1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: head/lib/msun/src/s_fma.c 326219 2017-11-26 02:00:33Z pfg $");
31
32 #include <fenv.h>
33 #include <float.h>
34 #include <math.h>
35
36 #include "math_private.h"
37
38 /*
39 * A struct dd represents a floating-point number with twice the precision
40 * of a double. We maintain the invariant that "hi" stores the 53 high-order
41 * bits of the result.
42 */
43 struct dd {
44 double hi;
45 double lo;
46 };
47
48 /*
49 * Compute a+b exactly, returning the exact result in a struct dd. We assume
50 * that both a and b are finite, but make no assumptions about their relative
51 * magnitudes.
52 */
53 static inline struct dd
dd_add(double a,double b)54 dd_add(double a, double b)
55 {
56 struct dd ret;
57 double s;
58
59 ret.hi = a + b;
60 s = ret.hi - a;
61 ret.lo = (a - (ret.hi - s)) + (b - s);
62 return (ret);
63 }
64
65 /*
66 * Compute a+b, with a small tweak: The least significant bit of the
67 * result is adjusted into a sticky bit summarizing all the bits that
68 * were lost to rounding. This adjustment negates the effects of double
69 * rounding when the result is added to another number with a higher
70 * exponent. For an explanation of round and sticky bits, see any reference
71 * on FPU design, e.g.,
72 *
73 * J. Coonen. An Implementation Guide to a Proposed Standard for
74 * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
75 */
76 static inline double
add_adjusted(double a,double b)77 add_adjusted(double a, double b)
78 {
79 struct dd sum;
80 uint64_t hibits, lobits;
81
82 sum = dd_add(a, b);
83 if (sum.lo != 0) {
84 EXTRACT_WORD64(hibits, sum.hi);
85 if ((hibits & 1) == 0) {
86 /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
87 EXTRACT_WORD64(lobits, sum.lo);
88 hibits += 1 - ((hibits ^ lobits) >> 62);
89 INSERT_WORD64(sum.hi, hibits);
90 }
91 }
92 return (sum.hi);
93 }
94
95 /*
96 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
97 * that the result will be subnormal, and care is taken to ensure that
98 * double rounding does not occur.
99 */
100 static inline double
add_and_denormalize(double a,double b,int scale)101 add_and_denormalize(double a, double b, int scale)
102 {
103 struct dd sum;
104 uint64_t hibits, lobits;
105 int bits_lost;
106
107 sum = dd_add(a, b);
108
109 /*
110 * If we are losing at least two bits of accuracy to denormalization,
111 * then the first lost bit becomes a round bit, and we adjust the
112 * lowest bit of sum.hi to make it a sticky bit summarizing all the
113 * bits in sum.lo. With the sticky bit adjusted, the hardware will
114 * break any ties in the correct direction.
115 *
116 * If we are losing only one bit to denormalization, however, we must
117 * break the ties manually.
118 */
119 if (sum.lo != 0) {
120 EXTRACT_WORD64(hibits, sum.hi);
121 bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
122 if ((bits_lost != 1) ^ (int)(hibits & 1)) {
123 /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
124 EXTRACT_WORD64(lobits, sum.lo);
125 hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
126 INSERT_WORD64(sum.hi, hibits);
127 }
128 }
129 return (ldexp(sum.hi, scale));
130 }
131
132 /*
133 * Compute a*b exactly, returning the exact result in a struct dd. We assume
134 * that both a and b are normalized, so no underflow or overflow will occur.
135 * The current rounding mode must be round-to-nearest.
136 */
137 static inline struct dd
dd_mul(double a,double b)138 dd_mul(double a, double b)
139 {
140 static const double split = 0x1p27 + 1.0;
141 struct dd ret;
142 double ha, hb, la, lb, p, q;
143
144 p = a * split;
145 ha = a - p;
146 ha += p;
147 la = a - ha;
148
149 p = b * split;
150 hb = b - p;
151 hb += p;
152 lb = b - hb;
153
154 p = ha * hb;
155 q = ha * lb + la * hb;
156
157 ret.hi = p + q;
158 ret.lo = p - ret.hi + q + la * lb;
159 return (ret);
160 }
161
162 /*
163 * Fused multiply-add: Compute x * y + z with a single rounding error.
164 *
165 * We use scaling to avoid overflow/underflow, along with the
166 * canonical precision-doubling technique adapted from:
167 *
168 * Dekker, T. A Floating-Point Technique for Extending the
169 * Available Precision. Numer. Math. 18, 224-242 (1971).
170 *
171 * This algorithm is sensitive to the rounding precision. FPUs such
172 * as the i387 must be set in double-precision mode if variables are
173 * to be stored in FP registers in order to avoid incorrect results.
174 * This is the default on FreeBSD, but not on many other systems.
175 *
176 * Hardware instructions should be used on architectures that support it,
177 * since this implementation will likely be several times slower.
178 */
179 double
fma(double x,double y,double z)180 fma(double x, double y, double z)
181 {
182 double xs, ys, zs, adj;
183 struct dd xy, r;
184 int oround;
185 int ex, ey, ez;
186 int spread;
187
188 /*
189 * Handle special cases. The order of operations and the particular
190 * return values here are crucial in handling special cases involving
191 * infinities, NaNs, overflows, and signed zeroes correctly.
192 */
193 if (x == 0.0 || y == 0.0)
194 return (x * y + z);
195 if (z == 0.0)
196 return (x * y);
197 if (!isfinite(x) || !isfinite(y))
198 return (x * y + z);
199 if (!isfinite(z))
200 return (z);
201
202 xs = frexp(x, &ex);
203 ys = frexp(y, &ey);
204 zs = frexp(z, &ez);
205 oround = fegetround();
206 spread = ex + ey - ez;
207
208 /*
209 * If x * y and z are many orders of magnitude apart, the scaling
210 * will overflow, so we handle these cases specially. Rounding
211 * modes other than FE_TONEAREST are painful.
212 */
213 if (spread < -DBL_MANT_DIG) {
214 feraiseexcept(FE_INEXACT);
215 if (!isnormal(z))
216 feraiseexcept(FE_UNDERFLOW);
217 switch (oround) {
218 case FE_TONEAREST:
219 return (z);
220 case FE_TOWARDZERO:
221 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
222 return (z);
223 else
224 return (nextafter(z, 0));
225 case FE_DOWNWARD:
226 if (x > 0.0 ^ y < 0.0)
227 return (z);
228 else
229 return (nextafter(z, -INFINITY));
230 default: /* FE_UPWARD */
231 if (x > 0.0 ^ y < 0.0)
232 return (nextafter(z, INFINITY));
233 else
234 return (z);
235 }
236 }
237 if (spread <= DBL_MANT_DIG * 2)
238 zs = ldexp(zs, -spread);
239 else
240 zs = copysign(DBL_MIN, zs);
241
242 fesetround(FE_TONEAREST);
243 /* work around clang bug 8100 */
244 volatile double vxs = xs;
245
246 /*
247 * Basic approach for round-to-nearest:
248 *
249 * (xy.hi, xy.lo) = x * y (exact)
250 * (r.hi, r.lo) = xy.hi + z (exact)
251 * adj = xy.lo + r.lo (inexact; low bit is sticky)
252 * result = r.hi + adj (correctly rounded)
253 */
254 xy = dd_mul(vxs, ys);
255 r = dd_add(xy.hi, zs);
256
257 spread = ex + ey;
258
259 if (r.hi == 0.0) {
260 /*
261 * When the addends cancel to 0, ensure that the result has
262 * the correct sign.
263 */
264 fesetround(oround);
265 volatile double vzs = zs; /* XXX gcc CSE bug workaround */
266 return (xy.hi + vzs + ldexp(xy.lo, spread));
267 }
268
269 if (oround != FE_TONEAREST) {
270 /*
271 * There is no need to worry about double rounding in directed
272 * rounding modes.
273 */
274 fesetround(oround);
275 /* work around clang bug 8100 */
276 volatile double vrlo = r.lo;
277 adj = vrlo + xy.lo;
278 return (ldexp(r.hi + adj, spread));
279 }
280
281 adj = add_adjusted(r.lo, xy.lo);
282 if (spread + ilogb(r.hi) > -1023)
283 return (ldexp(r.hi + adj, spread));
284 else
285 return (add_and_denormalize(r.hi, adj, spread));
286 }
287
288 #if (LDBL_MANT_DIG == 53)
289 __weak_reference(fma, fmal);
290 #endif
291