1 /*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit_code_cache.h"
18
19 #include <sstream>
20
21 #include <android-base/logging.h>
22 #include <android-base/unique_fd.h>
23
24 #include "arch/context.h"
25 #include "art_method-inl.h"
26 #include "base/enums.h"
27 #include "base/histogram-inl.h"
28 #include "base/logging.h" // For VLOG.
29 #include "base/membarrier.h"
30 #include "base/memfd.h"
31 #include "base/mem_map.h"
32 #include "base/quasi_atomic.h"
33 #include "base/stl_util.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/utils.h"
37 #include "cha.h"
38 #include "debugger_interface.h"
39 #include "dex/dex_file_loader.h"
40 #include "dex/method_reference.h"
41 #include "entrypoints/runtime_asm_entrypoints.h"
42 #include "gc/accounting/bitmap-inl.h"
43 #include "gc/allocator/dlmalloc.h"
44 #include "gc/scoped_gc_critical_section.h"
45 #include "handle.h"
46 #include "instrumentation.h"
47 #include "intern_table.h"
48 #include "jit/jit.h"
49 #include "jit/profiling_info.h"
50 #include "linear_alloc.h"
51 #include "oat_file-inl.h"
52 #include "oat_quick_method_header.h"
53 #include "object_callbacks.h"
54 #include "profile/profile_compilation_info.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-current-inl.h"
58 #include "thread_list.h"
59
60 using android::base::unique_fd;
61
62 namespace art {
63 namespace jit {
64
65 static constexpr size_t kCodeSizeLogThreshold = 50 * KB;
66 static constexpr size_t kStackMapSizeLogThreshold = 50 * KB;
67
68 // Data cache will be half of the capacity
69 // Code cache will be the other half of the capacity.
70 // TODO: Make this variable?
71 static constexpr size_t kCodeAndDataCapacityDivider = 2;
72
73 static constexpr int kProtR = PROT_READ;
74 static constexpr int kProtRW = PROT_READ | PROT_WRITE;
75 static constexpr int kProtRWX = PROT_READ | PROT_WRITE | PROT_EXEC;
76 static constexpr int kProtRX = PROT_READ | PROT_EXEC;
77
78 namespace {
79
80 // Translate an address belonging to one memory map into an address in a second. This is useful
81 // when there are two virtual memory ranges for the same physical memory range.
82 template <typename T>
TranslateAddress(T * src_ptr,const MemMap & src,const MemMap & dst)83 T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) {
84 CHECK(src.HasAddress(src_ptr));
85 uint8_t* const raw_src_ptr = reinterpret_cast<uint8_t*>(src_ptr);
86 return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin());
87 }
88
89 } // namespace
90
91 class JitCodeCache::JniStubKey {
92 public:
REQUIRES_SHARED(Locks::mutator_lock_)93 explicit JniStubKey(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_)
94 : shorty_(method->GetShorty()),
95 is_static_(method->IsStatic()),
96 is_fast_native_(method->IsFastNative()),
97 is_critical_native_(method->IsCriticalNative()),
98 is_synchronized_(method->IsSynchronized()) {
99 DCHECK(!(is_fast_native_ && is_critical_native_));
100 }
101
operator <(const JniStubKey & rhs) const102 bool operator<(const JniStubKey& rhs) const {
103 if (is_static_ != rhs.is_static_) {
104 return rhs.is_static_;
105 }
106 if (is_synchronized_ != rhs.is_synchronized_) {
107 return rhs.is_synchronized_;
108 }
109 if (is_fast_native_ != rhs.is_fast_native_) {
110 return rhs.is_fast_native_;
111 }
112 if (is_critical_native_ != rhs.is_critical_native_) {
113 return rhs.is_critical_native_;
114 }
115 return strcmp(shorty_, rhs.shorty_) < 0;
116 }
117
118 // Update the shorty to point to another method's shorty. Call this function when removing
119 // the method that references the old shorty from JniCodeData and not removing the entire
120 // JniCodeData; the old shorty may become a dangling pointer when that method is unloaded.
UpdateShorty(ArtMethod * method) const121 void UpdateShorty(ArtMethod* method) const REQUIRES_SHARED(Locks::mutator_lock_) {
122 const char* shorty = method->GetShorty();
123 DCHECK_STREQ(shorty_, shorty);
124 shorty_ = shorty;
125 }
126
127 private:
128 // The shorty points to a DexFile data and may need to change
129 // to point to the same shorty in a different DexFile.
130 mutable const char* shorty_;
131
132 const bool is_static_;
133 const bool is_fast_native_;
134 const bool is_critical_native_;
135 const bool is_synchronized_;
136 };
137
138 class JitCodeCache::JniStubData {
139 public:
JniStubData()140 JniStubData() : code_(nullptr), methods_() {}
141
SetCode(const void * code)142 void SetCode(const void* code) {
143 DCHECK(code != nullptr);
144 code_ = code;
145 }
146
GetCode() const147 const void* GetCode() const {
148 return code_;
149 }
150
IsCompiled() const151 bool IsCompiled() const {
152 return GetCode() != nullptr;
153 }
154
AddMethod(ArtMethod * method)155 void AddMethod(ArtMethod* method) {
156 if (!ContainsElement(methods_, method)) {
157 methods_.push_back(method);
158 }
159 }
160
GetMethods() const161 const std::vector<ArtMethod*>& GetMethods() const {
162 return methods_;
163 }
164
RemoveMethodsIn(const LinearAlloc & alloc)165 void RemoveMethodsIn(const LinearAlloc& alloc) {
166 auto kept_end = std::remove_if(
167 methods_.begin(),
168 methods_.end(),
169 [&alloc](ArtMethod* method) { return alloc.ContainsUnsafe(method); });
170 methods_.erase(kept_end, methods_.end());
171 }
172
RemoveMethod(ArtMethod * method)173 bool RemoveMethod(ArtMethod* method) {
174 auto it = std::find(methods_.begin(), methods_.end(), method);
175 if (it != methods_.end()) {
176 methods_.erase(it);
177 return true;
178 } else {
179 return false;
180 }
181 }
182
MoveObsoleteMethod(ArtMethod * old_method,ArtMethod * new_method)183 void MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) {
184 std::replace(methods_.begin(), methods_.end(), old_method, new_method);
185 }
186
187 private:
188 const void* code_;
189 std::vector<ArtMethod*> methods_;
190 };
191
InitializeMappings(bool rwx_memory_allowed,bool is_zygote,std::string * error_msg)192 bool JitCodeCache::InitializeMappings(bool rwx_memory_allowed,
193 bool is_zygote,
194 std::string* error_msg) {
195 ScopedTrace trace(__PRETTY_FUNCTION__);
196
197 const size_t capacity = max_capacity_;
198 const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
199 const size_t exec_capacity = capacity - data_capacity;
200
201 // File descriptor enabling dual-view mapping of code section.
202 unique_fd mem_fd;
203
204 // Zygote shouldn't create a shared mapping for JIT, so we cannot use dual view
205 // for it.
206 if (!is_zygote) {
207 // Bionic supports memfd_create, but the call may fail on older kernels.
208 mem_fd = unique_fd(art::memfd_create("/jit-cache", /* flags= */ 0));
209 if (mem_fd.get() < 0) {
210 std::ostringstream oss;
211 oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
212 if (!rwx_memory_allowed) {
213 // Without using RWX page permissions, the JIT can not fallback to single mapping as it
214 // requires tranitioning the code pages to RWX for updates.
215 *error_msg = oss.str();
216 return false;
217 }
218 VLOG(jit) << oss.str();
219 }
220 }
221
222 if (mem_fd.get() >= 0 && ftruncate(mem_fd, capacity) != 0) {
223 std::ostringstream oss;
224 oss << "Failed to initialize memory file: " << strerror(errno);
225 *error_msg = oss.str();
226 return false;
227 }
228
229 std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
230 std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
231
232 std::string error_str;
233 // Map name specific for android_os_Debug.cpp accounting.
234 // Map in low 4gb to simplify accessing root tables for x86_64.
235 // We could do PC-relative addressing to avoid this problem, but that
236 // would require reserving code and data area before submitting, which
237 // means more windows for the code memory to be RWX.
238 int base_flags;
239 MemMap data_pages;
240 if (mem_fd.get() >= 0) {
241 // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
242 // for data and non-writable view of JIT code pages. We use the memory file descriptor to
243 // enable dual mapping - we'll create a second mapping using the descriptor below. The
244 // mappings will look like:
245 //
246 // VA PA
247 //
248 // +---------------+
249 // | non exec code |\
250 // +---------------+ \
251 // : :\ \
252 // +---------------+.\.+---------------+
253 // | exec code | \| code |
254 // +---------------+...+---------------+
255 // | data | | data |
256 // +---------------+...+---------------+
257 //
258 // In this configuration code updates are written to the non-executable view of the code
259 // cache, and the executable view of the code cache has fixed RX memory protections.
260 //
261 // This memory needs to be mapped shared as the code portions will have two mappings.
262 base_flags = MAP_SHARED;
263 data_pages = MemMap::MapFile(
264 data_capacity + exec_capacity,
265 kProtRW,
266 base_flags,
267 mem_fd,
268 /* start= */ 0,
269 /* low_4gb= */ true,
270 data_cache_name.c_str(),
271 &error_str);
272 } else {
273 // Single view of JIT code cache case. Create an initial mapping of data pages large enough
274 // for data and JIT code pages. The mappings will look like:
275 //
276 // VA PA
277 //
278 // +---------------+...+---------------+
279 // | exec code | | code |
280 // +---------------+...+---------------+
281 // | data | | data |
282 // +---------------+...+---------------+
283 //
284 // In this configuration code updates are written to the executable view of the code cache,
285 // and the executable view of the code cache transitions RX to RWX for the update and then
286 // back to RX after the update.
287 base_flags = MAP_PRIVATE | MAP_ANON;
288 data_pages = MemMap::MapAnonymous(
289 data_cache_name.c_str(),
290 data_capacity + exec_capacity,
291 kProtRW,
292 /* low_4gb= */ true,
293 &error_str);
294 }
295
296 if (!data_pages.IsValid()) {
297 std::ostringstream oss;
298 oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
299 *error_msg = oss.str();
300 return false;
301 }
302
303 MemMap exec_pages;
304 MemMap non_exec_pages;
305 if (exec_capacity > 0) {
306 uint8_t* const divider = data_pages.Begin() + data_capacity;
307 // Set initial permission for executable view to catch any SELinux permission problems early
308 // (for processes that cannot map WX pages). Otherwise, this region does not need to be
309 // executable as there is no code in the cache yet.
310 exec_pages = data_pages.RemapAtEnd(divider,
311 exec_cache_name.c_str(),
312 kProtRX,
313 base_flags | MAP_FIXED,
314 mem_fd.get(),
315 (mem_fd.get() >= 0) ? data_capacity : 0,
316 &error_str);
317 if (!exec_pages.IsValid()) {
318 std::ostringstream oss;
319 oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
320 *error_msg = oss.str();
321 return false;
322 }
323
324 if (mem_fd.get() >= 0) {
325 // For dual view, create the secondary view of code memory used for updating code. This view
326 // is never executable.
327 std::string name = exec_cache_name + "-rw";
328 non_exec_pages = MemMap::MapFile(exec_capacity,
329 kProtR,
330 base_flags,
331 mem_fd,
332 /* start= */ data_capacity,
333 /* low_4GB= */ false,
334 name.c_str(),
335 &error_str);
336 if (!non_exec_pages.IsValid()) {
337 static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
338 if (rwx_memory_allowed) {
339 // Log and continue as single view JIT (requires RWX memory).
340 VLOG(jit) << kFailedNxView;
341 } else {
342 *error_msg = kFailedNxView;
343 return false;
344 }
345 }
346 }
347 } else {
348 // Profiling only. No memory for code required.
349 }
350
351 data_pages_ = std::move(data_pages);
352 exec_pages_ = std::move(exec_pages);
353 non_exec_pages_ = std::move(non_exec_pages);
354 return true;
355 }
356
Create(bool used_only_for_profile_data,bool rwx_memory_allowed,bool is_zygote,std::string * error_msg)357 JitCodeCache* JitCodeCache::Create(bool used_only_for_profile_data,
358 bool rwx_memory_allowed,
359 bool is_zygote,
360 std::string* error_msg) {
361 // Register for membarrier expedited sync core if JIT will be generating code.
362 if (!used_only_for_profile_data) {
363 if (art::membarrier(art::MembarrierCommand::kRegisterPrivateExpeditedSyncCore) != 0) {
364 // MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE ensures that CPU instruction pipelines are
365 // flushed and it's used when adding code to the JIT. The memory used by the new code may
366 // have just been released and, in theory, the old code could still be in a pipeline.
367 VLOG(jit) << "Kernel does not support membarrier sync-core";
368 }
369 }
370
371 // Check whether the provided max capacity in options is below 1GB.
372 size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity();
373 // We need to have 32 bit offsets from method headers in code cache which point to things
374 // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work.
375 // Ensure we're below 1 GB to be safe.
376 if (max_capacity > 1 * GB) {
377 std::ostringstream oss;
378 oss << "Maxium code cache capacity is limited to 1 GB, "
379 << PrettySize(max_capacity) << " is too big";
380 *error_msg = oss.str();
381 return nullptr;
382 }
383
384 size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity();
385
386 std::unique_ptr<JitCodeCache> jit_code_cache(new JitCodeCache());
387
388 MutexLock mu(Thread::Current(), jit_code_cache->lock_);
389 jit_code_cache->InitializeState(initial_capacity, max_capacity);
390
391 // Zygote should never collect code to share the memory with the children.
392 if (is_zygote) {
393 jit_code_cache->garbage_collect_code_ = false;
394 }
395
396 if (!jit_code_cache->InitializeMappings(rwx_memory_allowed, is_zygote, error_msg)) {
397 return nullptr;
398 }
399
400 jit_code_cache->InitializeSpaces();
401
402 VLOG(jit) << "Created jit code cache: initial capacity="
403 << PrettySize(initial_capacity)
404 << ", maximum capacity="
405 << PrettySize(max_capacity);
406
407 return jit_code_cache.release();
408 }
409
JitCodeCache()410 JitCodeCache::JitCodeCache()
411 : lock_("Jit code cache", kJitCodeCacheLock),
412 lock_cond_("Jit code cache condition variable", lock_),
413 collection_in_progress_(false),
414 last_collection_increased_code_cache_(false),
415 garbage_collect_code_(true),
416 used_memory_for_data_(0),
417 used_memory_for_code_(0),
418 number_of_compilations_(0),
419 number_of_osr_compilations_(0),
420 number_of_collections_(0),
421 histogram_stack_map_memory_use_("Memory used for stack maps", 16),
422 histogram_code_memory_use_("Memory used for compiled code", 16),
423 histogram_profiling_info_memory_use_("Memory used for profiling info", 16),
424 is_weak_access_enabled_(true),
425 inline_cache_cond_("Jit inline cache condition variable", lock_),
426 zygote_data_pages_(),
427 zygote_exec_pages_(),
428 zygote_data_mspace_(nullptr),
429 zygote_exec_mspace_(nullptr) {
430 }
431
InitializeState(size_t initial_capacity,size_t max_capacity)432 void JitCodeCache::InitializeState(size_t initial_capacity, size_t max_capacity) {
433 CHECK_GE(max_capacity, initial_capacity);
434 CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
435 // Align both capacities to page size, as that's the unit mspaces use.
436 initial_capacity = RoundDown(initial_capacity, 2 * kPageSize);
437 max_capacity = RoundDown(max_capacity, 2 * kPageSize);
438
439 used_memory_for_data_ = 0;
440 used_memory_for_code_ = 0;
441 number_of_compilations_ = 0;
442 number_of_osr_compilations_ = 0;
443 number_of_collections_ = 0;
444
445 data_pages_ = MemMap();
446 exec_pages_ = MemMap();
447 non_exec_pages_ = MemMap();
448 initial_capacity_ = initial_capacity;
449 max_capacity_ = max_capacity;
450 current_capacity_ = initial_capacity,
451 data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
452 exec_end_ = initial_capacity - data_end_;
453 }
454
InitializeSpaces()455 void JitCodeCache::InitializeSpaces() {
456 // Initialize the data heap
457 data_mspace_ = create_mspace_with_base(data_pages_.Begin(), data_end_, false /*locked*/);
458 CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
459
460 // Initialize the code heap
461 MemMap* code_heap = nullptr;
462 if (non_exec_pages_.IsValid()) {
463 code_heap = &non_exec_pages_;
464 } else if (exec_pages_.IsValid()) {
465 code_heap = &exec_pages_;
466 }
467 if (code_heap != nullptr) {
468 // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
469 // heap, will take and initialize pages in create_mspace_with_base().
470 CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW);
471 exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
472 CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
473 SetFootprintLimit(initial_capacity_);
474 // Protect pages containing heap metadata. Updates to the code heap toggle write permission to
475 // perform the update and there are no other times write access is required.
476 CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR);
477 } else {
478 exec_mspace_ = nullptr;
479 SetFootprintLimit(initial_capacity_);
480 }
481 }
482
~JitCodeCache()483 JitCodeCache::~JitCodeCache() {}
484
ContainsPc(const void * ptr) const485 bool JitCodeCache::ContainsPc(const void* ptr) const {
486 return exec_pages_.HasAddress(ptr) || zygote_exec_pages_.HasAddress(ptr);
487 }
488
WillExecuteJitCode(ArtMethod * method)489 bool JitCodeCache::WillExecuteJitCode(ArtMethod* method) {
490 ScopedObjectAccess soa(art::Thread::Current());
491 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
492 if (ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
493 return true;
494 } else if (method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint()) {
495 return FindCompiledCodeForInstrumentation(method) != nullptr;
496 }
497 return false;
498 }
499
ContainsMethod(ArtMethod * method)500 bool JitCodeCache::ContainsMethod(ArtMethod* method) {
501 MutexLock mu(Thread::Current(), lock_);
502 if (UNLIKELY(method->IsNative())) {
503 auto it = jni_stubs_map_.find(JniStubKey(method));
504 if (it != jni_stubs_map_.end() &&
505 it->second.IsCompiled() &&
506 ContainsElement(it->second.GetMethods(), method)) {
507 return true;
508 }
509 } else {
510 for (const auto& it : method_code_map_) {
511 if (it.second == method) {
512 return true;
513 }
514 }
515 }
516 return false;
517 }
518
GetJniStubCode(ArtMethod * method)519 const void* JitCodeCache::GetJniStubCode(ArtMethod* method) {
520 DCHECK(method->IsNative());
521 MutexLock mu(Thread::Current(), lock_);
522 auto it = jni_stubs_map_.find(JniStubKey(method));
523 if (it != jni_stubs_map_.end()) {
524 JniStubData& data = it->second;
525 if (data.IsCompiled() && ContainsElement(data.GetMethods(), method)) {
526 return data.GetCode();
527 }
528 }
529 return nullptr;
530 }
531
FindCompiledCodeForInstrumentation(ArtMethod * method)532 const void* JitCodeCache::FindCompiledCodeForInstrumentation(ArtMethod* method) {
533 // If jit-gc is still on we use the SavedEntryPoint field for doing that and so cannot use it to
534 // find the instrumentation entrypoint.
535 if (LIKELY(GetGarbageCollectCode())) {
536 return nullptr;
537 }
538 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
539 if (info == nullptr) {
540 return nullptr;
541 }
542 // When GC is disabled for trampoline tracing we will use SavedEntrypoint to hold the actual
543 // jit-compiled version of the method. If jit-gc is disabled for other reasons this will just be
544 // nullptr.
545 return info->GetSavedEntryPoint();
546 }
547
GetZygoteSavedEntryPoint(ArtMethod * method)548 const void* JitCodeCache::GetZygoteSavedEntryPoint(ArtMethod* method) {
549 if (Runtime::Current()->IsUsingApexBootImageLocation() &&
550 // Currently only applies to boot classpath
551 method->GetDeclaringClass()->GetClassLoader() == nullptr) {
552 const void* entry_point = nullptr;
553 if (method->IsNative()) {
554 const void* code_ptr = GetJniStubCode(method);
555 if (code_ptr != nullptr) {
556 entry_point = OatQuickMethodHeader::FromCodePointer(code_ptr)->GetEntryPoint();
557 }
558 } else {
559 ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
560 if (profiling_info != nullptr) {
561 entry_point = profiling_info->GetSavedEntryPoint();
562 }
563 }
564 if (Runtime::Current()->IsZygote() || IsInZygoteExecSpace(entry_point)) {
565 return entry_point;
566 }
567 }
568 return nullptr;
569 }
570
571 class ScopedCodeCacheWrite : ScopedTrace {
572 public:
ScopedCodeCacheWrite(const JitCodeCache * const code_cache)573 explicit ScopedCodeCacheWrite(const JitCodeCache* const code_cache)
574 : ScopedTrace("ScopedCodeCacheWrite"),
575 code_cache_(code_cache) {
576 ScopedTrace trace("mprotect all");
577 const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping();
578 if (updatable_pages != nullptr) {
579 int prot = code_cache_->HasDualCodeMapping() ? kProtRW : kProtRWX;
580 CheckedCall(mprotect, "Cache +W", updatable_pages->Begin(), updatable_pages->Size(), prot);
581 }
582 }
583
~ScopedCodeCacheWrite()584 ~ScopedCodeCacheWrite() {
585 ScopedTrace trace("mprotect code");
586 const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping();
587 if (updatable_pages != nullptr) {
588 int prot = code_cache_->HasDualCodeMapping() ? kProtR : kProtRX;
589 CheckedCall(mprotect, "Cache -W", updatable_pages->Begin(), updatable_pages->Size(), prot);
590 }
591 }
592
593 private:
594 const JitCodeCache* const code_cache_;
595
596 DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite);
597 };
598
CommitCode(Thread * self,ArtMethod * method,uint8_t * stack_map,uint8_t * roots_data,const uint8_t * code,size_t code_size,size_t data_size,bool osr,const std::vector<Handle<mirror::Object>> & roots,bool has_should_deoptimize_flag,const ArenaSet<ArtMethod * > & cha_single_implementation_list)599 uint8_t* JitCodeCache::CommitCode(Thread* self,
600 ArtMethod* method,
601 uint8_t* stack_map,
602 uint8_t* roots_data,
603 const uint8_t* code,
604 size_t code_size,
605 size_t data_size,
606 bool osr,
607 const std::vector<Handle<mirror::Object>>& roots,
608 bool has_should_deoptimize_flag,
609 const ArenaSet<ArtMethod*>& cha_single_implementation_list) {
610 uint8_t* result = CommitCodeInternal(self,
611 method,
612 stack_map,
613 roots_data,
614 code,
615 code_size,
616 data_size,
617 osr,
618 roots,
619 has_should_deoptimize_flag,
620 cha_single_implementation_list);
621 if (result == nullptr) {
622 // Retry.
623 GarbageCollectCache(self);
624 result = CommitCodeInternal(self,
625 method,
626 stack_map,
627 roots_data,
628 code,
629 code_size,
630 data_size,
631 osr,
632 roots,
633 has_should_deoptimize_flag,
634 cha_single_implementation_list);
635 }
636 return result;
637 }
638
WaitForPotentialCollectionToComplete(Thread * self)639 bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) {
640 bool in_collection = false;
641 while (collection_in_progress_) {
642 in_collection = true;
643 lock_cond_.Wait(self);
644 }
645 return in_collection;
646 }
647
GetJitCodeAlignment()648 static size_t GetJitCodeAlignment() {
649 if (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kThumb2) {
650 // Some devices with 32-bit ARM kernels need additional JIT code alignment when using dual
651 // view JIT (b/132205399). The alignment returned here coincides with the typical ARM d-cache
652 // line (though the value should be probed ideally). Both the method header and code in the
653 // cache are aligned to this size. Anything less than 64-bytes exhibits the problem.
654 return 64;
655 }
656 return GetInstructionSetAlignment(kRuntimeISA);
657 }
658
FromCodeToAllocation(const void * code)659 static uintptr_t FromCodeToAllocation(const void* code) {
660 size_t alignment = GetJitCodeAlignment();
661 return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment);
662 }
663
ComputeRootTableSize(uint32_t number_of_roots)664 static uint32_t ComputeRootTableSize(uint32_t number_of_roots) {
665 return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>);
666 }
667
GetNumberOfRoots(const uint8_t * stack_map)668 static uint32_t GetNumberOfRoots(const uint8_t* stack_map) {
669 // The length of the table is stored just before the stack map (and therefore at the end of
670 // the table itself), in order to be able to fetch it from a `stack_map` pointer.
671 return reinterpret_cast<const uint32_t*>(stack_map)[-1];
672 }
673
FillRootTableLength(uint8_t * roots_data,uint32_t length)674 static void FillRootTableLength(uint8_t* roots_data, uint32_t length) {
675 // Store the length of the table at the end. This will allow fetching it from a `stack_map`
676 // pointer.
677 reinterpret_cast<uint32_t*>(roots_data)[length] = length;
678 }
679
FromStackMapToRoots(const uint8_t * stack_map_data)680 static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) {
681 return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data));
682 }
683
DCheckRootsAreValid(const std::vector<Handle<mirror::Object>> & roots)684 static void DCheckRootsAreValid(const std::vector<Handle<mirror::Object>>& roots)
685 REQUIRES(!Locks::intern_table_lock_) REQUIRES_SHARED(Locks::mutator_lock_) {
686 if (!kIsDebugBuild) {
687 return;
688 }
689 // Put all roots in `roots_data`.
690 for (Handle<mirror::Object> object : roots) {
691 // Ensure the string is strongly interned. b/32995596
692 if (object->IsString()) {
693 ObjPtr<mirror::String> str = object->AsString();
694 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
695 CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr);
696 }
697 }
698 }
699
FillRootTable(uint8_t * roots_data,const std::vector<Handle<mirror::Object>> & roots)700 void JitCodeCache::FillRootTable(uint8_t* roots_data,
701 const std::vector<Handle<mirror::Object>>& roots) {
702 GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
703 const uint32_t length = roots.size();
704 // Put all roots in `roots_data`.
705 for (uint32_t i = 0; i < length; ++i) {
706 ObjPtr<mirror::Object> object = roots[i].Get();
707 gc_roots[i] = GcRoot<mirror::Object>(object);
708 }
709 }
710
GetRootTable(const void * code_ptr,uint32_t * number_of_roots=nullptr)711 static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) {
712 OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
713 uint8_t* data = method_header->GetOptimizedCodeInfoPtr();
714 uint32_t roots = GetNumberOfRoots(data);
715 if (number_of_roots != nullptr) {
716 *number_of_roots = roots;
717 }
718 return data - ComputeRootTableSize(roots);
719 }
720
721 // Use a sentinel for marking entries in the JIT table that have been cleared.
722 // This helps diagnosing in case the compiled code tries to wrongly access such
723 // entries.
724 static mirror::Class* const weak_sentinel =
725 reinterpret_cast<mirror::Class*>(Context::kBadGprBase + 0xff);
726
727 // Helper for the GC to process a weak class in a JIT root table.
ProcessWeakClass(GcRoot<mirror::Class> * root_ptr,IsMarkedVisitor * visitor,mirror::Class * update)728 static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
729 IsMarkedVisitor* visitor,
730 mirror::Class* update)
731 REQUIRES_SHARED(Locks::mutator_lock_) {
732 // This does not need a read barrier because this is called by GC.
733 mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
734 if (cls != nullptr && cls != weak_sentinel) {
735 DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
736 // Look at the classloader of the class to know if it has been unloaded.
737 // This does not need a read barrier because this is called by GC.
738 ObjPtr<mirror::Object> class_loader =
739 cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
740 if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
741 // The class loader is live, update the entry if the class has moved.
742 mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
743 // Note that new_object can be null for CMS and newly allocated objects.
744 if (new_cls != nullptr && new_cls != cls) {
745 *root_ptr = GcRoot<mirror::Class>(new_cls);
746 }
747 } else {
748 // The class loader is not live, clear the entry.
749 *root_ptr = GcRoot<mirror::Class>(update);
750 }
751 }
752 }
753
SweepRootTables(IsMarkedVisitor * visitor)754 void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) {
755 MutexLock mu(Thread::Current(), lock_);
756 for (const auto& entry : method_code_map_) {
757 uint32_t number_of_roots = 0;
758 uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots);
759 GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
760 for (uint32_t i = 0; i < number_of_roots; ++i) {
761 // This does not need a read barrier because this is called by GC.
762 mirror::Object* object = roots[i].Read<kWithoutReadBarrier>();
763 if (object == nullptr || object == weak_sentinel) {
764 // entry got deleted in a previous sweep.
765 } else if (object->IsString<kDefaultVerifyFlags>()) {
766 mirror::Object* new_object = visitor->IsMarked(object);
767 // We know the string is marked because it's a strongly-interned string that
768 // is always alive. The IsMarked implementation of the CMS collector returns
769 // null for newly allocated objects, but we know those haven't moved. Therefore,
770 // only update the entry if we get a different non-null string.
771 // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method
772 // out of the weak access/creation pause. b/32167580
773 if (new_object != nullptr && new_object != object) {
774 DCHECK(new_object->IsString());
775 roots[i] = GcRoot<mirror::Object>(new_object);
776 }
777 } else {
778 ProcessWeakClass(
779 reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor, weak_sentinel);
780 }
781 }
782 }
783 // Walk over inline caches to clear entries containing unloaded classes.
784 for (ProfilingInfo* info : profiling_infos_) {
785 for (size_t i = 0; i < info->number_of_inline_caches_; ++i) {
786 InlineCache* cache = &info->cache_[i];
787 for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) {
788 ProcessWeakClass(&cache->classes_[j], visitor, nullptr);
789 }
790 }
791 }
792 }
793
FreeCodeAndData(const void * code_ptr)794 void JitCodeCache::FreeCodeAndData(const void* code_ptr) {
795 if (IsInZygoteExecSpace(code_ptr)) {
796 // No need to free, this is shared memory.
797 return;
798 }
799 uintptr_t allocation = FromCodeToAllocation(code_ptr);
800 // Notify native debugger that we are about to remove the code.
801 // It does nothing if we are not using native debugger.
802 RemoveNativeDebugInfoForJit(Thread::Current(), code_ptr);
803 if (OatQuickMethodHeader::FromCodePointer(code_ptr)->IsOptimized()) {
804 FreeData(GetRootTable(code_ptr));
805 } // else this is a JNI stub without any data.
806
807 uint8_t* code_allocation = reinterpret_cast<uint8_t*>(allocation);
808 if (HasDualCodeMapping()) {
809 code_allocation = TranslateAddress(code_allocation, exec_pages_, non_exec_pages_);
810 }
811
812 FreeCode(code_allocation);
813 }
814
FreeAllMethodHeaders(const std::unordered_set<OatQuickMethodHeader * > & method_headers)815 void JitCodeCache::FreeAllMethodHeaders(
816 const std::unordered_set<OatQuickMethodHeader*>& method_headers) {
817 // We need to remove entries in method_headers from CHA dependencies
818 // first since once we do FreeCode() below, the memory can be reused
819 // so it's possible for the same method_header to start representing
820 // different compile code.
821 MutexLock mu(Thread::Current(), lock_);
822 {
823 MutexLock mu2(Thread::Current(), *Locks::cha_lock_);
824 Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()
825 ->RemoveDependentsWithMethodHeaders(method_headers);
826 }
827
828 ScopedCodeCacheWrite scc(this);
829 for (const OatQuickMethodHeader* method_header : method_headers) {
830 FreeCodeAndData(method_header->GetCode());
831 }
832 }
833
RemoveMethodsIn(Thread * self,const LinearAlloc & alloc)834 void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) {
835 ScopedTrace trace(__PRETTY_FUNCTION__);
836 // We use a set to first collect all method_headers whose code need to be
837 // removed. We need to free the underlying code after we remove CHA dependencies
838 // for entries in this set. And it's more efficient to iterate through
839 // the CHA dependency map just once with an unordered_set.
840 std::unordered_set<OatQuickMethodHeader*> method_headers;
841 {
842 MutexLock mu(self, lock_);
843 // We do not check if a code cache GC is in progress, as this method comes
844 // with the classlinker_classes_lock_ held, and suspending ourselves could
845 // lead to a deadlock.
846 {
847 ScopedCodeCacheWrite scc(this);
848 for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) {
849 it->second.RemoveMethodsIn(alloc);
850 if (it->second.GetMethods().empty()) {
851 method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->second.GetCode()));
852 it = jni_stubs_map_.erase(it);
853 } else {
854 it->first.UpdateShorty(it->second.GetMethods().front());
855 ++it;
856 }
857 }
858 for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
859 if (alloc.ContainsUnsafe(it->second)) {
860 method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first));
861 it = method_code_map_.erase(it);
862 } else {
863 ++it;
864 }
865 }
866 }
867 for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) {
868 if (alloc.ContainsUnsafe(it->first)) {
869 // Note that the code has already been pushed to method_headers in the loop
870 // above and is going to be removed in FreeCode() below.
871 it = osr_code_map_.erase(it);
872 } else {
873 ++it;
874 }
875 }
876 for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) {
877 ProfilingInfo* info = *it;
878 if (alloc.ContainsUnsafe(info->GetMethod())) {
879 info->GetMethod()->SetProfilingInfo(nullptr);
880 FreeData(reinterpret_cast<uint8_t*>(info));
881 it = profiling_infos_.erase(it);
882 } else {
883 ++it;
884 }
885 }
886 }
887 FreeAllMethodHeaders(method_headers);
888 }
889
IsWeakAccessEnabled(Thread * self) const890 bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const {
891 return kUseReadBarrier
892 ? self->GetWeakRefAccessEnabled()
893 : is_weak_access_enabled_.load(std::memory_order_seq_cst);
894 }
895
WaitUntilInlineCacheAccessible(Thread * self)896 void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) {
897 if (IsWeakAccessEnabled(self)) {
898 return;
899 }
900 ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead);
901 MutexLock mu(self, lock_);
902 while (!IsWeakAccessEnabled(self)) {
903 inline_cache_cond_.Wait(self);
904 }
905 }
906
BroadcastForInlineCacheAccess()907 void JitCodeCache::BroadcastForInlineCacheAccess() {
908 Thread* self = Thread::Current();
909 MutexLock mu(self, lock_);
910 inline_cache_cond_.Broadcast(self);
911 }
912
AllowInlineCacheAccess()913 void JitCodeCache::AllowInlineCacheAccess() {
914 DCHECK(!kUseReadBarrier);
915 is_weak_access_enabled_.store(true, std::memory_order_seq_cst);
916 BroadcastForInlineCacheAccess();
917 }
918
DisallowInlineCacheAccess()919 void JitCodeCache::DisallowInlineCacheAccess() {
920 DCHECK(!kUseReadBarrier);
921 is_weak_access_enabled_.store(false, std::memory_order_seq_cst);
922 }
923
CopyInlineCacheInto(const InlineCache & ic,Handle<mirror::ObjectArray<mirror::Class>> array)924 void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic,
925 Handle<mirror::ObjectArray<mirror::Class>> array) {
926 WaitUntilInlineCacheAccessible(Thread::Current());
927 // Note that we don't need to lock `lock_` here, the compiler calling
928 // this method has already ensured the inline cache will not be deleted.
929 for (size_t in_cache = 0, in_array = 0;
930 in_cache < InlineCache::kIndividualCacheSize;
931 ++in_cache) {
932 mirror::Class* object = ic.classes_[in_cache].Read();
933 if (object != nullptr) {
934 array->Set(in_array++, object);
935 }
936 }
937 }
938
ClearMethodCounter(ArtMethod * method,bool was_warm)939 static void ClearMethodCounter(ArtMethod* method, bool was_warm)
940 REQUIRES_SHARED(Locks::mutator_lock_) {
941 if (was_warm) {
942 method->SetPreviouslyWarm();
943 }
944 // We reset the counter to 1 so that the profile knows that the method was executed at least once.
945 // This is required for layout purposes.
946 // We also need to make sure we'll pass the warmup threshold again, so we set to 0 if
947 // the warmup threshold is 1.
948 uint16_t jit_warmup_threshold = Runtime::Current()->GetJITOptions()->GetWarmupThreshold();
949 method->SetCounter(std::min(jit_warmup_threshold - 1, 1));
950 }
951
WaitForPotentialCollectionToCompleteRunnable(Thread * self)952 void JitCodeCache::WaitForPotentialCollectionToCompleteRunnable(Thread* self) {
953 while (collection_in_progress_) {
954 lock_.Unlock(self);
955 {
956 ScopedThreadSuspension sts(self, kSuspended);
957 MutexLock mu(self, lock_);
958 WaitForPotentialCollectionToComplete(self);
959 }
960 lock_.Lock(self);
961 }
962 }
963
GetUpdatableCodeMapping() const964 const MemMap* JitCodeCache::GetUpdatableCodeMapping() const {
965 if (HasDualCodeMapping()) {
966 return &non_exec_pages_;
967 } else if (HasCodeMapping()) {
968 return &exec_pages_;
969 } else {
970 return nullptr;
971 }
972 }
973
CommitCodeInternal(Thread * self,ArtMethod * method,uint8_t * stack_map,uint8_t * roots_data,const uint8_t * code,size_t code_size,size_t data_size,bool osr,const std::vector<Handle<mirror::Object>> & roots,bool has_should_deoptimize_flag,const ArenaSet<ArtMethod * > & cha_single_implementation_list)974 uint8_t* JitCodeCache::CommitCodeInternal(Thread* self,
975 ArtMethod* method,
976 uint8_t* stack_map,
977 uint8_t* roots_data,
978 const uint8_t* code,
979 size_t code_size,
980 size_t data_size,
981 bool osr,
982 const std::vector<Handle<mirror::Object>>& roots,
983 bool has_should_deoptimize_flag,
984 const ArenaSet<ArtMethod*>&
985 cha_single_implementation_list) {
986 DCHECK(!method->IsNative() || !osr);
987
988 if (!method->IsNative()) {
989 // We need to do this before grabbing the lock_ because it needs to be able to see the string
990 // InternTable. Native methods do not have roots.
991 DCheckRootsAreValid(roots);
992 }
993
994 OatQuickMethodHeader* method_header = nullptr;
995 uint8_t* nox_memory = nullptr;
996 uint8_t* code_ptr = nullptr;
997
998 MutexLock mu(self, lock_);
999 // We need to make sure that there will be no jit-gcs going on and wait for any ongoing one to
1000 // finish.
1001 WaitForPotentialCollectionToCompleteRunnable(self);
1002 {
1003 ScopedCodeCacheWrite scc(this);
1004
1005 size_t alignment = GetJitCodeAlignment();
1006 // Ensure the header ends up at expected instruction alignment.
1007 size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment);
1008 size_t total_size = header_size + code_size;
1009
1010 // AllocateCode allocates memory in non-executable region for alignment header and code. The
1011 // header size may include alignment padding.
1012 nox_memory = AllocateCode(total_size);
1013 if (nox_memory == nullptr) {
1014 return nullptr;
1015 }
1016
1017 // code_ptr points to non-executable code.
1018 code_ptr = nox_memory + header_size;
1019 std::copy(code, code + code_size, code_ptr);
1020 method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1021
1022 // From here code_ptr points to executable code.
1023 if (HasDualCodeMapping()) {
1024 code_ptr = TranslateAddress(code_ptr, non_exec_pages_, exec_pages_);
1025 }
1026
1027 new (method_header) OatQuickMethodHeader(
1028 (stack_map != nullptr) ? code_ptr - stack_map : 0u,
1029 code_size);
1030
1031 DCHECK(!Runtime::Current()->IsAotCompiler());
1032 if (has_should_deoptimize_flag) {
1033 method_header->SetHasShouldDeoptimizeFlag();
1034 }
1035
1036 // Update method_header pointer to executable code region.
1037 if (HasDualCodeMapping()) {
1038 method_header = TranslateAddress(method_header, non_exec_pages_, exec_pages_);
1039 }
1040
1041 // Both instruction and data caches need flushing to the point of unification where both share
1042 // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
1043 // newly added code are written out to the point of unification. Flushing the instruction
1044 // cache ensures the newly written code will be fetched from the point of unification before
1045 // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
1046 // prevent stale code from residing in the instruction cache.
1047 //
1048 // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
1049 // may trigger a segfault if a page fault occurs when requesting a cache maintenance
1050 // operation. This is a kernel bug that we need to work around until affected devices
1051 // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
1052 //
1053 // For reference, this behavior is caused by this commit:
1054 // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
1055 //
1056 bool cache_flush_success = true;
1057 if (HasDualCodeMapping()) {
1058 // Flush the data cache lines associated with the non-executable copy of the code just added.
1059 cache_flush_success = FlushCpuCaches(nox_memory, nox_memory + total_size);
1060 }
1061
1062 // Invalidate i-cache for the executable mapping.
1063 if (cache_flush_success) {
1064 uint8_t* x_memory = reinterpret_cast<uint8_t*>(FromCodeToAllocation(code_ptr));
1065 cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
1066 }
1067
1068 // If flushing the cache has failed, reject the allocation because we can't guarantee
1069 // correctness of the instructions present in the processor caches.
1070 if (!cache_flush_success) {
1071 PLOG(ERROR) << "Cache flush failed for JIT code, code not committed.";
1072 FreeCode(nox_memory);
1073 return nullptr;
1074 }
1075
1076 // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
1077 // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
1078 // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
1079 // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
1080 // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
1081 // hardware support that broadcasts TLB invalidations and so their kernels have no software
1082 // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
1083 // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
1084 // platforms lacking the appropriate support.
1085 art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
1086
1087 number_of_compilations_++;
1088 }
1089
1090 // We need to update the entry point in the runnable state for the instrumentation.
1091 {
1092 // The following needs to be guarded by cha_lock_ also. Otherwise it's possible that the
1093 // compiled code is considered invalidated by some class linking, but below we still make the
1094 // compiled code valid for the method. Need cha_lock_ for checking all single-implementation
1095 // flags and register dependencies.
1096 MutexLock cha_mu(self, *Locks::cha_lock_);
1097 bool single_impl_still_valid = true;
1098 for (ArtMethod* single_impl : cha_single_implementation_list) {
1099 if (!single_impl->HasSingleImplementation()) {
1100 // Simply discard the compiled code. Clear the counter so that it may be recompiled later.
1101 // Hopefully the class hierarchy will be more stable when compilation is retried.
1102 single_impl_still_valid = false;
1103 ClearMethodCounter(method, /*was_warm=*/ false);
1104 break;
1105 }
1106 }
1107
1108 // Discard the code if any single-implementation assumptions are now invalid.
1109 if (!single_impl_still_valid) {
1110 VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions.";
1111 return nullptr;
1112 }
1113 DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable())
1114 << "Should not be using cha on debuggable apps/runs!";
1115
1116 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1117 for (ArtMethod* single_impl : cha_single_implementation_list) {
1118 class_linker->GetClassHierarchyAnalysis()->AddDependency(single_impl, method, method_header);
1119 }
1120
1121 if (UNLIKELY(method->IsNative())) {
1122 auto it = jni_stubs_map_.find(JniStubKey(method));
1123 DCHECK(it != jni_stubs_map_.end())
1124 << "Entry inserted in NotifyCompilationOf() should be alive.";
1125 JniStubData* data = &it->second;
1126 DCHECK(ContainsElement(data->GetMethods(), method))
1127 << "Entry inserted in NotifyCompilationOf() should contain this method.";
1128 data->SetCode(code_ptr);
1129 instrumentation::Instrumentation* instrum = Runtime::Current()->GetInstrumentation();
1130 for (ArtMethod* m : data->GetMethods()) {
1131 if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) {
1132 instrum->UpdateMethodsCode(m, method_header->GetEntryPoint());
1133 }
1134 }
1135 } else {
1136 // Fill the root table before updating the entry point.
1137 DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data);
1138 DCHECK_LE(roots_data, stack_map);
1139 FillRootTable(roots_data, roots);
1140 {
1141 // Flush data cache, as compiled code references literals in it.
1142 // TODO(oth): establish whether this is necessary.
1143 if (!FlushCpuCaches(roots_data, roots_data + data_size)) {
1144 PLOG(ERROR) << "Cache flush failed for JIT data, code not committed.";
1145 ScopedCodeCacheWrite scc(this);
1146 FreeCode(nox_memory);
1147 return nullptr;
1148 }
1149 }
1150 method_code_map_.Put(code_ptr, method);
1151 if (osr) {
1152 number_of_osr_compilations_++;
1153 osr_code_map_.Put(method, code_ptr);
1154 } else if (class_linker->IsQuickResolutionStub(
1155 method->GetEntryPointFromQuickCompiledCode())) {
1156 // This situation currently only occurs in the jit-zygote mode.
1157 DCHECK(Runtime::Current()->IsZygote());
1158 DCHECK(Runtime::Current()->IsUsingApexBootImageLocation());
1159 DCHECK(method->GetProfilingInfo(kRuntimePointerSize) != nullptr);
1160 DCHECK(method->GetDeclaringClass()->GetClassLoader() == nullptr);
1161 // Save the entrypoint, so it can be fethed later once the class is
1162 // initialized.
1163 method->GetProfilingInfo(kRuntimePointerSize)->SetSavedEntryPoint(
1164 method_header->GetEntryPoint());
1165 } else {
1166 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
1167 method, method_header->GetEntryPoint());
1168 }
1169 }
1170 VLOG(jit)
1171 << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") "
1172 << ArtMethod::PrettyMethod(method) << "@" << method
1173 << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": "
1174 << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": "
1175 << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << ","
1176 << reinterpret_cast<const void*>(method_header->GetEntryPoint() +
1177 method_header->GetCodeSize());
1178 histogram_code_memory_use_.AddValue(code_size);
1179 if (code_size > kCodeSizeLogThreshold) {
1180 LOG(INFO) << "JIT allocated "
1181 << PrettySize(code_size)
1182 << " for compiled code of "
1183 << ArtMethod::PrettyMethod(method);
1184 }
1185 }
1186
1187 return reinterpret_cast<uint8_t*>(method_header);
1188 }
1189
CodeCacheSize()1190 size_t JitCodeCache::CodeCacheSize() {
1191 MutexLock mu(Thread::Current(), lock_);
1192 return CodeCacheSizeLocked();
1193 }
1194
RemoveMethod(ArtMethod * method,bool release_memory)1195 bool JitCodeCache::RemoveMethod(ArtMethod* method, bool release_memory) {
1196 // This function is used only for testing and only with non-native methods.
1197 CHECK(!method->IsNative());
1198
1199 MutexLock mu(Thread::Current(), lock_);
1200
1201 bool osr = osr_code_map_.find(method) != osr_code_map_.end();
1202 bool in_cache = RemoveMethodLocked(method, release_memory);
1203
1204 if (!in_cache) {
1205 return false;
1206 }
1207
1208 method->SetCounter(0);
1209 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
1210 method, GetQuickToInterpreterBridge());
1211 VLOG(jit)
1212 << "JIT removed (osr=" << std::boolalpha << osr << std::noboolalpha << ") "
1213 << ArtMethod::PrettyMethod(method) << "@" << method
1214 << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": "
1215 << " dcache_size=" << PrettySize(DataCacheSizeLocked());
1216 return true;
1217 }
1218
RemoveMethodLocked(ArtMethod * method,bool release_memory)1219 bool JitCodeCache::RemoveMethodLocked(ArtMethod* method, bool release_memory) {
1220 if (LIKELY(!method->IsNative())) {
1221 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
1222 if (info != nullptr) {
1223 RemoveElement(profiling_infos_, info);
1224 }
1225 method->SetProfilingInfo(nullptr);
1226 }
1227
1228 bool in_cache = false;
1229 ScopedCodeCacheWrite ccw(this);
1230 if (UNLIKELY(method->IsNative())) {
1231 auto it = jni_stubs_map_.find(JniStubKey(method));
1232 if (it != jni_stubs_map_.end() && it->second.RemoveMethod(method)) {
1233 in_cache = true;
1234 if (it->second.GetMethods().empty()) {
1235 if (release_memory) {
1236 FreeCodeAndData(it->second.GetCode());
1237 }
1238 jni_stubs_map_.erase(it);
1239 } else {
1240 it->first.UpdateShorty(it->second.GetMethods().front());
1241 }
1242 }
1243 } else {
1244 for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
1245 if (it->second == method) {
1246 in_cache = true;
1247 if (release_memory) {
1248 FreeCodeAndData(it->first);
1249 }
1250 it = method_code_map_.erase(it);
1251 } else {
1252 ++it;
1253 }
1254 }
1255
1256 auto osr_it = osr_code_map_.find(method);
1257 if (osr_it != osr_code_map_.end()) {
1258 osr_code_map_.erase(osr_it);
1259 }
1260 }
1261
1262 return in_cache;
1263 }
1264
1265 // This notifies the code cache that the given method has been redefined and that it should remove
1266 // any cached information it has on the method. All threads must be suspended before calling this
1267 // method. The compiled code for the method (if there is any) must not be in any threads call stack.
NotifyMethodRedefined(ArtMethod * method)1268 void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) {
1269 MutexLock mu(Thread::Current(), lock_);
1270 RemoveMethodLocked(method, /* release_memory= */ true);
1271 }
1272
1273 // This invalidates old_method. Once this function returns one can no longer use old_method to
1274 // execute code unless it is fixed up. This fixup will happen later in the process of installing a
1275 // class redefinition.
1276 // TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and
1277 // shouldn't be used since it is no longer logically in the jit code cache.
1278 // TODO We should add DCHECKS that validate that the JIT is paused when this method is entered.
MoveObsoleteMethod(ArtMethod * old_method,ArtMethod * new_method)1279 void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) {
1280 MutexLock mu(Thread::Current(), lock_);
1281 if (old_method->IsNative()) {
1282 // Update methods in jni_stubs_map_.
1283 for (auto& entry : jni_stubs_map_) {
1284 JniStubData& data = entry.second;
1285 data.MoveObsoleteMethod(old_method, new_method);
1286 }
1287 return;
1288 }
1289 // Update ProfilingInfo to the new one and remove it from the old_method.
1290 if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) {
1291 DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method);
1292 ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize);
1293 old_method->SetProfilingInfo(nullptr);
1294 // Since the JIT should be paused and all threads suspended by the time this is called these
1295 // checks should always pass.
1296 DCHECK(!info->IsInUseByCompiler());
1297 new_method->SetProfilingInfo(info);
1298 // Get rid of the old saved entrypoint if it is there.
1299 info->SetSavedEntryPoint(nullptr);
1300 info->method_ = new_method;
1301 }
1302 // Update method_code_map_ to point to the new method.
1303 for (auto& it : method_code_map_) {
1304 if (it.second == old_method) {
1305 it.second = new_method;
1306 }
1307 }
1308 // Update osr_code_map_ to point to the new method.
1309 auto code_map = osr_code_map_.find(old_method);
1310 if (code_map != osr_code_map_.end()) {
1311 osr_code_map_.Put(new_method, code_map->second);
1312 osr_code_map_.erase(old_method);
1313 }
1314 }
1315
ClearEntryPointsInZygoteExecSpace()1316 void JitCodeCache::ClearEntryPointsInZygoteExecSpace() {
1317 MutexLock mu(Thread::Current(), lock_);
1318 // Iterate over profiling infos to know which methods may have been JITted. Note that
1319 // to be JITted, a method must have a profiling info.
1320 for (ProfilingInfo* info : profiling_infos_) {
1321 ArtMethod* method = info->GetMethod();
1322 if (IsInZygoteExecSpace(method->GetEntryPointFromQuickCompiledCode())) {
1323 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
1324 }
1325 // If zygote does method tracing, or in some configuration where
1326 // the JIT zygote does GC, we also need to clear the saved entry point
1327 // in the profiling info.
1328 if (IsInZygoteExecSpace(info->GetSavedEntryPoint())) {
1329 info->SetSavedEntryPoint(nullptr);
1330 }
1331 }
1332 }
1333
CodeCacheSizeLocked()1334 size_t JitCodeCache::CodeCacheSizeLocked() {
1335 return used_memory_for_code_;
1336 }
1337
DataCacheSize()1338 size_t JitCodeCache::DataCacheSize() {
1339 MutexLock mu(Thread::Current(), lock_);
1340 return DataCacheSizeLocked();
1341 }
1342
DataCacheSizeLocked()1343 size_t JitCodeCache::DataCacheSizeLocked() {
1344 return used_memory_for_data_;
1345 }
1346
ClearData(Thread * self,uint8_t * stack_map_data,uint8_t * roots_data)1347 void JitCodeCache::ClearData(Thread* self,
1348 uint8_t* stack_map_data,
1349 uint8_t* roots_data) {
1350 DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data);
1351 MutexLock mu(self, lock_);
1352 FreeData(reinterpret_cast<uint8_t*>(roots_data));
1353 }
1354
ReserveData(Thread * self,size_t stack_map_size,size_t number_of_roots,ArtMethod * method,uint8_t ** stack_map_data,uint8_t ** roots_data)1355 size_t JitCodeCache::ReserveData(Thread* self,
1356 size_t stack_map_size,
1357 size_t number_of_roots,
1358 ArtMethod* method,
1359 uint8_t** stack_map_data,
1360 uint8_t** roots_data) {
1361 size_t table_size = ComputeRootTableSize(number_of_roots);
1362 size_t size = RoundUp(stack_map_size + table_size, sizeof(void*));
1363 uint8_t* result = nullptr;
1364
1365 {
1366 ScopedThreadSuspension sts(self, kSuspended);
1367 MutexLock mu(self, lock_);
1368 WaitForPotentialCollectionToComplete(self);
1369 result = AllocateData(size);
1370 }
1371
1372 if (result == nullptr) {
1373 // Retry.
1374 GarbageCollectCache(self);
1375 ScopedThreadSuspension sts(self, kSuspended);
1376 MutexLock mu(self, lock_);
1377 WaitForPotentialCollectionToComplete(self);
1378 result = AllocateData(size);
1379 }
1380
1381 MutexLock mu(self, lock_);
1382 histogram_stack_map_memory_use_.AddValue(size);
1383 if (size > kStackMapSizeLogThreshold) {
1384 LOG(INFO) << "JIT allocated "
1385 << PrettySize(size)
1386 << " for stack maps of "
1387 << ArtMethod::PrettyMethod(method);
1388 }
1389 if (result != nullptr) {
1390 *roots_data = result;
1391 *stack_map_data = result + table_size;
1392 FillRootTableLength(*roots_data, number_of_roots);
1393 return size;
1394 } else {
1395 *roots_data = nullptr;
1396 *stack_map_data = nullptr;
1397 return 0;
1398 }
1399 }
1400
1401 class MarkCodeClosure final : public Closure {
1402 public:
MarkCodeClosure(JitCodeCache * code_cache,CodeCacheBitmap * bitmap,Barrier * barrier)1403 MarkCodeClosure(JitCodeCache* code_cache, CodeCacheBitmap* bitmap, Barrier* barrier)
1404 : code_cache_(code_cache), bitmap_(bitmap), barrier_(barrier) {}
1405
Run(Thread * thread)1406 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
1407 ScopedTrace trace(__PRETTY_FUNCTION__);
1408 DCHECK(thread == Thread::Current() || thread->IsSuspended());
1409 StackVisitor::WalkStack(
1410 [&](const art::StackVisitor* stack_visitor) {
1411 const OatQuickMethodHeader* method_header =
1412 stack_visitor->GetCurrentOatQuickMethodHeader();
1413 if (method_header == nullptr) {
1414 return true;
1415 }
1416 const void* code = method_header->GetCode();
1417 if (code_cache_->ContainsPc(code) && !code_cache_->IsInZygoteExecSpace(code)) {
1418 // Use the atomic set version, as multiple threads are executing this code.
1419 bitmap_->AtomicTestAndSet(FromCodeToAllocation(code));
1420 }
1421 return true;
1422 },
1423 thread,
1424 /* context= */ nullptr,
1425 art::StackVisitor::StackWalkKind::kSkipInlinedFrames);
1426
1427 if (kIsDebugBuild) {
1428 // The stack walking code queries the side instrumentation stack if it
1429 // sees an instrumentation exit pc, so the JIT code of methods in that stack
1430 // must have been seen. We sanity check this below.
1431 for (const instrumentation::InstrumentationStackFrame& frame
1432 : *thread->GetInstrumentationStack()) {
1433 // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in
1434 // its stack frame, it is not the method owning return_pc_. We just pass null to
1435 // LookupMethodHeader: the method is only checked against in debug builds.
1436 OatQuickMethodHeader* method_header =
1437 code_cache_->LookupMethodHeader(frame.return_pc_, /* method= */ nullptr);
1438 if (method_header != nullptr) {
1439 const void* code = method_header->GetCode();
1440 CHECK(bitmap_->Test(FromCodeToAllocation(code)));
1441 }
1442 }
1443 }
1444 barrier_->Pass(Thread::Current());
1445 }
1446
1447 private:
1448 JitCodeCache* const code_cache_;
1449 CodeCacheBitmap* const bitmap_;
1450 Barrier* const barrier_;
1451 };
1452
NotifyCollectionDone(Thread * self)1453 void JitCodeCache::NotifyCollectionDone(Thread* self) {
1454 collection_in_progress_ = false;
1455 lock_cond_.Broadcast(self);
1456 }
1457
SetFootprintLimit(size_t new_footprint)1458 void JitCodeCache::SetFootprintLimit(size_t new_footprint) {
1459 size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
1460 DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
1461 DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
1462 mspace_set_footprint_limit(data_mspace_, data_space_footprint);
1463 if (HasCodeMapping()) {
1464 ScopedCodeCacheWrite scc(this);
1465 mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
1466 }
1467 }
1468
IncreaseCodeCacheCapacity()1469 bool JitCodeCache::IncreaseCodeCacheCapacity() {
1470 if (current_capacity_ == max_capacity_) {
1471 return false;
1472 }
1473
1474 // Double the capacity if we're below 1MB, or increase it by 1MB if
1475 // we're above.
1476 if (current_capacity_ < 1 * MB) {
1477 current_capacity_ *= 2;
1478 } else {
1479 current_capacity_ += 1 * MB;
1480 }
1481 if (current_capacity_ > max_capacity_) {
1482 current_capacity_ = max_capacity_;
1483 }
1484
1485 VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
1486
1487 SetFootprintLimit(current_capacity_);
1488
1489 return true;
1490 }
1491
MarkCompiledCodeOnThreadStacks(Thread * self)1492 void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) {
1493 Barrier barrier(0);
1494 size_t threads_running_checkpoint = 0;
1495 MarkCodeClosure closure(this, GetLiveBitmap(), &barrier);
1496 threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1497 // Now that we have run our checkpoint, move to a suspended state and wait
1498 // for other threads to run the checkpoint.
1499 ScopedThreadSuspension sts(self, kSuspended);
1500 if (threads_running_checkpoint != 0) {
1501 barrier.Increment(self, threads_running_checkpoint);
1502 }
1503 }
1504
ShouldDoFullCollection()1505 bool JitCodeCache::ShouldDoFullCollection() {
1506 if (current_capacity_ == max_capacity_) {
1507 // Always do a full collection when the code cache is full.
1508 return true;
1509 } else if (current_capacity_ < kReservedCapacity) {
1510 // Always do partial collection when the code cache size is below the reserved
1511 // capacity.
1512 return false;
1513 } else if (last_collection_increased_code_cache_) {
1514 // This time do a full collection.
1515 return true;
1516 } else {
1517 // This time do a partial collection.
1518 return false;
1519 }
1520 }
1521
GarbageCollectCache(Thread * self)1522 void JitCodeCache::GarbageCollectCache(Thread* self) {
1523 ScopedTrace trace(__FUNCTION__);
1524 // Wait for an existing collection, or let everyone know we are starting one.
1525 {
1526 ScopedThreadSuspension sts(self, kSuspended);
1527 MutexLock mu(self, lock_);
1528 if (!garbage_collect_code_) {
1529 IncreaseCodeCacheCapacity();
1530 return;
1531 } else if (WaitForPotentialCollectionToComplete(self)) {
1532 return;
1533 } else {
1534 number_of_collections_++;
1535 live_bitmap_.reset(CodeCacheBitmap::Create(
1536 "code-cache-bitmap",
1537 reinterpret_cast<uintptr_t>(exec_pages_.Begin()),
1538 reinterpret_cast<uintptr_t>(exec_pages_.Begin() + current_capacity_ / 2)));
1539 collection_in_progress_ = true;
1540 }
1541 }
1542
1543 TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit));
1544 {
1545 TimingLogger::ScopedTiming st("Code cache collection", &logger);
1546
1547 bool do_full_collection = false;
1548 {
1549 MutexLock mu(self, lock_);
1550 do_full_collection = ShouldDoFullCollection();
1551 }
1552
1553 VLOG(jit) << "Do "
1554 << (do_full_collection ? "full" : "partial")
1555 << " code cache collection, code="
1556 << PrettySize(CodeCacheSize())
1557 << ", data=" << PrettySize(DataCacheSize());
1558
1559 DoCollection(self, /* collect_profiling_info= */ do_full_collection);
1560
1561 VLOG(jit) << "After code cache collection, code="
1562 << PrettySize(CodeCacheSize())
1563 << ", data=" << PrettySize(DataCacheSize());
1564
1565 {
1566 MutexLock mu(self, lock_);
1567
1568 // Increase the code cache only when we do partial collections.
1569 // TODO: base this strategy on how full the code cache is?
1570 if (do_full_collection) {
1571 last_collection_increased_code_cache_ = false;
1572 } else {
1573 last_collection_increased_code_cache_ = true;
1574 IncreaseCodeCacheCapacity();
1575 }
1576
1577 bool next_collection_will_be_full = ShouldDoFullCollection();
1578
1579 // Start polling the liveness of compiled code to prepare for the next full collection.
1580 if (next_collection_will_be_full) {
1581 // Save the entry point of methods we have compiled, and update the entry
1582 // point of those methods to the interpreter. If the method is invoked, the
1583 // interpreter will update its entry point to the compiled code and call it.
1584 for (ProfilingInfo* info : profiling_infos_) {
1585 const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
1586 if (!IsInZygoteDataSpace(info) && ContainsPc(entry_point)) {
1587 info->SetSavedEntryPoint(entry_point);
1588 // Don't call Instrumentation::UpdateMethodsCode(), as it can check the declaring
1589 // class of the method. We may be concurrently running a GC which makes accessing
1590 // the class unsafe. We know it is OK to bypass the instrumentation as we've just
1591 // checked that the current entry point is JIT compiled code.
1592 info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
1593 }
1594 }
1595
1596 DCHECK(CheckLiveCompiledCodeHasProfilingInfo());
1597
1598 // Change entry points of native methods back to the GenericJNI entrypoint.
1599 for (const auto& entry : jni_stubs_map_) {
1600 const JniStubData& data = entry.second;
1601 if (!data.IsCompiled() || IsInZygoteExecSpace(data.GetCode())) {
1602 continue;
1603 }
1604 // Make sure a single invocation of the GenericJNI trampoline tries to recompile.
1605 uint16_t new_counter = Runtime::Current()->GetJit()->HotMethodThreshold() - 1u;
1606 const OatQuickMethodHeader* method_header =
1607 OatQuickMethodHeader::FromCodePointer(data.GetCode());
1608 for (ArtMethod* method : data.GetMethods()) {
1609 if (method->GetEntryPointFromQuickCompiledCode() == method_header->GetEntryPoint()) {
1610 // Don't call Instrumentation::UpdateMethodsCode(), same as for normal methods above.
1611 method->SetCounter(new_counter);
1612 method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
1613 }
1614 }
1615 }
1616 }
1617 live_bitmap_.reset(nullptr);
1618 NotifyCollectionDone(self);
1619 }
1620 }
1621 Runtime::Current()->GetJit()->AddTimingLogger(logger);
1622 }
1623
RemoveUnmarkedCode(Thread * self)1624 void JitCodeCache::RemoveUnmarkedCode(Thread* self) {
1625 ScopedTrace trace(__FUNCTION__);
1626 std::unordered_set<OatQuickMethodHeader*> method_headers;
1627 {
1628 MutexLock mu(self, lock_);
1629 ScopedCodeCacheWrite scc(this);
1630 // Iterate over all compiled code and remove entries that are not marked.
1631 for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) {
1632 JniStubData* data = &it->second;
1633 if (IsInZygoteExecSpace(data->GetCode()) ||
1634 !data->IsCompiled() ||
1635 GetLiveBitmap()->Test(FromCodeToAllocation(data->GetCode()))) {
1636 ++it;
1637 } else {
1638 method_headers.insert(OatQuickMethodHeader::FromCodePointer(data->GetCode()));
1639 it = jni_stubs_map_.erase(it);
1640 }
1641 }
1642 for (auto it = method_code_map_.begin(); it != method_code_map_.end();) {
1643 const void* code_ptr = it->first;
1644 uintptr_t allocation = FromCodeToAllocation(code_ptr);
1645 if (IsInZygoteExecSpace(code_ptr) || GetLiveBitmap()->Test(allocation)) {
1646 ++it;
1647 } else {
1648 OatQuickMethodHeader* header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1649 method_headers.insert(header);
1650 it = method_code_map_.erase(it);
1651 }
1652 }
1653 }
1654 FreeAllMethodHeaders(method_headers);
1655 }
1656
GetGarbageCollectCode()1657 bool JitCodeCache::GetGarbageCollectCode() {
1658 MutexLock mu(Thread::Current(), lock_);
1659 return garbage_collect_code_;
1660 }
1661
SetGarbageCollectCode(bool value)1662 void JitCodeCache::SetGarbageCollectCode(bool value) {
1663 Thread* self = Thread::Current();
1664 MutexLock mu(self, lock_);
1665 if (garbage_collect_code_ != value) {
1666 if (garbage_collect_code_) {
1667 // When dynamically disabling the garbage collection, we neee
1668 // to make sure that a potential current collection is finished, and also
1669 // clear the saved entry point in profiling infos to avoid dangling pointers.
1670 WaitForPotentialCollectionToComplete(self);
1671 for (ProfilingInfo* info : profiling_infos_) {
1672 info->SetSavedEntryPoint(nullptr);
1673 }
1674 }
1675 // Update the flag while holding the lock to ensure no thread will try to GC.
1676 garbage_collect_code_ = value;
1677 }
1678 }
1679
DoCollection(Thread * self,bool collect_profiling_info)1680 void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) {
1681 ScopedTrace trace(__FUNCTION__);
1682 {
1683 MutexLock mu(self, lock_);
1684 if (collect_profiling_info) {
1685 // Clear the profiling info of methods that do not have compiled code as entrypoint.
1686 // Also remove the saved entry point from the ProfilingInfo objects.
1687 for (ProfilingInfo* info : profiling_infos_) {
1688 const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
1689 if (!ContainsPc(ptr) && !info->IsInUseByCompiler() && !IsInZygoteDataSpace(info)) {
1690 info->GetMethod()->SetProfilingInfo(nullptr);
1691 }
1692
1693 if (info->GetSavedEntryPoint() != nullptr) {
1694 info->SetSavedEntryPoint(nullptr);
1695 // We are going to move this method back to interpreter. Clear the counter now to
1696 // give it a chance to be hot again.
1697 ClearMethodCounter(info->GetMethod(), /*was_warm=*/ true);
1698 }
1699 }
1700 } else if (kIsDebugBuild) {
1701 // Sanity check that the profiling infos do not have a dangling entry point.
1702 for (ProfilingInfo* info : profiling_infos_) {
1703 DCHECK(!Runtime::Current()->IsZygote());
1704 const void* entry_point = info->GetSavedEntryPoint();
1705 DCHECK(entry_point == nullptr || IsInZygoteExecSpace(entry_point));
1706 }
1707 }
1708
1709 // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not
1710 // an entry point is either:
1711 // - an osr compiled code, that will be removed if not in a thread call stack.
1712 // - discarded compiled code, that will be removed if not in a thread call stack.
1713 for (const auto& entry : jni_stubs_map_) {
1714 const JniStubData& data = entry.second;
1715 const void* code_ptr = data.GetCode();
1716 if (IsInZygoteExecSpace(code_ptr)) {
1717 continue;
1718 }
1719 const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1720 for (ArtMethod* method : data.GetMethods()) {
1721 if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
1722 GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr));
1723 break;
1724 }
1725 }
1726 }
1727 for (const auto& it : method_code_map_) {
1728 ArtMethod* method = it.second;
1729 const void* code_ptr = it.first;
1730 if (IsInZygoteExecSpace(code_ptr)) {
1731 continue;
1732 }
1733 const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1734 if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
1735 GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr));
1736 }
1737 }
1738
1739 // Empty osr method map, as osr compiled code will be deleted (except the ones
1740 // on thread stacks).
1741 osr_code_map_.clear();
1742 }
1743
1744 // Run a checkpoint on all threads to mark the JIT compiled code they are running.
1745 MarkCompiledCodeOnThreadStacks(self);
1746
1747 // At this point, mutator threads are still running, and entrypoints of methods can
1748 // change. We do know they cannot change to a code cache entry that is not marked,
1749 // therefore we can safely remove those entries.
1750 RemoveUnmarkedCode(self);
1751
1752 if (collect_profiling_info) {
1753 MutexLock mu(self, lock_);
1754 // Free all profiling infos of methods not compiled nor being compiled.
1755 auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(),
1756 [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS {
1757 const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode();
1758 // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope
1759 // that the compiled code would not get revived. As mutator threads run concurrently,
1760 // they may have revived the compiled code, and now we are in the situation where
1761 // a method has compiled code but no ProfilingInfo.
1762 // We make sure compiled methods have a ProfilingInfo object. It is needed for
1763 // code cache collection.
1764 if (ContainsPc(ptr) &&
1765 info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) {
1766 info->GetMethod()->SetProfilingInfo(info);
1767 } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) {
1768 // No need for this ProfilingInfo object anymore.
1769 FreeData(reinterpret_cast<uint8_t*>(info));
1770 return true;
1771 }
1772 return false;
1773 });
1774 profiling_infos_.erase(profiling_kept_end, profiling_infos_.end());
1775 DCHECK(CheckLiveCompiledCodeHasProfilingInfo());
1776 }
1777 }
1778
CheckLiveCompiledCodeHasProfilingInfo()1779 bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() {
1780 ScopedTrace trace(__FUNCTION__);
1781 // Check that methods we have compiled do have a ProfilingInfo object. We would
1782 // have memory leaks of compiled code otherwise.
1783 for (const auto& it : method_code_map_) {
1784 ArtMethod* method = it.second;
1785 if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) {
1786 const void* code_ptr = it.first;
1787 const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1788 if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) {
1789 // If the code is not dead, then we have a problem. Note that this can even
1790 // happen just after a collection, as mutator threads are running in parallel
1791 // and could deoptimize an existing compiled code.
1792 return false;
1793 }
1794 }
1795 }
1796 return true;
1797 }
1798
LookupMethodHeader(uintptr_t pc,ArtMethod * method)1799 OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) {
1800 static_assert(kRuntimeISA != InstructionSet::kThumb2, "kThumb2 cannot be a runtime ISA");
1801 if (kRuntimeISA == InstructionSet::kArm) {
1802 // On Thumb-2, the pc is offset by one.
1803 --pc;
1804 }
1805 if (!ContainsPc(reinterpret_cast<const void*>(pc))) {
1806 return nullptr;
1807 }
1808
1809 if (!kIsDebugBuild) {
1810 // Called with null `method` only from MarkCodeClosure::Run() in debug build.
1811 CHECK(method != nullptr);
1812 }
1813
1814 MutexLock mu(Thread::Current(), lock_);
1815 OatQuickMethodHeader* method_header = nullptr;
1816 ArtMethod* found_method = nullptr; // Only for DCHECK(), not for JNI stubs.
1817 if (method != nullptr && UNLIKELY(method->IsNative())) {
1818 auto it = jni_stubs_map_.find(JniStubKey(method));
1819 if (it == jni_stubs_map_.end() || !ContainsElement(it->second.GetMethods(), method)) {
1820 return nullptr;
1821 }
1822 const void* code_ptr = it->second.GetCode();
1823 method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1824 if (!method_header->Contains(pc)) {
1825 return nullptr;
1826 }
1827 } else {
1828 auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc));
1829 if (it != method_code_map_.begin()) {
1830 --it;
1831 const void* code_ptr = it->first;
1832 if (OatQuickMethodHeader::FromCodePointer(code_ptr)->Contains(pc)) {
1833 method_header = OatQuickMethodHeader::FromCodePointer(code_ptr);
1834 found_method = it->second;
1835 }
1836 }
1837 if (method_header == nullptr && method == nullptr) {
1838 // Scan all compiled JNI stubs as well. This slow search is used only
1839 // for checks in debug build, for release builds the `method` is not null.
1840 for (auto&& entry : jni_stubs_map_) {
1841 const JniStubData& data = entry.second;
1842 if (data.IsCompiled() &&
1843 OatQuickMethodHeader::FromCodePointer(data.GetCode())->Contains(pc)) {
1844 method_header = OatQuickMethodHeader::FromCodePointer(data.GetCode());
1845 }
1846 }
1847 }
1848 if (method_header == nullptr) {
1849 return nullptr;
1850 }
1851 }
1852
1853 if (kIsDebugBuild && method != nullptr && !method->IsNative()) {
1854 // When we are walking the stack to redefine classes and creating obsolete methods it is
1855 // possible that we might have updated the method_code_map by making this method obsolete in a
1856 // previous frame. Therefore we should just check that the non-obsolete version of this method
1857 // is the one we expect. We change to the non-obsolete versions in the error message since the
1858 // obsolete version of the method might not be fully initialized yet. This situation can only
1859 // occur when we are in the process of allocating and setting up obsolete methods. Otherwise
1860 // method and it->second should be identical. (See openjdkjvmti/ti_redefine.cc for more
1861 // information.)
1862 DCHECK_EQ(found_method->GetNonObsoleteMethod(), method->GetNonObsoleteMethod())
1863 << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " "
1864 << ArtMethod::PrettyMethod(found_method->GetNonObsoleteMethod()) << " "
1865 << std::hex << pc;
1866 }
1867 return method_header;
1868 }
1869
LookupOsrMethodHeader(ArtMethod * method)1870 OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) {
1871 MutexLock mu(Thread::Current(), lock_);
1872 auto it = osr_code_map_.find(method);
1873 if (it == osr_code_map_.end()) {
1874 return nullptr;
1875 }
1876 return OatQuickMethodHeader::FromCodePointer(it->second);
1877 }
1878
AddProfilingInfo(Thread * self,ArtMethod * method,const std::vector<uint32_t> & entries,bool retry_allocation)1879 ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self,
1880 ArtMethod* method,
1881 const std::vector<uint32_t>& entries,
1882 bool retry_allocation)
1883 // No thread safety analysis as we are using TryLock/Unlock explicitly.
1884 NO_THREAD_SAFETY_ANALYSIS {
1885 ProfilingInfo* info = nullptr;
1886 if (!retry_allocation) {
1887 // If we are allocating for the interpreter, just try to lock, to avoid
1888 // lock contention with the JIT.
1889 if (lock_.ExclusiveTryLock(self)) {
1890 info = AddProfilingInfoInternal(self, method, entries);
1891 lock_.ExclusiveUnlock(self);
1892 }
1893 } else {
1894 {
1895 MutexLock mu(self, lock_);
1896 info = AddProfilingInfoInternal(self, method, entries);
1897 }
1898
1899 if (info == nullptr) {
1900 GarbageCollectCache(self);
1901 MutexLock mu(self, lock_);
1902 info = AddProfilingInfoInternal(self, method, entries);
1903 }
1904 }
1905 return info;
1906 }
1907
AddProfilingInfoInternal(Thread * self ATTRIBUTE_UNUSED,ArtMethod * method,const std::vector<uint32_t> & entries)1908 ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED,
1909 ArtMethod* method,
1910 const std::vector<uint32_t>& entries) {
1911 size_t profile_info_size = RoundUp(
1912 sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(),
1913 sizeof(void*));
1914
1915 // Check whether some other thread has concurrently created it.
1916 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
1917 if (info != nullptr) {
1918 return info;
1919 }
1920
1921 uint8_t* data = AllocateData(profile_info_size);
1922 if (data == nullptr) {
1923 return nullptr;
1924 }
1925 info = new (data) ProfilingInfo(method, entries);
1926
1927 // Make sure other threads see the data in the profiling info object before the
1928 // store in the ArtMethod's ProfilingInfo pointer.
1929 std::atomic_thread_fence(std::memory_order_release);
1930
1931 method->SetProfilingInfo(info);
1932 profiling_infos_.push_back(info);
1933 histogram_profiling_info_memory_use_.AddValue(profile_info_size);
1934 return info;
1935 }
1936
1937 // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
1938 // is already held.
MoreCore(const void * mspace,intptr_t increment)1939 void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
1940 if (mspace == exec_mspace_) {
1941 DCHECK(exec_mspace_ != nullptr);
1942 const MemMap* const code_pages = GetUpdatableCodeMapping();
1943 void* result = code_pages->Begin() + exec_end_;
1944 exec_end_ += increment;
1945 return result;
1946 } else {
1947 DCHECK_EQ(data_mspace_, mspace);
1948 void* result = data_pages_.Begin() + data_end_;
1949 data_end_ += increment;
1950 return result;
1951 }
1952 }
1953
GetProfiledMethods(const std::set<std::string> & dex_base_locations,std::vector<ProfileMethodInfo> & methods)1954 void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations,
1955 std::vector<ProfileMethodInfo>& methods) {
1956 Thread* self = Thread::Current();
1957 WaitUntilInlineCacheAccessible(self);
1958 MutexLock mu(self, lock_);
1959 ScopedTrace trace(__FUNCTION__);
1960 uint16_t jit_compile_threshold = Runtime::Current()->GetJITOptions()->GetCompileThreshold();
1961 for (const ProfilingInfo* info : profiling_infos_) {
1962 ArtMethod* method = info->GetMethod();
1963 const DexFile* dex_file = method->GetDexFile();
1964 const std::string base_location = DexFileLoader::GetBaseLocation(dex_file->GetLocation());
1965 if (!ContainsElement(dex_base_locations, base_location)) {
1966 // Skip dex files which are not profiled.
1967 continue;
1968 }
1969 std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches;
1970
1971 // If the method didn't reach the compilation threshold don't save the inline caches.
1972 // They might be incomplete and cause unnecessary deoptimizations.
1973 // If the inline cache is empty the compiler will generate a regular invoke virtual/interface.
1974 if (method->GetCounter() < jit_compile_threshold) {
1975 methods.emplace_back(/*ProfileMethodInfo*/
1976 MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches);
1977 continue;
1978 }
1979
1980 for (size_t i = 0; i < info->number_of_inline_caches_; ++i) {
1981 std::vector<TypeReference> profile_classes;
1982 const InlineCache& cache = info->cache_[i];
1983 ArtMethod* caller = info->GetMethod();
1984 bool is_missing_types = false;
1985 for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) {
1986 mirror::Class* cls = cache.classes_[k].Read();
1987 if (cls == nullptr) {
1988 break;
1989 }
1990
1991 // Check if the receiver is in the boot class path or if it's in the
1992 // same class loader as the caller. If not, skip it, as there is not
1993 // much we can do during AOT.
1994 if (!cls->IsBootStrapClassLoaded() &&
1995 caller->GetClassLoader() != cls->GetClassLoader()) {
1996 is_missing_types = true;
1997 continue;
1998 }
1999
2000 const DexFile* class_dex_file = nullptr;
2001 dex::TypeIndex type_index;
2002
2003 if (cls->GetDexCache() == nullptr) {
2004 DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
2005 // Make a best effort to find the type index in the method's dex file.
2006 // We could search all open dex files but that might turn expensive
2007 // and probably not worth it.
2008 class_dex_file = dex_file;
2009 type_index = cls->FindTypeIndexInOtherDexFile(*dex_file);
2010 } else {
2011 class_dex_file = &(cls->GetDexFile());
2012 type_index = cls->GetDexTypeIndex();
2013 }
2014 if (!type_index.IsValid()) {
2015 // Could be a proxy class or an array for which we couldn't find the type index.
2016 is_missing_types = true;
2017 continue;
2018 }
2019 if (ContainsElement(dex_base_locations,
2020 DexFileLoader::GetBaseLocation(class_dex_file->GetLocation()))) {
2021 // Only consider classes from the same apk (including multidex).
2022 profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/
2023 class_dex_file, type_index);
2024 } else {
2025 is_missing_types = true;
2026 }
2027 }
2028 if (!profile_classes.empty()) {
2029 inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/
2030 cache.dex_pc_, is_missing_types, profile_classes);
2031 }
2032 }
2033 methods.emplace_back(/*ProfileMethodInfo*/
2034 MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches);
2035 }
2036 }
2037
IsOsrCompiled(ArtMethod * method)2038 bool JitCodeCache::IsOsrCompiled(ArtMethod* method) {
2039 MutexLock mu(Thread::Current(), lock_);
2040 return osr_code_map_.find(method) != osr_code_map_.end();
2041 }
2042
NotifyCompilationOf(ArtMethod * method,Thread * self,bool osr)2043 bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) {
2044 if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
2045 return false;
2046 }
2047
2048 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2049 if (class_linker->IsQuickResolutionStub(method->GetEntryPointFromQuickCompiledCode())) {
2050 if (!Runtime::Current()->IsUsingApexBootImageLocation() || !Runtime::Current()->IsZygote()) {
2051 // Unless we're running as zygote in the jitzygote experiment, we currently don't save
2052 // the JIT compiled code if we cannot update the entrypoint due to having the resolution stub.
2053 VLOG(jit) << "Not compiling "
2054 << method->PrettyMethod()
2055 << " because it has the resolution stub";
2056 // Give it a new chance to be hot.
2057 ClearMethodCounter(method, /*was_warm=*/ false);
2058 return false;
2059 }
2060 }
2061
2062 MutexLock mu(self, lock_);
2063 if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) {
2064 return false;
2065 }
2066
2067 if (UNLIKELY(method->IsNative())) {
2068 JniStubKey key(method);
2069 auto it = jni_stubs_map_.find(key);
2070 bool new_compilation = false;
2071 if (it == jni_stubs_map_.end()) {
2072 // Create a new entry to mark the stub as being compiled.
2073 it = jni_stubs_map_.Put(key, JniStubData{});
2074 new_compilation = true;
2075 }
2076 JniStubData* data = &it->second;
2077 data->AddMethod(method);
2078 if (data->IsCompiled()) {
2079 OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(data->GetCode());
2080 const void* entrypoint = method_header->GetEntryPoint();
2081 // Update also entrypoints of other methods held by the JniStubData.
2082 // We could simply update the entrypoint of `method` but if the last JIT GC has
2083 // changed these entrypoints to GenericJNI in preparation for a full GC, we may
2084 // as well change them back as this stub shall not be collected anyway and this
2085 // can avoid a few expensive GenericJNI calls.
2086 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2087 for (ArtMethod* m : data->GetMethods()) {
2088 // Call the dedicated method instead of the more generic UpdateMethodsCode, because
2089 // `m` might be in the process of being deleted.
2090 if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) {
2091 instrumentation->UpdateNativeMethodsCodeToJitCode(m, entrypoint);
2092 }
2093 }
2094 if (collection_in_progress_) {
2095 if (!IsInZygoteExecSpace(data->GetCode())) {
2096 GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(data->GetCode()));
2097 }
2098 }
2099 }
2100 return new_compilation;
2101 } else {
2102 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
2103 if (info == nullptr) {
2104 VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled";
2105 // Because the counter is not atomic, there are some rare cases where we may not hit the
2106 // threshold for creating the ProfilingInfo. Reset the counter now to "correct" this.
2107 ClearMethodCounter(method, /*was_warm=*/ false);
2108 return false;
2109 }
2110
2111 if (info->IsMethodBeingCompiled(osr)) {
2112 return false;
2113 }
2114
2115 info->SetIsMethodBeingCompiled(true, osr);
2116 return true;
2117 }
2118 }
2119
NotifyCompilerUse(ArtMethod * method,Thread * self)2120 ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) {
2121 MutexLock mu(self, lock_);
2122 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
2123 if (info != nullptr) {
2124 if (!info->IncrementInlineUse()) {
2125 // Overflow of inlining uses, just bail.
2126 return nullptr;
2127 }
2128 }
2129 return info;
2130 }
2131
DoneCompilerUse(ArtMethod * method,Thread * self)2132 void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) {
2133 MutexLock mu(self, lock_);
2134 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
2135 DCHECK(info != nullptr);
2136 info->DecrementInlineUse();
2137 }
2138
DoneCompiling(ArtMethod * method,Thread * self,bool osr)2139 void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self, bool osr) {
2140 DCHECK_EQ(Thread::Current(), self);
2141 MutexLock mu(self, lock_);
2142 if (UNLIKELY(method->IsNative())) {
2143 auto it = jni_stubs_map_.find(JniStubKey(method));
2144 DCHECK(it != jni_stubs_map_.end());
2145 JniStubData* data = &it->second;
2146 DCHECK(ContainsElement(data->GetMethods(), method));
2147 if (UNLIKELY(!data->IsCompiled())) {
2148 // Failed to compile; the JNI compiler never fails, but the cache may be full.
2149 jni_stubs_map_.erase(it); // Remove the entry added in NotifyCompilationOf().
2150 } // else CommitCodeInternal() updated entrypoints of all methods in the JniStubData.
2151 } else {
2152 ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize);
2153 DCHECK(info->IsMethodBeingCompiled(osr));
2154 info->SetIsMethodBeingCompiled(false, osr);
2155 }
2156 }
2157
InvalidateCompiledCodeFor(ArtMethod * method,const OatQuickMethodHeader * header)2158 void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method,
2159 const OatQuickMethodHeader* header) {
2160 DCHECK(!method->IsNative());
2161 ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
2162 const void* method_entrypoint = method->GetEntryPointFromQuickCompiledCode();
2163 if ((profiling_info != nullptr) &&
2164 (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) {
2165 // When instrumentation is set, the actual entrypoint is the one in the profiling info.
2166 method_entrypoint = profiling_info->GetSavedEntryPoint();
2167 // Prevent future uses of the compiled code.
2168 profiling_info->SetSavedEntryPoint(nullptr);
2169 }
2170
2171 // Clear the method counter if we are running jitted code since we might want to jit this again in
2172 // the future.
2173 if (method_entrypoint == header->GetEntryPoint()) {
2174 // The entrypoint is the one to invalidate, so we just update it to the interpreter entry point
2175 // and clear the counter to get the method Jitted again.
2176 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
2177 method, GetQuickToInterpreterBridge());
2178 ClearMethodCounter(method, /*was_warm=*/ profiling_info != nullptr);
2179 } else {
2180 MutexLock mu(Thread::Current(), lock_);
2181 auto it = osr_code_map_.find(method);
2182 if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) {
2183 // Remove the OSR method, to avoid using it again.
2184 osr_code_map_.erase(it);
2185 }
2186 }
2187 }
2188
AllocateCode(size_t allocation_size)2189 uint8_t* JitCodeCache::AllocateCode(size_t allocation_size) {
2190 // Each allocation should be on its own set of cache lines. The allocation must be large enough
2191 // for header, code, and any padding.
2192 size_t alignment = GetJitCodeAlignment();
2193 uint8_t* result = reinterpret_cast<uint8_t*>(
2194 mspace_memalign(exec_mspace_, alignment, allocation_size));
2195 size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment);
2196 // Ensure the header ends up at expected instruction alignment.
2197 DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment);
2198 used_memory_for_code_ += mspace_usable_size(result);
2199 return result;
2200 }
2201
FreeCode(uint8_t * code)2202 void JitCodeCache::FreeCode(uint8_t* code) {
2203 if (IsInZygoteExecSpace(code)) {
2204 // No need to free, this is shared memory.
2205 return;
2206 }
2207 used_memory_for_code_ -= mspace_usable_size(code);
2208 mspace_free(exec_mspace_, code);
2209 }
2210
AllocateData(size_t data_size)2211 uint8_t* JitCodeCache::AllocateData(size_t data_size) {
2212 void* result = mspace_malloc(data_mspace_, data_size);
2213 used_memory_for_data_ += mspace_usable_size(result);
2214 return reinterpret_cast<uint8_t*>(result);
2215 }
2216
FreeData(uint8_t * data)2217 void JitCodeCache::FreeData(uint8_t* data) {
2218 if (IsInZygoteDataSpace(data)) {
2219 // No need to free, this is shared memory.
2220 return;
2221 }
2222 used_memory_for_data_ -= mspace_usable_size(data);
2223 mspace_free(data_mspace_, data);
2224 }
2225
Dump(std::ostream & os)2226 void JitCodeCache::Dump(std::ostream& os) {
2227 MutexLock mu(Thread::Current(), lock_);
2228 os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n"
2229 << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n"
2230 << "Current JIT mini-debug-info size: " << PrettySize(GetJitMiniDebugInfoMemUsage()) << "\n"
2231 << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n"
2232 << "Current number of JIT JNI stub entries: " << jni_stubs_map_.size() << "\n"
2233 << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n"
2234 << "Total number of JIT compilations: " << number_of_compilations_ << "\n"
2235 << "Total number of JIT compilations for on stack replacement: "
2236 << number_of_osr_compilations_ << "\n"
2237 << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl;
2238 histogram_stack_map_memory_use_.PrintMemoryUse(os);
2239 histogram_code_memory_use_.PrintMemoryUse(os);
2240 histogram_profiling_info_memory_use_.PrintMemoryUse(os);
2241 }
2242
PostForkChildAction(bool is_system_server,bool is_zygote)2243 void JitCodeCache::PostForkChildAction(bool is_system_server, bool is_zygote) {
2244 if (is_zygote) {
2245 // Don't transition if this is for a child zygote.
2246 return;
2247 }
2248 MutexLock mu(Thread::Current(), lock_);
2249
2250 zygote_data_pages_ = std::move(data_pages_);
2251 zygote_exec_pages_ = std::move(exec_pages_);
2252 zygote_data_mspace_ = data_mspace_;
2253 zygote_exec_mspace_ = exec_mspace_;
2254
2255 size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity();
2256 size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity();
2257
2258 InitializeState(initial_capacity, max_capacity);
2259
2260 std::string error_msg;
2261 if (!InitializeMappings(/* rwx_memory_allowed= */ !is_system_server, is_zygote, &error_msg)) {
2262 LOG(WARNING) << "Could not reset JIT state after zygote fork: " << error_msg;
2263 return;
2264 }
2265
2266 InitializeSpaces();
2267 }
2268
2269 } // namespace jit
2270 } // namespace art
2271