necessary when widening. Also, widening of Ints will take place implicitly, and the
1526 * extension should be compatible with Aarch64, which mandates copying the available bits
1527 * into LSB and leaving the rest unspecified.
1528 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1529 * the stack.
1530 * 6) There is only little endian.
1531 *
1532 *
1533 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1534 * follows:
1535 *
1536 * void PushGpr(uintptr_t): Add a value for the next GPR
1537 *
1538 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
1539 * padding, that is, think the architecture is 32b and aligns 64b.
1540 *
1541 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
1542 * split this if necessary. The current state will have aligned, if
1543 * necessary.
1544 *
1545 * void PushStack(uintptr_t): Push a value to the stack.
1546 *
1547 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1548 * as this might be important for null initialization.
1549 * Must return the jobject, that is, the reference to the
1550 * entry in the HandleScope (nullptr if necessary).
1551 *
1552 */
1553 template<class T> class BuildNativeCallFrameStateMachine {
1554 public:
1555 #if defined(__arm__)
1556 // TODO: These are all dummy values!
1557 static constexpr bool kNativeSoftFloatAbi = true;
1558 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
1559 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1560
1561 static constexpr size_t kRegistersNeededForLong = 2;
1562 static constexpr size_t kRegistersNeededForDouble = 2;
1563 static constexpr bool kMultiRegistersAligned = true;
1564 static constexpr bool kMultiFPRegistersWidened = false;
1565 static constexpr bool kMultiGPRegistersWidened = false;
1566 static constexpr bool kAlignLongOnStack = true;
1567 static constexpr bool kAlignDoubleOnStack = true;
1568 #elif defined(__aarch64__)
1569 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1570 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
1571 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1572
1573 static constexpr size_t kRegistersNeededForLong = 1;
1574 static constexpr size_t kRegistersNeededForDouble = 1;
1575 static constexpr bool kMultiRegistersAligned = false;
1576 static constexpr bool kMultiFPRegistersWidened = false;
1577 static constexpr bool kMultiGPRegistersWidened = false;
1578 static constexpr bool kAlignLongOnStack = false;
1579 static constexpr bool kAlignDoubleOnStack = false;
1580 #elif defined(__mips__) && !defined(__LP64__)
1581 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
1582 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs.
1583 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1584
1585 static constexpr size_t kRegistersNeededForLong = 2;
1586 static constexpr size_t kRegistersNeededForDouble = 2;
1587 static constexpr bool kMultiRegistersAligned = true;
1588 static constexpr bool kMultiFPRegistersWidened = true;
1589 static constexpr bool kMultiGPRegistersWidened = false;
1590 static constexpr bool kAlignLongOnStack = true;
1591 static constexpr bool kAlignDoubleOnStack = true;
1592 #elif defined(__mips__) && defined(__LP64__)
1593 // Let the code prepare GPRs only and we will load the FPRs with same data.
1594 static constexpr bool kNativeSoftFloatAbi = true;
1595 static constexpr size_t kNumNativeGprArgs = 8;
1596 static constexpr size_t kNumNativeFprArgs = 0;
1597
1598 static constexpr size_t kRegistersNeededForLong = 1;
1599 static constexpr size_t kRegistersNeededForDouble = 1;
1600 static constexpr bool kMultiRegistersAligned = false;
1601 static constexpr bool kMultiFPRegistersWidened = false;
1602 static constexpr bool kMultiGPRegistersWidened = true;
1603 static constexpr bool kAlignLongOnStack = false;
1604 static constexpr bool kAlignDoubleOnStack = false;
1605 #elif defined(__i386__)
1606 // TODO: Check these!
1607 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
1608 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
1609 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
1610
1611 static constexpr size_t kRegistersNeededForLong = 2;
1612 static constexpr size_t kRegistersNeededForDouble = 2;
1613 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
1614 static constexpr bool kMultiFPRegistersWidened = false;
1615 static constexpr bool kMultiGPRegistersWidened = false;
1616 static constexpr bool kAlignLongOnStack = false;
1617 static constexpr bool kAlignDoubleOnStack = false;
1618 #elif defined(__x86_64__)
1619 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1620 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
1621 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1622
1623 static constexpr size_t kRegistersNeededForLong = 1;
1624 static constexpr size_t kRegistersNeededForDouble = 1;
1625 static constexpr bool kMultiRegistersAligned = false;
1626 static constexpr bool kMultiFPRegistersWidened = false;
1627 static constexpr bool kMultiGPRegistersWidened = false;
1628 static constexpr bool kAlignLongOnStack = false;
1629 static constexpr bool kAlignDoubleOnStack = false;
1630 #else
1631 #error "Unsupported architecture"
1632 #endif
1633
1634 public:
BuildNativeCallFrameStateMachine(T * delegate)1635 explicit BuildNativeCallFrameStateMachine(T* delegate)
1636 : gpr_index_(kNumNativeGprArgs),
1637 fpr_index_(kNumNativeFprArgs),
1638 stack_entries_(0),
1639 delegate_(delegate) {
1640 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1641 // the next register is even; counting down is just to make the compiler happy...
1642 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1643 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1644 }
1645
~BuildNativeCallFrameStateMachine()1646 virtual ~BuildNativeCallFrameStateMachine() {}
1647
HavePointerGpr() const1648 bool HavePointerGpr() const {
1649 return gpr_index_ > 0;
1650 }
1651
AdvancePointer(const void * val)1652 void AdvancePointer(const void* val) {
1653 if (HavePointerGpr()) {
1654 gpr_index_--;
1655 PushGpr(reinterpret_cast<uintptr_t>(val));
1656 } else {
1657 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
1658 PushStack(reinterpret_cast<uintptr_t>(val));
1659 gpr_index_ = 0;
1660 }
1661 }
1662
HaveHandleScopeGpr() const1663 bool HaveHandleScopeGpr() const {
1664 return gpr_index_ > 0;
1665 }
1666
AdvanceHandleScope(mirror::Object * ptr)1667 void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1668 uintptr_t handle = PushHandle(ptr);
1669 if (HaveHandleScopeGpr()) {
1670 gpr_index_--;
1671 PushGpr(handle);
1672 } else {
1673 stack_entries_++;
1674 PushStack(handle);
1675 gpr_index_ = 0;
1676 }
1677 }
1678
HaveIntGpr() const1679 bool HaveIntGpr() const {
1680 return gpr_index_ > 0;
1681 }
1682
AdvanceInt(uint32_t val)1683 void AdvanceInt(uint32_t val) {
1684 if (HaveIntGpr()) {
1685 gpr_index_--;
1686 if (kMultiGPRegistersWidened) {
1687 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1688 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1689 } else {
1690 PushGpr(val);
1691 }
1692 } else {
1693 stack_entries_++;
1694 if (kMultiGPRegistersWidened) {
1695 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1696 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1697 } else {
1698 PushStack(val);
1699 }
1700 gpr_index_ = 0;
1701 }
1702 }
1703
HaveLongGpr() const1704 bool HaveLongGpr() const {
1705 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1706 }
1707
LongGprNeedsPadding() const1708 bool LongGprNeedsPadding() const {
1709 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1710 kAlignLongOnStack && // and when it needs alignment
1711 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1712 }
1713
LongStackNeedsPadding() const1714 bool LongStackNeedsPadding() const {
1715 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1716 kAlignLongOnStack && // and when it needs 8B alignment
1717 (stack_entries_ & 1) == 1; // counter is odd
1718 }
1719
AdvanceLong(uint64_t val)1720 void AdvanceLong(uint64_t val) {
1721 if (HaveLongGpr()) {
1722 if (LongGprNeedsPadding()) {
1723 PushGpr(0);
1724 gpr_index_--;
1725 }
1726 if (kRegistersNeededForLong == 1) {
1727 PushGpr(static_cast<uintptr_t>(val));
1728 } else {
1729 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1730 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1731 }
1732 gpr_index_ -= kRegistersNeededForLong;
1733 } else {
1734 if (LongStackNeedsPadding()) {
1735 PushStack(0);
1736 stack_entries_++;
1737 }
1738 if (kRegistersNeededForLong == 1) {
1739 PushStack(static_cast<uintptr_t>(val));
1740 stack_entries_++;
1741 } else {
1742 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1743 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1744 stack_entries_ += 2;
1745 }
1746 gpr_index_ = 0;
1747 }
1748 }
1749
HaveFloatFpr() const1750 bool HaveFloatFpr() const {
1751 return fpr_index_ > 0;
1752 }
1753
AdvanceFloat(float val)1754 void AdvanceFloat(float val) {
1755 if (kNativeSoftFloatAbi) {
1756 AdvanceInt(bit_cast<uint32_t, float>(val));
1757 } else {
1758 if (HaveFloatFpr()) {
1759 fpr_index_--;
1760 if (kRegistersNeededForDouble == 1) {
1761 if (kMultiFPRegistersWidened) {
1762 PushFpr8(bit_cast<uint64_t, double>(val));
1763 } else {
1764 // No widening, just use the bits.
1765 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1766 }
1767 } else {
1768 PushFpr4(val);
1769 }
1770 } else {
1771 stack_entries_++;
1772 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1773 // Need to widen before storing: Note the "double" in the template instantiation.
1774 // Note: We need to jump through those hoops to make the compiler happy.
1775 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1776 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1777 } else {
1778 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1779 }
1780 fpr_index_ = 0;
1781 }
1782 }
1783 }
1784
HaveDoubleFpr() const1785 bool HaveDoubleFpr() const {
1786 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1787 }
1788
DoubleFprNeedsPadding() const1789 bool DoubleFprNeedsPadding() const {
1790 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1791 kAlignDoubleOnStack && // and when it needs alignment
1792 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1793 }
1794
DoubleStackNeedsPadding() const1795 bool DoubleStackNeedsPadding() const {
1796 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1797 kAlignDoubleOnStack && // and when it needs 8B alignment
1798 (stack_entries_ & 1) == 1; // counter is odd
1799 }
1800
AdvanceDouble(uint64_t val)1801 void AdvanceDouble(uint64_t val) {
1802 if (kNativeSoftFloatAbi) {
1803 AdvanceLong(val);
1804 } else {
1805 if (HaveDoubleFpr()) {
1806 if (DoubleFprNeedsPadding()) {
1807 PushFpr4(0);
1808 fpr_index_--;
1809 }
1810 PushFpr8(val);
1811 fpr_index_ -= kRegistersNeededForDouble;
1812 } else {
1813 if (DoubleStackNeedsPadding()) {
1814 PushStack(0);
1815 stack_entries_++;
1816 }
1817 if (kRegistersNeededForDouble == 1) {
1818 PushStack(static_cast<uintptr_t>(val));
1819 stack_entries_++;
1820 } else {
1821 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1822 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1823 stack_entries_ += 2;
1824 }
1825 fpr_index_ = 0;
1826 }
1827 }
1828 }
1829
GetStackEntries() const1830 uint32_t GetStackEntries() const {
1831 return stack_entries_;
1832 }
1833
GetNumberOfUsedGprs() const1834 uint32_t GetNumberOfUsedGprs() const {
1835 return kNumNativeGprArgs - gpr_index_;
1836 }
1837
GetNumberOfUsedFprs() const1838 uint32_t GetNumberOfUsedFprs() const {
1839 return kNumNativeFprArgs - fpr_index_;
1840 }
1841
1842 private:
PushGpr(uintptr_t val)1843 void PushGpr(uintptr_t val) {
1844 delegate_->PushGpr(val);
1845 }
PushFpr4(float val)1846 void PushFpr4(float val) {
1847 delegate_->PushFpr4(val);
1848 }
PushFpr8(uint64_t val)1849 void PushFpr8(uint64_t val) {
1850 delegate_->PushFpr8(val);
1851 }
PushStack(uintptr_t val)1852 void PushStack(uintptr_t val) {
1853 delegate_->PushStack(val);
1854 }
PushHandle(mirror::Object * ref)1855 uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1856 return delegate_->PushHandle(ref);
1857 }
1858
1859 uint32_t gpr_index_; // Number of free GPRs
1860 uint32_t fpr_index_; // Number of free FPRs
1861 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1862 // extended
1863 T* const delegate_; // What Push implementation gets called
1864 };
1865
1866 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1867 // in subclasses.
1868 //
1869 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1870 // them with handles.
1871 class ComputeNativeCallFrameSize {
1872 public:
ComputeNativeCallFrameSize()1873 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1874
~ComputeNativeCallFrameSize()1875 virtual ~ComputeNativeCallFrameSize() {}
1876
GetStackSize() const1877 uint32_t GetStackSize() const {
1878 return num_stack_entries_ * sizeof(uintptr_t);
1879 }
1880
LayoutCallStack(uint8_t * sp8) const1881 uint8_t* LayoutCallStack(uint8_t* sp8) const {
1882 sp8 -= GetStackSize();
1883 // Align by kStackAlignment.
1884 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1885 return sp8;
1886 }
1887
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1888 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1889 const {
1890 // Assumption is OK right now, as we have soft-float arm
1891 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1892 sp8 -= fregs * sizeof(uintptr_t);
1893 *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1894 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1895 sp8 -= iregs * sizeof(uintptr_t);
1896 *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1897 return sp8;
1898 }
1899
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1900 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1901 uint32_t** start_fpr) const {
1902 // Native call stack.
1903 sp8 = LayoutCallStack(sp8);
1904 *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1905
1906 // Put fprs and gprs below.
1907 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1908
1909 // Return the new bottom.
1910 return sp8;
1911 }
1912
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1913 virtual void WalkHeader(
1914 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1915 REQUIRES_SHARED(Locks::mutator_lock_) {
1916 }
1917
Walk(const char * shorty,uint32_t shorty_len)1918 void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1919 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1920
1921 WalkHeader(&sm);
1922
1923 for (uint32_t i = 1; i < shorty_len; ++i) {
1924 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1925 switch (cur_type_) {
1926 case Primitive::kPrimNot:
1927 // TODO: fix abuse of mirror types.
1928 sm.AdvanceHandleScope(
1929 reinterpret_cast<mirror::Object*>(0x12345678));
1930 break;
1931
1932 case Primitive::kPrimBoolean:
1933 case Primitive::kPrimByte:
1934 case Primitive::kPrimChar:
1935 case Primitive::kPrimShort:
1936 case Primitive::kPrimInt:
1937 sm.AdvanceInt(0);
1938 break;
1939 case Primitive::kPrimFloat:
1940 sm.AdvanceFloat(0);
1941 break;
1942 case Primitive::kPrimDouble:
1943 sm.AdvanceDouble(0);
1944 break;
1945 case Primitive::kPrimLong:
1946 sm.AdvanceLong(0);
1947 break;
1948 default:
1949 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1950 UNREACHABLE();
1951 }
1952 }
1953
1954 num_stack_entries_ = sm.GetStackEntries();
1955 }
1956
PushGpr(uintptr_t)1957 void PushGpr(uintptr_t /* val */) {
1958 // not optimizing registers, yet
1959 }
1960
PushFpr4(float)1961 void PushFpr4(float /* val */) {
1962 // not optimizing registers, yet
1963 }
1964
PushFpr8(uint64_t)1965 void PushFpr8(uint64_t /* val */) {
1966 // not optimizing registers, yet
1967 }
1968
PushStack(uintptr_t)1969 void PushStack(uintptr_t /* val */) {
1970 // counting is already done in the superclass
1971 }
1972
PushHandle(mirror::Object *)1973 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1974 return reinterpret_cast<uintptr_t>(nullptr);
1975 }
1976
1977 protected:
1978 uint32_t num_stack_entries_;
1979 };
1980
1981 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1982 public:
ComputeGenericJniFrameSize(bool critical_native)1983 explicit ComputeGenericJniFrameSize(bool critical_native)
1984 : num_handle_scope_references_(0), critical_native_(critical_native) {}
1985
1986 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1987 // is at *m = sp. Will update to point to the bottom of the save frame.
1988 //
1989 // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1990 void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1991 REQUIRES_SHARED(Locks::mutator_lock_) {
1992 ArtMethod* method = **m;
1993
1994 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1995
1996 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1997
1998 // First, fix up the layout of the callee-save frame.
1999 // We have to squeeze in the HandleScope, and relocate the method pointer.
2000
2001 // "Free" the slot for the method.
2002 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer.
2003
2004 // Under the callee saves put handle scope and new method stack reference.
2005 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
2006 size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
2007
2008 sp8 -= scope_and_method;
2009 // Align by kStackAlignment.
2010 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
2011
2012 uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
2013 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
2014 num_handle_scope_references_);
2015
2016 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
2017 uint8_t* method_pointer = sp8;
2018 auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
2019 *new_method_ref = method;
2020 *m = new_method_ref;
2021 }
2022
2023 // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const2024 void LayoutCookie(uint8_t** sp) const {
2025 // Reference cookie and padding
2026 *sp -= 8;
2027 }
2028
2029 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
2030 // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)2031 uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
2032 REQUIRES_SHARED(Locks::mutator_lock_) {
2033 // First, fix up the layout of the callee-save frame.
2034 // We have to squeeze in the HandleScope, and relocate the method pointer.
2035 LayoutCalleeSaveFrame(self, m, sp, handle_scope);
2036
2037 // The bottom of the callee-save frame is now where the method is, *m.
2038 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
2039
2040 // Add space for cookie.
2041 LayoutCookie(&sp8);
2042
2043 return sp8;
2044 }
2045
2046 // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)2047 uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
2048 HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
2049 uint32_t** start_fpr)
2050 REQUIRES_SHARED(Locks::mutator_lock_) {
2051 Walk(shorty, shorty_len);
2052
2053 // JNI part.
2054 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
2055
2056 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
2057
2058 // Return the new bottom.
2059 return sp8;
2060 }
2061
2062 uintptr_t PushHandle(mirror::Object* /* ptr */) override;
2063
2064 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
2065 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
2066 REQUIRES_SHARED(Locks::mutator_lock_);
2067
2068 private:
2069 uint32_t num_handle_scope_references_;
2070 const bool critical_native_;
2071 };
2072
PushHandle(mirror::Object *)2073 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
2074 num_handle_scope_references_++;
2075 return reinterpret_cast<uintptr_t>(nullptr);
2076 }
2077
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)2078 void ComputeGenericJniFrameSize::WalkHeader(
2079 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
2080 // First 2 parameters are always excluded for @CriticalNative.
2081 if (UNLIKELY(critical_native_)) {
2082 return;
2083 }
2084
2085 // JNIEnv
2086 sm->AdvancePointer(nullptr);
2087
2088 // Class object or this as first argument
2089 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
2090 }
2091
2092 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
2093 // the template requirements of BuildGenericJniFrameStateMachine.
2094 class FillNativeCall {
2095 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2096 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
2097 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
2098
~FillNativeCall()2099 virtual ~FillNativeCall() {}
2100
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2101 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
2102 cur_gpr_reg_ = gpr_regs;
2103 cur_fpr_reg_ = fpr_regs;
2104 cur_stack_arg_ = stack_args;
2105 }
2106
PushGpr(uintptr_t val)2107 void PushGpr(uintptr_t val) {
2108 *cur_gpr_reg_ = val;
2109 cur_gpr_reg_++;
2110 }
2111
PushFpr4(float val)2112 void PushFpr4(float val) {
2113 *cur_fpr_reg_ = val;
2114 cur_fpr_reg_++;
2115 }
2116
PushFpr8(uint64_t val)2117 void PushFpr8(uint64_t val) {
2118 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
2119 *tmp = val;
2120 cur_fpr_reg_ += 2;
2121 }
2122
PushStack(uintptr_t val)2123 void PushStack(uintptr_t val) {
2124 *cur_stack_arg_ = val;
2125 cur_stack_arg_++;
2126 }
2127
PushHandle(mirror::Object *)2128 virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
2129 LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
2130 UNREACHABLE();
2131 }
2132
2133 private:
2134 uintptr_t* cur_gpr_reg_;
2135 uint32_t* cur_fpr_reg_;
2136 uintptr_t* cur_stack_arg_;
2137 };
2138
2139 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
2140 // of transitioning into native code.
2141 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
2142 public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)2143 BuildGenericJniFrameVisitor(Thread* self,
2144 bool is_static,
2145 bool critical_native,
2146 const char* shorty,
2147 uint32_t shorty_len,
2148 ArtMethod*** sp)
2149 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
2150 jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
2151 sm_(&jni_call_) {
2152 ComputeGenericJniFrameSize fsc(critical_native);
2153 uintptr_t* start_gpr_reg;
2154 uint32_t* start_fpr_reg;
2155 uintptr_t* start_stack_arg;
2156 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
2157 &handle_scope_,
2158 &start_stack_arg,
2159 &start_gpr_reg, &start_fpr_reg);
2160
2161 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
2162
2163 // First 2 parameters are always excluded for CriticalNative methods.
2164 if (LIKELY(!critical_native)) {
2165 // jni environment is always first argument
2166 sm_.AdvancePointer(self->GetJniEnv());
2167
2168 if (is_static) {
2169 sm_.AdvanceHandleScope((**sp)->GetDeclaringClass().Ptr());
2170 } // else "this" reference is already handled by QuickArgumentVisitor.
2171 }
2172 }
2173
2174 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
2175
2176 void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2177
GetFirstHandleScopeEntry()2178 StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2179 return handle_scope_->GetHandle(0).GetReference();
2180 }
2181
GetFirstHandleScopeJObject() const2182 jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2183 return handle_scope_->GetHandle(0).ToJObject();
2184 }
2185
GetBottomOfUsedArea() const2186 void* GetBottomOfUsedArea() const {
2187 return bottom_of_used_area_;
2188 }
2189
2190 private:
2191 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2192 class FillJniCall final : public FillNativeCall {
2193 public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)2194 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2195 HandleScope* handle_scope, bool critical_native)
2196 : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2197 handle_scope_(handle_scope),
2198 cur_entry_(0),
2199 critical_native_(critical_native) {}
2200
2201 uintptr_t PushHandle(mirror::Object* ref) override REQUIRES_SHARED(Locks::mutator_lock_);
2202
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)2203 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2204 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2205 handle_scope_ = scope;
2206 cur_entry_ = 0U;
2207 }
2208
ResetRemainingScopeSlots()2209 void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2210 // Initialize padding entries.
2211 size_t expected_slots = handle_scope_->NumberOfReferences();
2212 while (cur_entry_ < expected_slots) {
2213 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2214 }
2215
2216 if (!critical_native_) {
2217 // Non-critical natives have at least the self class (jclass) or this (jobject).
2218 DCHECK_NE(cur_entry_, 0U);
2219 }
2220 }
2221
CriticalNative() const2222 bool CriticalNative() const {
2223 return critical_native_;
2224 }
2225
2226 private:
2227 HandleScope* handle_scope_;
2228 size_t cur_entry_;
2229 const bool critical_native_;
2230 };
2231
2232 HandleScope* handle_scope_;
2233 FillJniCall jni_call_;
2234 void* bottom_of_used_area_;
2235
2236 BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2237
2238 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2239 };
2240
PushHandle(mirror::Object * ref)2241 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2242 uintptr_t tmp;
2243 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2244 h.Assign(ref);
2245 tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2246 cur_entry_++;
2247 return tmp;
2248 }
2249
Visit()2250 void BuildGenericJniFrameVisitor::Visit() {
2251 Primitive::Type type = GetParamPrimitiveType();
2252 switch (type) {
2253 case Primitive::kPrimLong: {
2254 jlong long_arg;
2255 if (IsSplitLongOrDouble()) {
2256 long_arg = ReadSplitLongParam();
2257 } else {
2258 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2259 }
2260 sm_.AdvanceLong(long_arg);
2261 break;
2262 }
2263 case Primitive::kPrimDouble: {
2264 uint64_t double_arg;
2265 if (IsSplitLongOrDouble()) {
2266 // Read into union so that we don't case to a double.
2267 double_arg = ReadSplitLongParam();
2268 } else {
2269 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2270 }
2271 sm_.AdvanceDouble(double_arg);
2272 break;
2273 }
2274 case Primitive::kPrimNot: {
2275 StackReference<mirror::Object>* stack_ref =
2276 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2277 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2278 break;
2279 }
2280 case Primitive::kPrimFloat:
2281 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2282 break;
2283 case Primitive::kPrimBoolean: // Fall-through.
2284 case Primitive::kPrimByte: // Fall-through.
2285 case Primitive::kPrimChar: // Fall-through.
2286 case Primitive::kPrimShort: // Fall-through.
2287 case Primitive::kPrimInt: // Fall-through.
2288 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2289 break;
2290 case Primitive::kPrimVoid:
2291 LOG(FATAL) << "UNREACHABLE";
2292 UNREACHABLE();
2293 }
2294 }
2295
FinalizeHandleScope(Thread * self)2296 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2297 // Clear out rest of the scope.
2298 jni_call_.ResetRemainingScopeSlots();
2299 if (!jni_call_.CriticalNative()) {
2300 // Install HandleScope.
2301 self->PushHandleScope(handle_scope_);
2302 }
2303 }
2304
2305 #if defined(__arm__) || defined(__aarch64__)
2306 extern "C" const void* artFindNativeMethod();
2307 #else
2308 extern "C" const void* artFindNativeMethod(Thread* self);
2309 #endif
2310
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2311 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2312 uint32_t cookie,
2313 bool fast_native ATTRIBUTE_UNUSED,
2314 jobject l,
2315 jobject lock) {
2316 // TODO: add entrypoints for @FastNative returning objects.
2317 if (lock != nullptr) {
2318 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2319 } else {
2320 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2321 }
2322 }
2323
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2324 static void artQuickGenericJniEndJNINonRef(Thread* self,
2325 uint32_t cookie,
2326 bool fast_native,
2327 jobject lock) {
2328 if (lock != nullptr) {
2329 JniMethodEndSynchronized(cookie, lock, self);
2330 // Ignore "fast_native" here because synchronized functions aren't very fast.
2331 } else {
2332 if (UNLIKELY(fast_native)) {
2333 JniMethodFastEnd(cookie, self);
2334 } else {
2335 JniMethodEnd(cookie, self);
2336 }
2337 }
2338 }
2339
2340 /*
2341 * Initializes an alloca region assumed to be directly below sp for a native call:
2342 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2343 * The final element on the stack is a pointer to the native code.
2344 *
2345 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2346 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2347 *
2348 * The return of this function denotes:
2349 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2350 * 2) An error, if the value is negative.
2351 */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2352 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2353 REQUIRES_SHARED(Locks::mutator_lock_) {
2354 // Note: We cannot walk the stack properly until fixed up below.
2355 ArtMethod* called = *sp;
2356 DCHECK(called->IsNative()) << called->PrettyMethod(true);
2357 Runtime* runtime = Runtime::Current();
2358 uint32_t shorty_len = 0;
2359 const char* shorty = called->GetShorty(&shorty_len);
2360 bool critical_native = called->IsCriticalNative();
2361 bool fast_native = called->IsFastNative();
2362 bool normal_native = !critical_native && !fast_native;
2363
2364 // Run the visitor and update sp.
2365 BuildGenericJniFrameVisitor visitor(self,
2366 called->IsStatic(),
2367 critical_native,
2368 shorty,
2369 shorty_len,
2370 &sp);
2371 {
2372 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2373 visitor.VisitArguments();
2374 // FinalizeHandleScope pushes the handle scope on the thread.
2375 visitor.FinalizeHandleScope(self);
2376 }
2377
2378 // Fix up managed-stack things in Thread. After this we can walk the stack.
2379 self->SetTopOfStackTagged(sp);
2380
2381 self->VerifyStack();
2382
2383 // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2384 jit::Jit* jit = runtime->GetJit();
2385 if (jit != nullptr) {
2386 jit->MethodEntered(self, called);
2387 }
2388
2389 uint32_t cookie;
2390 uint32_t* sp32;
2391 // Skip calling JniMethodStart for @CriticalNative.
2392 if (LIKELY(!critical_native)) {
2393 // Start JNI, save the cookie.
2394 if (called->IsSynchronized()) {
2395 DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2396 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2397 if (self->IsExceptionPending()) {
2398 self->PopHandleScope();
2399 // A negative value denotes an error.
2400 return GetTwoWordFailureValue();
2401 }
2402 } else {
2403 if (fast_native) {
2404 cookie = JniMethodFastStart(self);
2405 } else {
2406 DCHECK(normal_native);
2407 cookie = JniMethodStart(self);
2408 }
2409 }
2410 sp32 = reinterpret_cast<uint32_t*>(sp);
2411 *(sp32 - 1) = cookie;
2412 }
2413
2414 // Retrieve the stored native code.
2415 void const* nativeCode = called->GetEntryPointFromJni();
2416
2417 // There are two cases for the content of nativeCode:
2418 // 1) Pointer to the native function.
2419 // 2) Pointer to the trampoline for native code binding.
2420 // In the second case, we need to execute the binding and continue with the actual native function
2421 // pointer.
2422 DCHECK(nativeCode != nullptr);
2423 if (nativeCode == GetJniDlsymLookupStub()) {
2424 #if defined(__arm__) || defined(__aarch64__)
2425 nativeCode = artFindNativeMethod();
2426 #else
2427 nativeCode = artFindNativeMethod(self);
2428 #endif
2429
2430 if (nativeCode == nullptr) {
2431 DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
2432
2433 // @CriticalNative calls do not need to call back into JniMethodEnd.
2434 if (LIKELY(!critical_native)) {
2435 // End JNI, as the assembly will move to deliver the exception.
2436 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2437 if (shorty[0] == 'L') {
2438 artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2439 } else {
2440 artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2441 }
2442 }
2443
2444 return GetTwoWordFailureValue();
2445 }
2446 // Note that the native code pointer will be automatically set by artFindNativeMethod().
2447 }
2448
2449 #if defined(__mips__) && !defined(__LP64__)
2450 // On MIPS32 if the first two arguments are floating-point, we need to know their types
2451 // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2452 // and load into floating-point registers.
2453 // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2454 // view):
2455 // (1)
2456 // | DOUBLE | DOUBLE | other args, if any
2457 // | F12 | F13 | F14 | F15 |
2458 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2459 // (2)
2460 // | DOUBLE | FLOAT | (PAD) | other args, if any
2461 // | F12 | F13 | F14 | |
2462 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2463 // (3)
2464 // | FLOAT | (PAD) | DOUBLE | other args, if any
2465 // | F12 | | F14 | F15 |
2466 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
2467 // (4)
2468 // | FLOAT | FLOAT | other args, if any
2469 // | F12 | F14 |
2470 // | SP+0 | SP+4 | SP+8
2471 // As you can see, only the last case (4) is special. In all others we can just
2472 // load F12/F13 and F14/F15 in the same manner.
2473 // Set bit 0 of the native code address to 1 in this case (valid code addresses
2474 // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2475 if (nativeCode != nullptr &&
2476 shorty != nullptr &&
2477 shorty_len >= 3 &&
2478 shorty[1] == 'F' &&
2479 shorty[2] == 'F') {
2480 nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2481 }
2482 #endif
2483
2484 VLOG(third_party_jni) << "GenericJNI: "
2485 << called->PrettyMethod()
2486 << " -> "
2487 << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2488
2489 // Return native code addr(lo) and bottom of alloca address(hi).
2490 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2491 reinterpret_cast<uintptr_t>(nativeCode));
2492 }
2493
2494 // Defined in quick_jni_entrypoints.cc.
2495 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2496 jvalue result, uint64_t result_f, ArtMethod* called,
2497 HandleScope* handle_scope);
2498 /*
2499 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2500 * unlocking.
2501 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2502 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2503 jvalue result,
2504 uint64_t result_f) {
2505 // We're here just back from a native call. We don't have the shared mutator lock at this point
2506 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2507 // anything that requires a mutator lock before that would cause problems as GC may have the
2508 // exclusive mutator lock and may be moving objects, etc.
2509 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2510 DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2511 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2512 ArtMethod* called = *sp;
2513 uint32_t cookie = *(sp32 - 1);
2514 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2515 return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2516 }
2517
2518 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2519 // for the method pointer.
2520 //
2521 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2522 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2523
2524 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2525 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2526 ObjPtr<mirror::Object> this_object,
2527 Thread* self,
2528 ArtMethod** sp) {
2529 ScopedQuickEntrypointChecks sqec(self);
2530 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2531 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2532 ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2533 if (UNLIKELY(method == nullptr)) {
2534 const DexFile* dex_file = caller_method->GetDexFile();
2535 uint32_t shorty_len;
2536 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2537 {
2538 // Remember the args in case a GC happens in FindMethodFromCode.
2539 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2540 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2541 visitor.VisitArguments();
2542 method = FindMethodFromCode<type, access_check>(method_idx,
2543 &this_object,
2544 caller_method,
2545 self);
2546 visitor.FixupReferences();
2547 }
2548
2549 if (UNLIKELY(method == nullptr)) {
2550 CHECK(self->IsExceptionPending());
2551 return GetTwoWordFailureValue(); // Failure.
2552 }
2553 }
2554 DCHECK(!self->IsExceptionPending());
2555 const void* code = method->GetEntryPointFromQuickCompiledCode();
2556
2557 // When we return, the caller will branch to this address, so it had better not be 0!
2558 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2559 << " location: "
2560 << method->GetDexFile()->GetLocation();
2561
2562 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2563 reinterpret_cast<uintptr_t>(method));
2564 }
2565
2566 // Explicit artInvokeCommon template function declarations to please analysis tool.
2567 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
2568 template REQUIRES_SHARED(Locks::mutator_lock_) \
2569 TwoWordReturn artInvokeCommon<type, access_check>( \
2570 uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2571
2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2576 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2577 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2578 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2579 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2580 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2581 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2582 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2583
2584 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2585 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2586 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2587 REQUIRES_SHARED(Locks::mutator_lock_) {
2588 return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2589 }
2590
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2591 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2592 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2593 REQUIRES_SHARED(Locks::mutator_lock_) {
2594 return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2595 }
2596
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2597 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2598 uint32_t method_idx,
2599 mirror::Object* this_object ATTRIBUTE_UNUSED,
2600 Thread* self,
2601 ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2602 // For static, this_object is not required and may be random garbage. Don't pass it down so that
2603 // it doesn't cause ObjPtr alignment failure check.
2604 return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2605 }
2606
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2607 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2608 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2609 REQUIRES_SHARED(Locks::mutator_lock_) {
2610 return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2611 }
2612
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2613 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2614 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2615 REQUIRES_SHARED(Locks::mutator_lock_) {
2616 return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2617 }
2618
2619 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
artLookupResolvedMethod(uint32_t method_index,ArtMethod * referrer)2620 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2621 REQUIRES_SHARED(Locks::mutator_lock_) {
2622 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2623 DCHECK(!referrer->IsProxyMethod());
2624 ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2625 method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2626 DCHECK(result == nullptr ||
2627 result->GetDeclaringClass()->IsInterface() ||
2628 result->GetDeclaringClass() ==
2629 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2630 << result->PrettyMethod();
2631 return result;
2632 }
2633
2634 // Determine target of interface dispatch. The interface method and this object are known non-null.
2635 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2636 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2637 mirror::Object* raw_this_object,
2638 Thread* self,
2639 ArtMethod** sp)
2640 REQUIRES_SHARED(Locks::mutator_lock_) {
2641 ScopedQuickEntrypointChecks sqec(self);
2642 StackHandleScope<2> hs(self);
2643 Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2644 Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2645
2646 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2647 ArtMethod* method = nullptr;
2648 ImTable* imt = cls->GetImt(kRuntimePointerSize);
2649
2650 if (UNLIKELY(interface_method == nullptr)) {
2651 // The interface method is unresolved, so resolve it in the dex file of the caller.
2652 // Fetch the dex_method_idx of the target interface method from the caller.
2653 uint32_t dex_method_idx;
2654 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2655 const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2656 Instruction::Code instr_code = instr.Opcode();
2657 DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2658 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2659 << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2660 if (instr_code == Instruction::INVOKE_INTERFACE) {
2661 dex_method_idx = instr.VRegB_35c();
2662 } else {
2663 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2664 dex_method_idx = instr.VRegB_3rc();
2665 }
2666
2667 const DexFile& dex_file = *caller_method->GetDexFile();
2668 uint32_t shorty_len;
2669 const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2670 &shorty_len);
2671 {
2672 // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2673 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2674 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2675 visitor.VisitArguments();
2676 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2677 interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2678 self, dex_method_idx, caller_method, kInterface);
2679 visitor.FixupReferences();
2680 }
2681
2682 if (UNLIKELY(interface_method == nullptr)) {
2683 CHECK(self->IsExceptionPending());
2684 return GetTwoWordFailureValue(); // Failure.
2685 }
2686 }
2687
2688 DCHECK(!interface_method->IsRuntimeMethod());
2689 // Look whether we have a match in the ImtConflictTable.
2690 uint32_t imt_index = interface_method->GetImtIndex();
2691 ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2692 if (LIKELY(conflict_method->IsRuntimeMethod())) {
2693 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2694 DCHECK(current_table != nullptr);
2695 method = current_table->Lookup(interface_method, kRuntimePointerSize);
2696 } else {
2697 // It seems we aren't really a conflict method!
2698 if (kIsDebugBuild) {
2699 ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2700 CHECK_EQ(conflict_method, m)
2701 << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2702 << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2703 }
2704 method = conflict_method;
2705 }
2706 if (method != nullptr) {
2707 return GetTwoWordSuccessValue(
2708 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2709 reinterpret_cast<uintptr_t>(method));
2710 }
2711
2712 // No match, use the IfTable.
2713 method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2714 if (UNLIKELY(method == nullptr)) {
2715 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2716 interface_method, this_object.Get(), caller_method);
2717 return GetTwoWordFailureValue(); // Failure.
2718 }
2719
2720 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2721 // We create a new table with the new pair { interface_method, method }.
2722 DCHECK(conflict_method->IsRuntimeMethod());
2723 ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2724 cls.Get(),
2725 conflict_method,
2726 interface_method,
2727 method,
2728 /*force_new_conflict_method=*/false);
2729 if (new_conflict_method != conflict_method) {
2730 // Update the IMT if we create a new conflict method. No fence needed here, as the
2731 // data is consistent.
2732 imt->Set(imt_index,
2733 new_conflict_method,
2734 kRuntimePointerSize);
2735 }
2736
2737 const void* code = method->GetEntryPointFromQuickCompiledCode();
2738
2739 // When we return, the caller will branch to this address, so it had better not be 0!
2740 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2741 << " location: " << method->GetDexFile()->GetLocation();
2742
2743 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2744 reinterpret_cast<uintptr_t>(method));
2745 }
2746
2747 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2748 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2749 REQUIRES_SHARED(Locks::mutator_lock_) {
2750 ScopedQuickEntrypointChecks sqec(self);
2751 DCHECK(raw_receiver != nullptr);
2752 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2753
2754 // Start new JNI local reference state
2755 JNIEnvExt* env = self->GetJniEnv();
2756 ScopedObjectAccessUnchecked soa(env);
2757 ScopedJniEnvLocalRefState env_state(env);
2758 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2759
2760 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2761 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2762 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2763 const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2764 DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2765 inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2766 const dex::ProtoIndex proto_idx(inst.VRegH());
2767 const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2768 const size_t shorty_length = strlen(shorty);
2769 static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
2770 RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2771 gc_visitor.VisitArguments();
2772
2773 // Wrap raw_receiver in a Handle for safety.
2774 StackHandleScope<3> hs(self);
2775 Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2776 raw_receiver = nullptr;
2777 self->EndAssertNoThreadSuspension(old_cause);
2778
2779 // Resolve method.
2780 ClassLinker* linker = Runtime::Current()->GetClassLinker();
2781 ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2782 self, inst.VRegB(), caller_method, kVirtual);
2783
2784 Handle<mirror::MethodType> method_type(
2785 hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2786 if (UNLIKELY(method_type.IsNull())) {
2787 // This implies we couldn't resolve one or more types in this method handle.
2788 CHECK(self->IsExceptionPending());
2789 return 0UL;
2790 }
2791
2792 DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2793 DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2794
2795 // Fix references before constructing the shadow frame.
2796 gc_visitor.FixupReferences();
2797
2798 // Construct shadow frame placing arguments consecutively from |first_arg|.
2799 const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2800 const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2801 const size_t first_arg = 0;
2802 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2803 CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
2804 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2805 ScopedStackedShadowFramePusher
2806 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2807 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2808 kMethodIsStatic,
2809 shorty,
2810 strlen(shorty),
2811 shadow_frame,
2812 first_arg);
2813 shadow_frame_builder.VisitArguments();
2814
2815 // Push a transition back into managed code onto the linked list in thread.
2816 ManagedStack fragment;
2817 self->PushManagedStackFragment(&fragment);
2818
2819 // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2820 // consecutive order.
2821 RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2822 Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2823 JValue result;
2824 bool success = false;
2825 if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2826 Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2827 ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2828 if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2829 success = MethodHandleInvokeExact(self,
2830 *shadow_frame,
2831 method_handle,
2832 method_type,
2833 &operands,
2834 &result);
2835 } else {
2836 DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2837 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2838 success = MethodHandleInvoke(self,
2839 *shadow_frame,
2840 method_handle,
2841 method_type,
2842 &operands,
2843 &result);
2844 }
2845 } else {
2846 DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2847 Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2848 ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2849 mirror::VarHandle::AccessMode access_mode =
2850 mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2851 success = VarHandleInvokeAccessor(self,
2852 *shadow_frame,
2853 var_handle,
2854 method_type,
2855 access_mode,
2856 &operands,
2857 &result);
2858 }
2859
2860 DCHECK(success || self->IsExceptionPending());
2861
2862 // Pop transition record.
2863 self->PopManagedStackFragment(fragment);
2864
2865 return result.GetJ();
2866 }
2867
2868 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2869 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2870 REQUIRES_SHARED(Locks::mutator_lock_) {
2871 ScopedQuickEntrypointChecks sqec(self);
2872 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2873
2874 // invoke-custom is effectively a static call (no receiver).
2875 static constexpr bool kMethodIsStatic = true;
2876
2877 // Start new JNI local reference state
2878 JNIEnvExt* env = self->GetJniEnv();
2879 ScopedObjectAccessUnchecked soa(env);
2880 ScopedJniEnvLocalRefState env_state(env);
2881
2882 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2883
2884 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2885 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2886 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2887 const DexFile* dex_file = caller_method->GetDexFile();
2888 const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2889 const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2890 const uint32_t shorty_len = strlen(shorty);
2891
2892 // Construct the shadow frame placing arguments consecutively from |first_arg|.
2893 const size_t first_arg = 0;
2894 const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2895 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2896 CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
2897 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2898 ScopedStackedShadowFramePusher
2899 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2900 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2901 kMethodIsStatic,
2902 shorty,
2903 shorty_len,
2904 shadow_frame,
2905 first_arg);
2906 shadow_frame_builder.VisitArguments();
2907
2908 // Push a transition back into managed code onto the linked list in thread.
2909 ManagedStack fragment;
2910 self->PushManagedStackFragment(&fragment);
2911 self->EndAssertNoThreadSuspension(old_cause);
2912
2913 // Perform the invoke-custom operation.
2914 RangeInstructionOperands operands(first_arg, num_vregs);
2915 JValue result;
2916 bool success =
2917 interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2918 DCHECK(success || self->IsExceptionPending());
2919
2920 // Pop transition record.
2921 self->PopManagedStackFragment(fragment);
2922
2923 return result.GetJ();
2924 }
2925
2926 } // namespace art
2927