• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <deque>
17 
18 #include "bump_pointer_space-inl.h"
19 #include "bump_pointer_space.h"
20 #include "base/dumpable.h"
21 #include "base/logging.h"
22 #include "gc/accounting/read_barrier_table.h"
23 #include "mirror/class-inl.h"
24 #include "mirror/object-inl.h"
25 #include "thread_list.h"
26 
27 namespace art {
28 namespace gc {
29 namespace space {
30 
31 // If a region has live objects whose size is less than this percent
32 // value of the region size, evaculate the region.
33 static constexpr uint kEvacuateLivePercentThreshold = 75U;
34 
35 // Whether we protect the unused and cleared regions.
36 static constexpr bool kProtectClearedRegions = true;
37 
38 // Wether we poison memory areas occupied by dead objects in unevacuated regions.
39 static constexpr bool kPoisonDeadObjectsInUnevacuatedRegions = true;
40 
41 // Special 32-bit value used to poison memory areas occupied by dead
42 // objects in unevacuated regions. Dereferencing this value is expected
43 // to trigger a memory protection fault, as it is unlikely that it
44 // points to a valid, non-protected memory area.
45 static constexpr uint32_t kPoisonDeadObject = 0xBADDB01D;  // "BADDROID"
46 
47 // Whether we check a region's live bytes count against the region bitmap.
48 static constexpr bool kCheckLiveBytesAgainstRegionBitmap = kIsDebugBuild;
49 
CreateMemMap(const std::string & name,size_t capacity,uint8_t * requested_begin)50 MemMap RegionSpace::CreateMemMap(const std::string& name,
51                                  size_t capacity,
52                                  uint8_t* requested_begin) {
53   CHECK_ALIGNED(capacity, kRegionSize);
54   std::string error_msg;
55   // Ask for the capacity of an additional kRegionSize so that we can align the map by kRegionSize
56   // even if we get unaligned base address. This is necessary for the ReadBarrierTable to work.
57   MemMap mem_map;
58   while (true) {
59     mem_map = MemMap::MapAnonymous(name.c_str(),
60                                    requested_begin,
61                                    capacity + kRegionSize,
62                                    PROT_READ | PROT_WRITE,
63                                    /*low_4gb=*/ true,
64                                    /*reuse=*/ false,
65                                    /*reservation=*/ nullptr,
66                                    &error_msg);
67     if (mem_map.IsValid() || requested_begin == nullptr) {
68       break;
69     }
70     // Retry with no specified request begin.
71     requested_begin = nullptr;
72   }
73   if (!mem_map.IsValid()) {
74     LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size "
75         << PrettySize(capacity) << " with message " << error_msg;
76     PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
77     MemMap::DumpMaps(LOG_STREAM(ERROR));
78     return MemMap::Invalid();
79   }
80   CHECK_EQ(mem_map.Size(), capacity + kRegionSize);
81   CHECK_EQ(mem_map.Begin(), mem_map.BaseBegin());
82   CHECK_EQ(mem_map.Size(), mem_map.BaseSize());
83   if (IsAlignedParam(mem_map.Begin(), kRegionSize)) {
84     // Got an aligned map. Since we requested a map that's kRegionSize larger. Shrink by
85     // kRegionSize at the end.
86     mem_map.SetSize(capacity);
87   } else {
88     // Got an unaligned map. Align the both ends.
89     mem_map.AlignBy(kRegionSize);
90   }
91   CHECK_ALIGNED(mem_map.Begin(), kRegionSize);
92   CHECK_ALIGNED(mem_map.End(), kRegionSize);
93   CHECK_EQ(mem_map.Size(), capacity);
94   return mem_map;
95 }
96 
Create(const std::string & name,MemMap && mem_map,bool use_generational_cc)97 RegionSpace* RegionSpace::Create(
98     const std::string& name, MemMap&& mem_map, bool use_generational_cc) {
99   return new RegionSpace(name, std::move(mem_map), use_generational_cc);
100 }
101 
RegionSpace(const std::string & name,MemMap && mem_map,bool use_generational_cc)102 RegionSpace::RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc)
103     : ContinuousMemMapAllocSpace(name,
104                                  std::move(mem_map),
105                                  mem_map.Begin(),
106                                  mem_map.End(),
107                                  mem_map.End(),
108                                  kGcRetentionPolicyAlwaysCollect),
109       region_lock_("Region lock", kRegionSpaceRegionLock),
110       use_generational_cc_(use_generational_cc),
111       time_(1U),
112       num_regions_(mem_map_.Size() / kRegionSize),
113       num_non_free_regions_(0U),
114       num_evac_regions_(0U),
115       max_peak_num_non_free_regions_(0U),
116       non_free_region_index_limit_(0U),
117       current_region_(&full_region_),
118       evac_region_(nullptr),
119       cyclic_alloc_region_index_(0U) {
120   CHECK_ALIGNED(mem_map_.Size(), kRegionSize);
121   CHECK_ALIGNED(mem_map_.Begin(), kRegionSize);
122   DCHECK_GT(num_regions_, 0U);
123   regions_.reset(new Region[num_regions_]);
124   uint8_t* region_addr = mem_map_.Begin();
125   for (size_t i = 0; i < num_regions_; ++i, region_addr += kRegionSize) {
126     regions_[i].Init(i, region_addr, region_addr + kRegionSize);
127   }
128   mark_bitmap_.reset(
129       accounting::ContinuousSpaceBitmap::Create("region space live bitmap", Begin(), Capacity()));
130   if (kIsDebugBuild) {
131     CHECK_EQ(regions_[0].Begin(), Begin());
132     for (size_t i = 0; i < num_regions_; ++i) {
133       CHECK(regions_[i].IsFree());
134       CHECK_EQ(static_cast<size_t>(regions_[i].End() - regions_[i].Begin()), kRegionSize);
135       if (i + 1 < num_regions_) {
136         CHECK_EQ(regions_[i].End(), regions_[i + 1].Begin());
137       }
138     }
139     CHECK_EQ(regions_[num_regions_ - 1].End(), Limit());
140   }
141   DCHECK(!full_region_.IsFree());
142   DCHECK(full_region_.IsAllocated());
143   size_t ignored;
144   DCHECK(full_region_.Alloc(kAlignment, &ignored, nullptr, &ignored) == nullptr);
145   // Protect the whole region space from the start.
146   Protect();
147 }
148 
FromSpaceSize()149 size_t RegionSpace::FromSpaceSize() {
150   uint64_t num_regions = 0;
151   MutexLock mu(Thread::Current(), region_lock_);
152   for (size_t i = 0; i < num_regions_; ++i) {
153     Region* r = &regions_[i];
154     if (r->IsInFromSpace()) {
155       ++num_regions;
156     }
157   }
158   return num_regions * kRegionSize;
159 }
160 
UnevacFromSpaceSize()161 size_t RegionSpace::UnevacFromSpaceSize() {
162   uint64_t num_regions = 0;
163   MutexLock mu(Thread::Current(), region_lock_);
164   for (size_t i = 0; i < num_regions_; ++i) {
165     Region* r = &regions_[i];
166     if (r->IsInUnevacFromSpace()) {
167       ++num_regions;
168     }
169   }
170   return num_regions * kRegionSize;
171 }
172 
ToSpaceSize()173 size_t RegionSpace::ToSpaceSize() {
174   uint64_t num_regions = 0;
175   MutexLock mu(Thread::Current(), region_lock_);
176   for (size_t i = 0; i < num_regions_; ++i) {
177     Region* r = &regions_[i];
178     if (r->IsInToSpace()) {
179       ++num_regions;
180     }
181   }
182   return num_regions * kRegionSize;
183 }
184 
SetAsUnevacFromSpace(bool clear_live_bytes)185 void RegionSpace::Region::SetAsUnevacFromSpace(bool clear_live_bytes) {
186   // Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
187   DCHECK(GetUseGenerationalCC() || clear_live_bytes);
188   DCHECK(!IsFree() && IsInToSpace());
189   type_ = RegionType::kRegionTypeUnevacFromSpace;
190   if (IsNewlyAllocated()) {
191     // A newly allocated region set as unevac from-space must be
192     // a large or large tail region.
193     DCHECK(IsLarge() || IsLargeTail()) << static_cast<uint>(state_);
194     // Always clear the live bytes of a newly allocated (large or
195     // large tail) region.
196     clear_live_bytes = true;
197     // Clear the "newly allocated" status here, as we do not want the
198     // GC to see it when encountering (and processing) references in the
199     // from-space.
200     //
201     // Invariant: There should be no newly-allocated region in the
202     // from-space (when the from-space exists, which is between the calls
203     // to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace).
204     is_newly_allocated_ = false;
205   }
206   if (clear_live_bytes) {
207     // Reset the live bytes, as we have made a non-evacuation
208     // decision (possibly based on the percentage of live bytes).
209     live_bytes_ = 0;
210   }
211 }
212 
GetUseGenerationalCC()213 bool RegionSpace::Region::GetUseGenerationalCC() {
214   // We are retrieving the info from Heap, instead of the cached version in
215   // RegionSpace, because accessing the Heap from a Region object is easier
216   // than accessing the RegionSpace.
217   return art::Runtime::Current()->GetHeap()->GetUseGenerationalCC();
218 }
219 
ShouldBeEvacuated(EvacMode evac_mode)220 inline bool RegionSpace::Region::ShouldBeEvacuated(EvacMode evac_mode) {
221   // Evacuation mode `kEvacModeNewlyAllocated` is only used during sticky-bit CC collections.
222   DCHECK(GetUseGenerationalCC() || (evac_mode != kEvacModeNewlyAllocated));
223   DCHECK((IsAllocated() || IsLarge()) && IsInToSpace());
224   // The region should be evacuated if:
225   // - the evacuation is forced (`evac_mode == kEvacModeForceAll`); or
226   // - the region was allocated after the start of the previous GC (newly allocated region); or
227   // - the live ratio is below threshold (`kEvacuateLivePercentThreshold`).
228   if (UNLIKELY(evac_mode == kEvacModeForceAll)) {
229     return true;
230   }
231   bool result = false;
232   if (is_newly_allocated_) {
233     // Invariant: newly allocated regions have an undefined live bytes count.
234     DCHECK_EQ(live_bytes_, static_cast<size_t>(-1));
235     if (IsAllocated()) {
236       // We always evacuate newly-allocated non-large regions as we
237       // believe they contain many dead objects (a very simple form of
238       // the generational hypothesis, even before the Sticky-Bit CC
239       // approach).
240       //
241       // TODO: Verify that assertion by collecting statistics on the
242       // number/proportion of live objects in newly allocated regions
243       // in RegionSpace::ClearFromSpace.
244       //
245       // Note that a side effect of evacuating a newly-allocated
246       // non-large region is that the "newly allocated" status will
247       // later be removed, as its live objects will be copied to an
248       // evacuation region, which won't be marked as "newly
249       // allocated" (see RegionSpace::AllocateRegion).
250       result = true;
251     } else {
252       DCHECK(IsLarge());
253       // We never want to evacuate a large region (and the associated
254       // tail regions), except if:
255       // - we are forced to do so (see the `kEvacModeForceAll` case
256       //   above); or
257       // - we know that the (sole) object contained in this region is
258       //   dead (see the corresponding logic below, in the
259       //   `kEvacModeLivePercentNewlyAllocated` case).
260       // For a newly allocated region (i.e. allocated since the
261       // previous GC started), we don't have any liveness information
262       // (the live bytes count is -1 -- also note this region has been
263       // a to-space one between the time of its allocation and now),
264       // so we prefer not to evacuate it.
265       result = false;
266     }
267   } else if (evac_mode == kEvacModeLivePercentNewlyAllocated) {
268     bool is_live_percent_valid = (live_bytes_ != static_cast<size_t>(-1));
269     if (is_live_percent_valid) {
270       DCHECK(IsInToSpace());
271       DCHECK(!IsLargeTail());
272       DCHECK_NE(live_bytes_, static_cast<size_t>(-1));
273       DCHECK_LE(live_bytes_, BytesAllocated());
274       const size_t bytes_allocated = RoundUp(BytesAllocated(), kRegionSize);
275       DCHECK_LE(live_bytes_, bytes_allocated);
276       if (IsAllocated()) {
277         // Side node: live_percent == 0 does not necessarily mean
278         // there's no live objects due to rounding (there may be a
279         // few).
280         result = (live_bytes_ * 100U < kEvacuateLivePercentThreshold * bytes_allocated);
281       } else {
282         DCHECK(IsLarge());
283         result = (live_bytes_ == 0U);
284       }
285     } else {
286       result = false;
287     }
288   }
289   return result;
290 }
291 
ZeroLiveBytesForLargeObject(mirror::Object * obj)292 void RegionSpace::ZeroLiveBytesForLargeObject(mirror::Object* obj) {
293   // This method is only used when Generational CC collection is enabled.
294   DCHECK(use_generational_cc_);
295 
296   // This code uses a logic similar to the one used in RegionSpace::FreeLarge
297   // to traverse the regions supporting `obj`.
298   // TODO: Refactor.
299   DCHECK(IsLargeObject(obj));
300   DCHECK_ALIGNED(obj, kRegionSize);
301   size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
302   DCHECK_GT(obj_size, space::RegionSpace::kRegionSize);
303   // Size of the memory area allocated for `obj`.
304   size_t obj_alloc_size = RoundUp(obj_size, space::RegionSpace::kRegionSize);
305   uint8_t* begin_addr = reinterpret_cast<uint8_t*>(obj);
306   uint8_t* end_addr = begin_addr + obj_alloc_size;
307   DCHECK_ALIGNED(end_addr, kRegionSize);
308 
309   // Zero the live bytes of the large region and large tail regions containing the object.
310   MutexLock mu(Thread::Current(), region_lock_);
311   for (uint8_t* addr = begin_addr; addr < end_addr; addr += kRegionSize) {
312     Region* region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(addr));
313     if (addr == begin_addr) {
314       DCHECK(region->IsLarge());
315     } else {
316       DCHECK(region->IsLargeTail());
317     }
318     region->ZeroLiveBytes();
319   }
320   if (kIsDebugBuild && end_addr < Limit()) {
321     // If we aren't at the end of the space, check that the next region is not a large tail.
322     Region* following_region = RefToRegionLocked(reinterpret_cast<mirror::Object*>(end_addr));
323     DCHECK(!following_region->IsLargeTail());
324   }
325 }
326 
327 // Determine which regions to evacuate and mark them as
328 // from-space. Mark the rest as unevacuated from-space.
SetFromSpace(accounting::ReadBarrierTable * rb_table,EvacMode evac_mode,bool clear_live_bytes)329 void RegionSpace::SetFromSpace(accounting::ReadBarrierTable* rb_table,
330                                EvacMode evac_mode,
331                                bool clear_live_bytes) {
332   // Live bytes are only preserved (i.e. not cleared) during sticky-bit CC collections.
333   DCHECK(use_generational_cc_ || clear_live_bytes);
334   ++time_;
335   if (kUseTableLookupReadBarrier) {
336     DCHECK(rb_table->IsAllCleared());
337     rb_table->SetAll();
338   }
339   MutexLock mu(Thread::Current(), region_lock_);
340   // Counter for the number of expected large tail regions following a large region.
341   size_t num_expected_large_tails = 0U;
342   // Flag to store whether the previously seen large region has been evacuated.
343   // This is used to apply the same evacuation policy to related large tail regions.
344   bool prev_large_evacuated = false;
345   VerifyNonFreeRegionLimit();
346   const size_t iter_limit = kUseTableLookupReadBarrier
347       ? num_regions_
348       : std::min(num_regions_, non_free_region_index_limit_);
349   for (size_t i = 0; i < iter_limit; ++i) {
350     Region* r = &regions_[i];
351     RegionState state = r->State();
352     RegionType type = r->Type();
353     if (!r->IsFree()) {
354       DCHECK(r->IsInToSpace());
355       if (LIKELY(num_expected_large_tails == 0U)) {
356         DCHECK((state == RegionState::kRegionStateAllocated ||
357                 state == RegionState::kRegionStateLarge) &&
358                type == RegionType::kRegionTypeToSpace);
359         bool should_evacuate = r->ShouldBeEvacuated(evac_mode);
360         bool is_newly_allocated = r->IsNewlyAllocated();
361         if (should_evacuate) {
362           r->SetAsFromSpace();
363           DCHECK(r->IsInFromSpace());
364         } else {
365           r->SetAsUnevacFromSpace(clear_live_bytes);
366           DCHECK(r->IsInUnevacFromSpace());
367         }
368         if (UNLIKELY(state == RegionState::kRegionStateLarge &&
369                      type == RegionType::kRegionTypeToSpace)) {
370           prev_large_evacuated = should_evacuate;
371           // In 2-phase full heap GC, this function is called after marking is
372           // done. So, it is possible that some newly allocated large object is
373           // marked but its live_bytes is still -1. We need to clear the
374           // mark-bit otherwise the live_bytes will not be updated in
375           // ConcurrentCopying::ProcessMarkStackRef() and hence will break the
376           // logic.
377           if (use_generational_cc_ && !should_evacuate && is_newly_allocated) {
378             GetMarkBitmap()->Clear(reinterpret_cast<mirror::Object*>(r->Begin()));
379           }
380           num_expected_large_tails = RoundUp(r->BytesAllocated(), kRegionSize) / kRegionSize - 1;
381           DCHECK_GT(num_expected_large_tails, 0U);
382         }
383       } else {
384         DCHECK(state == RegionState::kRegionStateLargeTail &&
385                type == RegionType::kRegionTypeToSpace);
386         if (prev_large_evacuated) {
387           r->SetAsFromSpace();
388           DCHECK(r->IsInFromSpace());
389         } else {
390           r->SetAsUnevacFromSpace(clear_live_bytes);
391           DCHECK(r->IsInUnevacFromSpace());
392         }
393         --num_expected_large_tails;
394       }
395     } else {
396       DCHECK_EQ(num_expected_large_tails, 0U);
397       if (kUseTableLookupReadBarrier) {
398         // Clear the rb table for to-space regions.
399         rb_table->Clear(r->Begin(), r->End());
400       }
401     }
402     // Invariant: There should be no newly-allocated region in the from-space.
403     DCHECK(!r->is_newly_allocated_);
404   }
405   DCHECK_EQ(num_expected_large_tails, 0U);
406   current_region_ = &full_region_;
407   evac_region_ = &full_region_;
408 }
409 
ZeroAndProtectRegion(uint8_t * begin,uint8_t * end)410 static void ZeroAndProtectRegion(uint8_t* begin, uint8_t* end) {
411   ZeroAndReleasePages(begin, end - begin);
412   if (kProtectClearedRegions) {
413     CheckedCall(mprotect, __FUNCTION__, begin, end - begin, PROT_NONE);
414   }
415 }
416 
ClearFromSpace(uint64_t * cleared_bytes,uint64_t * cleared_objects,const bool clear_bitmap)417 void RegionSpace::ClearFromSpace(/* out */ uint64_t* cleared_bytes,
418                                  /* out */ uint64_t* cleared_objects,
419                                  const bool clear_bitmap) {
420   DCHECK(cleared_bytes != nullptr);
421   DCHECK(cleared_objects != nullptr);
422   *cleared_bytes = 0;
423   *cleared_objects = 0;
424   size_t new_non_free_region_index_limit = 0;
425   // We should avoid calling madvise syscalls while holding region_lock_.
426   // Therefore, we split the working of this function into 2 loops. The first
427   // loop gathers memory ranges that must be madvised. Then we release the lock
428   // and perform madvise on the gathered memory ranges. Finally, we reacquire
429   // the lock and loop over the regions to clear the from-space regions and make
430   // them availabe for allocation.
431   std::deque<std::pair<uint8_t*, uint8_t*>> madvise_list;
432   // Gather memory ranges that need to be madvised.
433   {
434     MutexLock mu(Thread::Current(), region_lock_);
435     // Lambda expression `expand_madvise_range` adds a region to the "clear block".
436     //
437     // As we iterate over from-space regions, we maintain a "clear block", composed of
438     // adjacent to-be-cleared regions and whose bounds are `clear_block_begin` and
439     // `clear_block_end`. When processing a new region which is not adjacent to
440     // the clear block (discontinuity in cleared regions), the clear block
441     // is added to madvise_list and the clear block is reset (to the most recent
442     // to-be-cleared region).
443     //
444     // This is done in order to combine zeroing and releasing pages to reduce how
445     // often madvise is called. This helps reduce contention on the mmap semaphore
446     // (see b/62194020).
447     uint8_t* clear_block_begin = nullptr;
448     uint8_t* clear_block_end = nullptr;
449     auto expand_madvise_range = [&madvise_list, &clear_block_begin, &clear_block_end] (Region* r) {
450       if (clear_block_end != r->Begin()) {
451         if (clear_block_begin != nullptr) {
452           DCHECK(clear_block_end != nullptr);
453           madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
454         }
455         clear_block_begin = r->Begin();
456       }
457       clear_block_end = r->End();
458     };
459     for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
460       Region* r = &regions_[i];
461       // The following check goes through objects in the region, therefore it
462       // must be performed before madvising the region. Therefore, it can't be
463       // executed in the following loop.
464       if (kCheckLiveBytesAgainstRegionBitmap) {
465         CheckLiveBytesAgainstRegionBitmap(r);
466       }
467       if (r->IsInFromSpace()) {
468         expand_madvise_range(r);
469       } else if (r->IsInUnevacFromSpace()) {
470         // We must skip tails of live large objects.
471         if (r->LiveBytes() == 0 && !r->IsLargeTail()) {
472           // Special case for 0 live bytes, this means all of the objects in the region are
473           // dead and we can to clear it. This is important for large objects since we must
474           // not visit dead ones in RegionSpace::Walk because they may contain dangling
475           // references to invalid objects. It is also better to clear these regions now
476           // instead of at the end of the next GC to save RAM. If we don't clear the regions
477           // here, they will be cleared in next GC by the normal live percent evacuation logic.
478           expand_madvise_range(r);
479           // Also release RAM for large tails.
480           while (i + 1 < num_regions_ && regions_[i + 1].IsLargeTail()) {
481             expand_madvise_range(&regions_[i + 1]);
482             i++;
483           }
484         }
485       }
486     }
487     // There is a small probability that we may reach here with
488     // clear_block_{begin, end} = nullptr. If all the regions allocated since
489     // last GC have been for large objects and all of them survive till this GC
490     // cycle, then there will be no regions in from-space.
491     if (LIKELY(clear_block_begin != nullptr)) {
492       DCHECK(clear_block_end != nullptr);
493       madvise_list.push_back(std::pair(clear_block_begin, clear_block_end));
494     }
495   }
496 
497   // Madvise the memory ranges.
498   for (const auto &iter : madvise_list) {
499     ZeroAndProtectRegion(iter.first, iter.second);
500     if (clear_bitmap) {
501       GetLiveBitmap()->ClearRange(
502           reinterpret_cast<mirror::Object*>(iter.first),
503           reinterpret_cast<mirror::Object*>(iter.second));
504     }
505   }
506   madvise_list.clear();
507 
508   // Iterate over regions again and actually make the from space regions
509   // available for allocation.
510   MutexLock mu(Thread::Current(), region_lock_);
511   VerifyNonFreeRegionLimit();
512 
513   // Update max of peak non free region count before reclaiming evacuated regions.
514   max_peak_num_non_free_regions_ = std::max(max_peak_num_non_free_regions_,
515                                             num_non_free_regions_);
516 
517   for (size_t i = 0; i < std::min(num_regions_, non_free_region_index_limit_); ++i) {
518     Region* r = &regions_[i];
519     if (r->IsInFromSpace()) {
520       DCHECK(!r->IsTlab());
521       *cleared_bytes += r->BytesAllocated();
522       *cleared_objects += r->ObjectsAllocated();
523       --num_non_free_regions_;
524       r->Clear(/*zero_and_release_pages=*/false);
525     } else if (r->IsInUnevacFromSpace()) {
526       if (r->LiveBytes() == 0) {
527         DCHECK(!r->IsLargeTail());
528         *cleared_bytes += r->BytesAllocated();
529         *cleared_objects += r->ObjectsAllocated();
530         r->Clear(/*zero_and_release_pages=*/false);
531         size_t free_regions = 1;
532         // Also release RAM for large tails.
533         while (i + free_regions < num_regions_ && regions_[i + free_regions].IsLargeTail()) {
534           regions_[i + free_regions].Clear(/*zero_and_release_pages=*/false);
535           ++free_regions;
536         }
537         num_non_free_regions_ -= free_regions;
538         // When clear_bitmap is true, this clearing of bitmap is taken care in
539         // clear_region().
540         if (!clear_bitmap) {
541           GetLiveBitmap()->ClearRange(
542               reinterpret_cast<mirror::Object*>(r->Begin()),
543               reinterpret_cast<mirror::Object*>(r->Begin() + free_regions * kRegionSize));
544         }
545         continue;
546       }
547       r->SetUnevacFromSpaceAsToSpace();
548       if (r->AllAllocatedBytesAreLive()) {
549         // Try to optimize the number of ClearRange calls by checking whether the next regions
550         // can also be cleared.
551         size_t regions_to_clear_bitmap = 1;
552         while (i + regions_to_clear_bitmap < num_regions_) {
553           Region* const cur = &regions_[i + regions_to_clear_bitmap];
554           if (!cur->AllAllocatedBytesAreLive()) {
555             DCHECK(!cur->IsLargeTail());
556             break;
557           }
558           CHECK(cur->IsInUnevacFromSpace());
559           cur->SetUnevacFromSpaceAsToSpace();
560           ++regions_to_clear_bitmap;
561         }
562 
563         // Optimization (for full CC only): If the live bytes are *all* live
564         // in a region then the live-bit information for these objects is
565         // superfluous:
566         // - We can determine that these objects are all live by using
567         //   Region::AllAllocatedBytesAreLive (which just checks whether
568         //   `LiveBytes() == static_cast<size_t>(Top() - Begin())`.
569         // - We can visit the objects in this region using
570         //   RegionSpace::GetNextObject, i.e. without resorting to the
571         //   live bits (see RegionSpace::WalkInternal).
572         // Therefore, we can clear the bits for these objects in the
573         // (live) region space bitmap (and release the corresponding pages).
574         //
575         // This optimization is incompatible with Generational CC, because:
576         // - minor (young-generation) collections need to know which objects
577         //   where marked during the previous GC cycle, meaning all mark bitmaps
578         //   (this includes the region space bitmap) need to be preserved
579         //   between a (minor or major) collection N and a following minor
580         //   collection N+1;
581         // - at this stage (in the current GC cycle), we cannot determine
582         //   whether the next collection will be a minor or a major one;
583         // This means that we need to be conservative and always preserve the
584         // region space bitmap when using Generational CC.
585         // Note that major collections do not require the previous mark bitmaps
586         // to be preserved, and as matter of fact they do clear the region space
587         // bitmap. But they cannot do so before we know the next GC cycle will
588         // be a major one, so this operation happens at the beginning of such a
589         // major collection, before marking starts.
590         if (!use_generational_cc_) {
591           GetLiveBitmap()->ClearRange(
592               reinterpret_cast<mirror::Object*>(r->Begin()),
593               reinterpret_cast<mirror::Object*>(r->Begin()
594                                                 + regions_to_clear_bitmap * kRegionSize));
595         }
596         // Skip over extra regions for which we cleared the bitmaps: we shall not clear them,
597         // as they are unevac regions that are live.
598         // Subtract one for the for-loop.
599         i += regions_to_clear_bitmap - 1;
600       } else {
601         // TODO: Explain why we do not poison dead objects in region
602         // `r` when it has an undefined live bytes count (i.e. when
603         // `r->LiveBytes() == static_cast<size_t>(-1)`) with
604         // Generational CC.
605         if (!use_generational_cc_ || (r->LiveBytes() != static_cast<size_t>(-1))) {
606           // Only some allocated bytes are live in this unevac region.
607           // This should only happen for an allocated non-large region.
608           DCHECK(r->IsAllocated()) << r->State();
609           if (kPoisonDeadObjectsInUnevacuatedRegions) {
610             PoisonDeadObjectsInUnevacuatedRegion(r);
611           }
612         }
613       }
614     }
615     // Note r != last_checked_region if r->IsInUnevacFromSpace() was true above.
616     Region* last_checked_region = &regions_[i];
617     if (!last_checked_region->IsFree()) {
618       new_non_free_region_index_limit = std::max(new_non_free_region_index_limit,
619                                                  last_checked_region->Idx() + 1);
620     }
621   }
622   // Update non_free_region_index_limit_.
623   SetNonFreeRegionLimit(new_non_free_region_index_limit);
624   evac_region_ = nullptr;
625   num_non_free_regions_ += num_evac_regions_;
626   num_evac_regions_ = 0;
627 }
628 
CheckLiveBytesAgainstRegionBitmap(Region * r)629 void RegionSpace::CheckLiveBytesAgainstRegionBitmap(Region* r) {
630   if (r->LiveBytes() == static_cast<size_t>(-1)) {
631     // Live bytes count is undefined for `r`; nothing to check here.
632     return;
633   }
634 
635   // Functor walking the region space bitmap for the range corresponding
636   // to region `r` and calculating the sum of live bytes.
637   size_t live_bytes_recount = 0u;
638   auto recount_live_bytes =
639       [&r, &live_bytes_recount](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
640     DCHECK_ALIGNED(obj, kAlignment);
641     if (r->IsLarge()) {
642       // If `r` is a large region, then it contains at most one
643       // object, which must start at the beginning of the
644       // region. The live byte count in that case is equal to the
645       // allocated regions (large region + large tails regions).
646       DCHECK_EQ(reinterpret_cast<uint8_t*>(obj), r->Begin());
647       DCHECK_EQ(live_bytes_recount, 0u);
648       live_bytes_recount = r->Top() - r->Begin();
649     } else {
650       DCHECK(r->IsAllocated())
651           << "r->State()=" << r->State() << " r->LiveBytes()=" << r->LiveBytes();
652       size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
653       size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
654       live_bytes_recount += alloc_size;
655     }
656   };
657   // Visit live objects in `r` and recount the live bytes.
658   GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
659                                     reinterpret_cast<uintptr_t>(r->Top()),
660                                     recount_live_bytes);
661   // Check that this recount matches the region's current live bytes count.
662   DCHECK_EQ(live_bytes_recount, r->LiveBytes());
663 }
664 
665 // Poison the memory area in range [`begin`, `end`) with value `kPoisonDeadObject`.
PoisonUnevacuatedRange(uint8_t * begin,uint8_t * end)666 static void PoisonUnevacuatedRange(uint8_t* begin, uint8_t* end) {
667   static constexpr size_t kPoisonDeadObjectSize = sizeof(kPoisonDeadObject);
668   static_assert(IsPowerOfTwo(kPoisonDeadObjectSize) &&
669                 IsPowerOfTwo(RegionSpace::kAlignment) &&
670                 (kPoisonDeadObjectSize < RegionSpace::kAlignment),
671                 "RegionSpace::kAlignment should be a multiple of kPoisonDeadObjectSize"
672                 " and both should be powers of 2");
673   DCHECK_ALIGNED(begin, kPoisonDeadObjectSize);
674   DCHECK_ALIGNED(end, kPoisonDeadObjectSize);
675   uint32_t* begin_addr = reinterpret_cast<uint32_t*>(begin);
676   uint32_t* end_addr = reinterpret_cast<uint32_t*>(end);
677   std::fill(begin_addr, end_addr, kPoisonDeadObject);
678 }
679 
PoisonDeadObjectsInUnevacuatedRegion(Region * r)680 void RegionSpace::PoisonDeadObjectsInUnevacuatedRegion(Region* r) {
681   // The live byte count of `r` should be different from -1, as this
682   // region should neither be a newly allocated region nor an
683   // evacuated region.
684   DCHECK_NE(r->LiveBytes(), static_cast<size_t>(-1))
685       << "Unexpected live bytes count of -1 in " << Dumpable<Region>(*r);
686 
687   // Past-the-end address of the previously visited (live) object (or
688   // the beginning of the region, if `maybe_poison` has not run yet).
689   uint8_t* prev_obj_end = reinterpret_cast<uint8_t*>(r->Begin());
690 
691   // Functor poisoning the space between `obj` and the previously
692   // visited (live) object (or the beginng of the region), if any.
693   auto maybe_poison = [&prev_obj_end](mirror::Object* obj) REQUIRES(Locks::mutator_lock_) {
694     DCHECK_ALIGNED(obj, kAlignment);
695     uint8_t* cur_obj_begin = reinterpret_cast<uint8_t*>(obj);
696     if (cur_obj_begin != prev_obj_end) {
697       // There is a gap (dead object(s)) between the previously
698       // visited (live) object (or the beginning of the region) and
699       // `obj`; poison that space.
700       PoisonUnevacuatedRange(prev_obj_end, cur_obj_begin);
701     }
702     prev_obj_end = reinterpret_cast<uint8_t*>(GetNextObject(obj));
703   };
704 
705   // Visit live objects in `r` and poison gaps (dead objects) between them.
706   GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(r->Begin()),
707                                     reinterpret_cast<uintptr_t>(r->Top()),
708                                     maybe_poison);
709   // Poison memory between the last live object and the end of the region, if any.
710   if (prev_obj_end < r->Top()) {
711     PoisonUnevacuatedRange(prev_obj_end, r->Top());
712   }
713 }
714 
LogFragmentationAllocFailure(std::ostream & os,size_t)715 void RegionSpace::LogFragmentationAllocFailure(std::ostream& os,
716                                                size_t /* failed_alloc_bytes */) {
717   size_t max_contiguous_allocation = 0;
718   MutexLock mu(Thread::Current(), region_lock_);
719   if (current_region_->End() - current_region_->Top() > 0) {
720     max_contiguous_allocation = current_region_->End() - current_region_->Top();
721   }
722   if (num_non_free_regions_ * 2 < num_regions_) {
723     // We reserve half of the regions for evaluation only. If we
724     // occupy more than half the regions, do not report the free
725     // regions as available.
726     size_t max_contiguous_free_regions = 0;
727     size_t num_contiguous_free_regions = 0;
728     bool prev_free_region = false;
729     for (size_t i = 0; i < num_regions_; ++i) {
730       Region* r = &regions_[i];
731       if (r->IsFree()) {
732         if (!prev_free_region) {
733           CHECK_EQ(num_contiguous_free_regions, 0U);
734           prev_free_region = true;
735         }
736         ++num_contiguous_free_regions;
737       } else {
738         if (prev_free_region) {
739           CHECK_NE(num_contiguous_free_regions, 0U);
740           max_contiguous_free_regions = std::max(max_contiguous_free_regions,
741                                                  num_contiguous_free_regions);
742           num_contiguous_free_regions = 0U;
743           prev_free_region = false;
744         }
745       }
746     }
747     max_contiguous_allocation = std::max(max_contiguous_allocation,
748                                          max_contiguous_free_regions * kRegionSize);
749   }
750   os << "; failed due to fragmentation (largest possible contiguous allocation "
751      <<  max_contiguous_allocation << " bytes)";
752   // Caller's job to print failed_alloc_bytes.
753 }
754 
Clear()755 void RegionSpace::Clear() {
756   MutexLock mu(Thread::Current(), region_lock_);
757   for (size_t i = 0; i < num_regions_; ++i) {
758     Region* r = &regions_[i];
759     if (!r->IsFree()) {
760       --num_non_free_regions_;
761     }
762     r->Clear(/*zero_and_release_pages=*/true);
763   }
764   SetNonFreeRegionLimit(0);
765   DCHECK_EQ(num_non_free_regions_, 0u);
766   current_region_ = &full_region_;
767   evac_region_ = &full_region_;
768 }
769 
Protect()770 void RegionSpace::Protect() {
771   if (kProtectClearedRegions) {
772     CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_NONE);
773   }
774 }
775 
Unprotect()776 void RegionSpace::Unprotect() {
777   if (kProtectClearedRegions) {
778     CheckedCall(mprotect, __FUNCTION__, Begin(), Size(), PROT_READ | PROT_WRITE);
779   }
780 }
781 
ClampGrowthLimit(size_t new_capacity)782 void RegionSpace::ClampGrowthLimit(size_t new_capacity) {
783   MutexLock mu(Thread::Current(), region_lock_);
784   CHECK_LE(new_capacity, NonGrowthLimitCapacity());
785   size_t new_num_regions = new_capacity / kRegionSize;
786   if (non_free_region_index_limit_ > new_num_regions) {
787     LOG(WARNING) << "Couldn't clamp region space as there are regions in use beyond growth limit.";
788     return;
789   }
790   num_regions_ = new_num_regions;
791   if (kCyclicRegionAllocation && cyclic_alloc_region_index_ >= num_regions_) {
792     cyclic_alloc_region_index_ = 0u;
793   }
794   SetLimit(Begin() + new_capacity);
795   if (Size() > new_capacity) {
796     SetEnd(Limit());
797   }
798   GetMarkBitmap()->SetHeapSize(new_capacity);
799   GetMemMap()->SetSize(new_capacity);
800 }
801 
Dump(std::ostream & os) const802 void RegionSpace::Dump(std::ostream& os) const {
803   os << GetName() << " "
804      << reinterpret_cast<void*>(Begin()) << "-" << reinterpret_cast<void*>(Limit());
805 }
806 
DumpRegionForObject(std::ostream & os,mirror::Object * obj)807 void RegionSpace::DumpRegionForObject(std::ostream& os, mirror::Object* obj) {
808   CHECK(HasAddress(obj));
809   MutexLock mu(Thread::Current(), region_lock_);
810   RefToRegionUnlocked(obj)->Dump(os);
811 }
812 
DumpRegions(std::ostream & os)813 void RegionSpace::DumpRegions(std::ostream& os) {
814   MutexLock mu(Thread::Current(), region_lock_);
815   for (size_t i = 0; i < num_regions_; ++i) {
816     regions_[i].Dump(os);
817   }
818 }
819 
DumpNonFreeRegions(std::ostream & os)820 void RegionSpace::DumpNonFreeRegions(std::ostream& os) {
821   MutexLock mu(Thread::Current(), region_lock_);
822   for (size_t i = 0; i < num_regions_; ++i) {
823     Region* reg = &regions_[i];
824     if (!reg->IsFree()) {
825       reg->Dump(os);
826     }
827   }
828 }
829 
RecordAlloc(mirror::Object * ref)830 void RegionSpace::RecordAlloc(mirror::Object* ref) {
831   CHECK(ref != nullptr);
832   Region* r = RefToRegion(ref);
833   r->objects_allocated_.fetch_add(1, std::memory_order_relaxed);
834 }
835 
AllocNewTlab(Thread * self,size_t min_bytes)836 bool RegionSpace::AllocNewTlab(Thread* self, size_t min_bytes) {
837   MutexLock mu(self, region_lock_);
838   RevokeThreadLocalBuffersLocked(self);
839   // Retain sufficient free regions for full evacuation.
840 
841   Region* r = AllocateRegion(/*for_evac=*/ false);
842   if (r != nullptr) {
843     r->is_a_tlab_ = true;
844     r->thread_ = self;
845     r->SetTop(r->End());
846     self->SetTlab(r->Begin(), r->Begin() + min_bytes, r->End());
847     return true;
848   }
849   return false;
850 }
851 
RevokeThreadLocalBuffers(Thread * thread)852 size_t RegionSpace::RevokeThreadLocalBuffers(Thread* thread) {
853   MutexLock mu(Thread::Current(), region_lock_);
854   RevokeThreadLocalBuffersLocked(thread);
855   return 0U;
856 }
857 
RevokeThreadLocalBuffersLocked(Thread * thread)858 void RegionSpace::RevokeThreadLocalBuffersLocked(Thread* thread) {
859   uint8_t* tlab_start = thread->GetTlabStart();
860   DCHECK_EQ(thread->HasTlab(), tlab_start != nullptr);
861   if (tlab_start != nullptr) {
862     DCHECK_ALIGNED(tlab_start, kRegionSize);
863     Region* r = RefToRegionLocked(reinterpret_cast<mirror::Object*>(tlab_start));
864     DCHECK(r->IsAllocated());
865     DCHECK_LE(thread->GetThreadLocalBytesAllocated(), kRegionSize);
866     r->RecordThreadLocalAllocations(thread->GetThreadLocalObjectsAllocated(),
867                                     thread->GetThreadLocalBytesAllocated());
868     r->is_a_tlab_ = false;
869     r->thread_ = nullptr;
870   }
871   thread->SetTlab(nullptr, nullptr, nullptr);
872 }
873 
RevokeAllThreadLocalBuffers()874 size_t RegionSpace::RevokeAllThreadLocalBuffers() {
875   Thread* self = Thread::Current();
876   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
877   MutexLock mu2(self, *Locks::thread_list_lock_);
878   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
879   for (Thread* thread : thread_list) {
880     RevokeThreadLocalBuffers(thread);
881   }
882   return 0U;
883 }
884 
AssertThreadLocalBuffersAreRevoked(Thread * thread)885 void RegionSpace::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
886   if (kIsDebugBuild) {
887     DCHECK(!thread->HasTlab());
888   }
889 }
890 
AssertAllThreadLocalBuffersAreRevoked()891 void RegionSpace::AssertAllThreadLocalBuffersAreRevoked() {
892   if (kIsDebugBuild) {
893     Thread* self = Thread::Current();
894     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
895     MutexLock mu2(self, *Locks::thread_list_lock_);
896     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
897     for (Thread* thread : thread_list) {
898       AssertThreadLocalBuffersAreRevoked(thread);
899     }
900   }
901 }
902 
Dump(std::ostream & os) const903 void RegionSpace::Region::Dump(std::ostream& os) const {
904   os << "Region[" << idx_ << "]="
905      << reinterpret_cast<void*>(begin_)
906      << "-" << reinterpret_cast<void*>(Top())
907      << "-" << reinterpret_cast<void*>(end_)
908      << " state=" << state_
909      << " type=" << type_
910      << " objects_allocated=" << objects_allocated_
911      << " alloc_time=" << alloc_time_
912      << " live_bytes=" << live_bytes_;
913 
914   if (live_bytes_ != static_cast<size_t>(-1)) {
915     os << " ratio over allocated bytes="
916        << (static_cast<float>(live_bytes_) / RoundUp(BytesAllocated(), kRegionSize));
917     uint64_t longest_consecutive_free_bytes = GetLongestConsecutiveFreeBytes();
918     os << " longest_consecutive_free_bytes=" << longest_consecutive_free_bytes
919        << " (" << PrettySize(longest_consecutive_free_bytes) << ")";
920   }
921 
922   os << " is_newly_allocated=" << std::boolalpha << is_newly_allocated_ << std::noboolalpha
923      << " is_a_tlab=" << std::boolalpha << is_a_tlab_ << std::noboolalpha
924      << " thread=" << thread_ << '\n';
925 }
926 
GetLongestConsecutiveFreeBytes() const927 uint64_t RegionSpace::Region::GetLongestConsecutiveFreeBytes() const {
928   if (IsFree()) {
929     return kRegionSize;
930   }
931   if (IsLarge() || IsLargeTail()) {
932     return 0u;
933   }
934   uintptr_t max_gap = 0u;
935   uintptr_t prev_object_end = reinterpret_cast<uintptr_t>(Begin());
936   // Iterate through all live objects and find the largest free gap.
937   auto visitor = [&max_gap, &prev_object_end](mirror::Object* obj)
938     REQUIRES_SHARED(Locks::mutator_lock_) {
939     uintptr_t current = reinterpret_cast<uintptr_t>(obj);
940     uintptr_t diff = current - prev_object_end;
941     max_gap = std::max(diff, max_gap);
942     uintptr_t object_end = reinterpret_cast<uintptr_t>(obj) + obj->SizeOf();
943     prev_object_end = RoundUp(object_end, kAlignment);
944   };
945   space::RegionSpace* region_space = art::Runtime::Current()->GetHeap()->GetRegionSpace();
946   region_space->WalkNonLargeRegion(visitor, this);
947   return static_cast<uint64_t>(max_gap);
948 }
949 
950 
AllocationSizeNonvirtual(mirror::Object * obj,size_t * usable_size)951 size_t RegionSpace::AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) {
952   size_t num_bytes = obj->SizeOf();
953   if (usable_size != nullptr) {
954     if (LIKELY(num_bytes <= kRegionSize)) {
955       DCHECK(RefToRegion(obj)->IsAllocated());
956       *usable_size = RoundUp(num_bytes, kAlignment);
957     } else {
958       DCHECK(RefToRegion(obj)->IsLarge());
959       *usable_size = RoundUp(num_bytes, kRegionSize);
960     }
961   }
962   return num_bytes;
963 }
964 
Clear(bool zero_and_release_pages)965 void RegionSpace::Region::Clear(bool zero_and_release_pages) {
966   top_.store(begin_, std::memory_order_relaxed);
967   state_ = RegionState::kRegionStateFree;
968   type_ = RegionType::kRegionTypeNone;
969   objects_allocated_.store(0, std::memory_order_relaxed);
970   alloc_time_ = 0;
971   live_bytes_ = static_cast<size_t>(-1);
972   if (zero_and_release_pages) {
973     ZeroAndProtectRegion(begin_, end_);
974   }
975   is_newly_allocated_ = false;
976   is_a_tlab_ = false;
977   thread_ = nullptr;
978 }
979 
AllocateRegion(bool for_evac)980 RegionSpace::Region* RegionSpace::AllocateRegion(bool for_evac) {
981   if (!for_evac && (num_non_free_regions_ + 1) * 2 > num_regions_) {
982     return nullptr;
983   }
984   for (size_t i = 0; i < num_regions_; ++i) {
985     // When using the cyclic region allocation strategy, try to
986     // allocate a region starting from the last cyclic allocated
987     // region marker. Otherwise, try to allocate a region starting
988     // from the beginning of the region space.
989     size_t region_index = kCyclicRegionAllocation
990         ? ((cyclic_alloc_region_index_ + i) % num_regions_)
991         : i;
992     Region* r = &regions_[region_index];
993     if (r->IsFree()) {
994       r->Unfree(this, time_);
995       if (use_generational_cc_) {
996         // TODO: Add an explanation for this assertion.
997         DCHECK(!for_evac || !r->is_newly_allocated_);
998       }
999       if (for_evac) {
1000         ++num_evac_regions_;
1001         // Evac doesn't count as newly allocated.
1002       } else {
1003         r->SetNewlyAllocated();
1004         ++num_non_free_regions_;
1005       }
1006       if (kCyclicRegionAllocation) {
1007         // Move the cyclic allocation region marker to the region
1008         // following the one that was just allocated.
1009         cyclic_alloc_region_index_ = (region_index + 1) % num_regions_;
1010       }
1011       return r;
1012     }
1013   }
1014   return nullptr;
1015 }
1016 
MarkAsAllocated(RegionSpace * region_space,uint32_t alloc_time)1017 void RegionSpace::Region::MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) {
1018   DCHECK(IsFree());
1019   alloc_time_ = alloc_time;
1020   region_space->AdjustNonFreeRegionLimit(idx_);
1021   type_ = RegionType::kRegionTypeToSpace;
1022   if (kProtectClearedRegions) {
1023     CheckedCall(mprotect, __FUNCTION__, Begin(), kRegionSize, PROT_READ | PROT_WRITE);
1024   }
1025 }
1026 
Unfree(RegionSpace * region_space,uint32_t alloc_time)1027 void RegionSpace::Region::Unfree(RegionSpace* region_space, uint32_t alloc_time) {
1028   MarkAsAllocated(region_space, alloc_time);
1029   state_ = RegionState::kRegionStateAllocated;
1030 }
1031 
UnfreeLarge(RegionSpace * region_space,uint32_t alloc_time)1032 void RegionSpace::Region::UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) {
1033   MarkAsAllocated(region_space, alloc_time);
1034   state_ = RegionState::kRegionStateLarge;
1035 }
1036 
UnfreeLargeTail(RegionSpace * region_space,uint32_t alloc_time)1037 void RegionSpace::Region::UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) {
1038   MarkAsAllocated(region_space, alloc_time);
1039   state_ = RegionState::kRegionStateLargeTail;
1040 }
1041 
1042 }  // namespace space
1043 }  // namespace gc
1044 }  // namespace art
1045