• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /** @file
2   This library is only intended to be used by UEFI network stack modules.
3   It provides basic functions for the UEFI network stack.
4 
5 Copyright (c) 2005 - 2016, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution.  The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10 
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 
14 **/
15 
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18 
19 #include <Protocol/Ip6.h>
20 
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23 
24 typedef UINT32          IP4_ADDR;
25 typedef UINT32          TCP_SEQNO;
26 typedef UINT16          TCP_PORTNO;
27 
28 
29 #define  NET_ETHER_ADDR_LEN    6
30 #define  NET_IFTYPE_ETHERNET   0x01
31 
32 #define  NET_VLAN_TAG_LEN      4
33 #define  ETHER_TYPE_VLAN       0x8100
34 
35 #define  EFI_IP_PROTO_UDP      0x11
36 #define  EFI_IP_PROTO_TCP      0x06
37 #define  EFI_IP_PROTO_ICMP     0x01
38 #define  IP4_PROTO_IGMP        0x02
39 #define  IP6_ICMP              58
40 #define  DNS_MAX_NAME_SIZE     255
41 #define  DNS_MAX_MESSAGE_SIZE  512
42 
43 //
44 // The address classification
45 //
46 #define  IP4_ADDR_CLASSA       1     // Deprecated
47 #define  IP4_ADDR_CLASSB       2     // Deprecated
48 #define  IP4_ADDR_CLASSC       3     // Deprecated
49 #define  IP4_ADDR_CLASSD       4
50 #define  IP4_ADDR_CLASSE       5
51 
52 #define  IP4_MASK_NUM          33
53 #define  IP6_PREFIX_NUM        129
54 
55 #define  IP4_MASK_MAX          32
56 #define  IP6_PREFIX_MAX        128
57 
58 #define  IP6_HOP_BY_HOP        0
59 #define  IP6_DESTINATION       60
60 #define  IP6_ROUTING           43
61 #define  IP6_FRAGMENT          44
62 #define  IP6_AH                51
63 #define  IP6_ESP               50
64 #define  IP6_NO_NEXT_HEADER    59
65 
66 #define  IP_VERSION_4          4
67 #define  IP_VERSION_6          6
68 
69 #define  IP6_PREFIX_LENGTH     64
70 
71 //
72 // DNS QTYPE values
73 //
74 #define  DNS_TYPE_A            1
75 #define  DNS_TYPE_NS           2
76 #define  DNS_TYPE_CNAME        5
77 #define  DNS_TYPE_SOA          6
78 #define  DNS_TYPE_WKS          11
79 #define  DNS_TYPE_PTR          12
80 #define  DNS_TYPE_HINFO        13
81 #define  DNS_TYPE_MINFO        14
82 #define  DNS_TYPE_MX           15
83 #define  DNS_TYPE_TXT          16
84 #define  DNS_TYPE_AAAA         28
85 #define  DNS_TYPE_SRV_RR       33
86 #define  DNS_TYPE_AXFR         252
87 #define  DNS_TYPE_MAILB        253
88 #define  DNS_TYPE_ANY          255
89 
90 //
91 // DNS QCLASS values
92 //
93 #define  DNS_CLASS_INET        1
94 #define  DNS_CLASS_CH          3
95 #define  DNS_CLASS_HS          4
96 #define  DNS_CLASS_ANY         255
97 
98 #pragma pack(1)
99 
100 //
101 // Ethernet head definition
102 //
103 typedef struct {
104   UINT8                 DstMac [NET_ETHER_ADDR_LEN];
105   UINT8                 SrcMac [NET_ETHER_ADDR_LEN];
106   UINT16                EtherType;
107 } ETHER_HEAD;
108 
109 //
110 // 802.1Q VLAN Tag Control Information
111 //
112 typedef union {
113   struct {
114     UINT16              Vid      : 12;  // Unique VLAN identifier (0 to 4094)
115     UINT16              Cfi      : 1;   // Canonical Format Indicator
116     UINT16              Priority : 3;   // 802.1Q priority level (0 to 7)
117   } Bits;
118   UINT16                Uint16;
119 } VLAN_TCI;
120 
121 #define VLAN_TCI_CFI_CANONICAL_MAC      0
122 #define VLAN_TCI_CFI_NON_CANONICAL_MAC  1
123 
124 //
125 // The EFI_IP4_HEADER is hard to use because the source and
126 // destination address are defined as EFI_IPv4_ADDRESS, which
127 // is a structure. Two structures can't be compared or masked
128 // directly. This is why there is an internal representation.
129 //
130 typedef struct {
131   UINT8                 HeadLen : 4;
132   UINT8                 Ver     : 4;
133   UINT8                 Tos;
134   UINT16                TotalLen;
135   UINT16                Id;
136   UINT16                Fragment;
137   UINT8                 Ttl;
138   UINT8                 Protocol;
139   UINT16                Checksum;
140   IP4_ADDR              Src;
141   IP4_ADDR              Dst;
142 } IP4_HEAD;
143 
144 
145 //
146 // ICMP head definition. Each ICMP message is categorized as either an error
147 // message or query message. Two message types have their own head format.
148 //
149 typedef struct {
150   UINT8                 Type;
151   UINT8                 Code;
152   UINT16                Checksum;
153 } IP4_ICMP_HEAD;
154 
155 typedef struct {
156   IP4_ICMP_HEAD         Head;
157   UINT32                Fourth; // 4th filed of the head, it depends on Type.
158   IP4_HEAD              IpHead;
159 } IP4_ICMP_ERROR_HEAD;
160 
161 typedef struct {
162   IP4_ICMP_HEAD         Head;
163   UINT16                Id;
164   UINT16                Seq;
165 } IP4_ICMP_QUERY_HEAD;
166 
167 typedef struct {
168   UINT8                 Type;
169   UINT8                 Code;
170   UINT16                Checksum;
171 } IP6_ICMP_HEAD;
172 
173 typedef struct {
174   IP6_ICMP_HEAD         Head;
175   UINT32                Fourth;
176   EFI_IP6_HEADER        IpHead;
177 } IP6_ICMP_ERROR_HEAD;
178 
179 typedef struct {
180   IP6_ICMP_HEAD         Head;
181   UINT32                Fourth;
182 } IP6_ICMP_INFORMATION_HEAD;
183 
184 //
185 // UDP header definition
186 //
187 typedef struct {
188   UINT16                SrcPort;
189   UINT16                DstPort;
190   UINT16                Length;
191   UINT16                Checksum;
192 } EFI_UDP_HEADER;
193 
194 //
195 // TCP header definition
196 //
197 typedef struct {
198   TCP_PORTNO            SrcPort;
199   TCP_PORTNO            DstPort;
200   TCP_SEQNO             Seq;
201   TCP_SEQNO             Ack;
202   UINT8                 Res     : 4;
203   UINT8                 HeadLen : 4;
204   UINT8                 Flag;
205   UINT16                Wnd;
206   UINT16                Checksum;
207   UINT16                Urg;
208 } TCP_HEAD;
209 
210 #pragma pack()
211 
212 #define NET_MAC_EQUAL(pMac1, pMac2, Len)     \
213     (CompareMem ((pMac1), (pMac2), Len) == 0)
214 
215 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
216     (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
217 
218 #define NTOHL(x)  SwapBytes32 (x)
219 
220 #define HTONL(x)  NTOHL(x)
221 
222 #define NTOHS(x)  SwapBytes16 (x)
223 
224 #define HTONS(x)   NTOHS(x)
225 #define NTOHLL(x)  SwapBytes64 (x)
226 #define HTONLL(x)  NTOHLL(x)
227 #define NTOHLLL(x) Ip6Swap128 (x)
228 #define HTONLLL(x) NTOHLLL(x)
229 
230 //
231 // Test the IP's attribute, All the IPs are in host byte order.
232 //
233 #define IP4_IS_MULTICAST(Ip)              (((Ip) & 0xF0000000) == 0xE0000000)
234 #define IP4_IS_UNSPECIFIED(Ip)            ((Ip) == 0)
235 #define IP4_IS_LOCAL_BROADCAST(Ip)        ((Ip) == 0xFFFFFFFF)
236 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask)  (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
237 #define IP4_IS_VALID_NETMASK(Ip)          (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
238 
239 #define IP6_IS_MULTICAST(Ip6)             (((Ip6)->Addr[0]) == 0xFF)
240 
241 //
242 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
243 //
244 #define EFI_IP4(EfiIpAddr)       (*(IP4_ADDR *) ((EfiIpAddr).Addr))
245 #define EFI_NTOHL(EfiIp)         (NTOHL (EFI_IP4 ((EfiIp))))
246 #define EFI_IP4_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
247 
248 #define EFI_IP6_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
249 
250 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
251 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
252 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
253 
254 //
255 // The debug level definition. This value is also used as the
256 // syslog's severity level. Don't change it.
257 //
258 #define NETDEBUG_LEVEL_TRACE   5
259 #define NETDEBUG_LEVEL_WARNING 4
260 #define NETDEBUG_LEVEL_ERROR   3
261 
262 //
263 // Network debug message is sent out as syslog packet.
264 //
265 #define NET_SYSLOG_FACILITY    16                 // Syslog local facility local use
266 #define NET_SYSLOG_PACKET_LEN  512
267 #define NET_SYSLOG_TX_TIMEOUT  (500 * 1000 * 10)  // 500ms
268 #define NET_DEBUG_MSG_LEN      470                // 512 - (ether+ip4+udp4 head length)
269 
270 //
271 // The debug output expects the ASCII format string, Use %a to print ASCII
272 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
273 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
274 //
275 #define NET_DEBUG_TRACE(Module, PrintArg) \
276   NetDebugOutput ( \
277     NETDEBUG_LEVEL_TRACE, \
278     Module, \
279     __FILE__, \
280     __LINE__, \
281     NetDebugASPrint PrintArg \
282     )
283 
284 #define NET_DEBUG_WARNING(Module, PrintArg) \
285   NetDebugOutput ( \
286     NETDEBUG_LEVEL_WARNING, \
287     Module, \
288     __FILE__, \
289     __LINE__, \
290     NetDebugASPrint PrintArg \
291     )
292 
293 #define NET_DEBUG_ERROR(Module, PrintArg) \
294   NetDebugOutput ( \
295     NETDEBUG_LEVEL_ERROR, \
296     Module, \
297     __FILE__, \
298     __LINE__, \
299     NetDebugASPrint PrintArg \
300     )
301 
302 /**
303   Allocate a buffer, then format the message to it. This is a
304   help function for the NET_DEBUG_XXX macros. The PrintArg of
305   these macros treats the variable length print parameters as a
306   single parameter, and pass it to the NetDebugASPrint. For
307   example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
308   if extracted to:
309 
310          NetDebugOutput (
311            NETDEBUG_LEVEL_TRACE,
312            "Tcp",
313            __FILE__,
314            __LINE__,
315            NetDebugASPrint ("State transit to %a\n", Name)
316          )
317 
318   @param Format  The ASCII format string.
319   @param ...     The variable length parameter whose format is determined
320                  by the Format string.
321 
322   @return        The buffer containing the formatted message,
323                  or NULL if memory allocation failed.
324 
325 **/
326 CHAR8 *
327 EFIAPI
328 NetDebugASPrint (
329   IN CHAR8                  *Format,
330   ...
331   );
332 
333 /**
334   Builds an UDP4 syslog packet and send it using SNP.
335 
336   This function will locate a instance of SNP then send the message through it.
337   Because it isn't open the SNP BY_DRIVER, apply caution when using it.
338 
339   @param Level    The severity level of the message.
340   @param Module   The Module that generates the log.
341   @param File     The file that contains the log.
342   @param Line     The exact line that contains the log.
343   @param Message  The user message to log.
344 
345   @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
346   @retval EFI_OUT_OF_RESOURCES  Failed to allocate memory for the packet
347   @retval EFI_SUCCESS           The log is discard because that it is more verbose
348                                 than the mNetDebugLevelMax. Or, it has been sent out.
349 **/
350 EFI_STATUS
351 EFIAPI
352 NetDebugOutput (
353   IN UINT32                    Level,
354   IN UINT8                     *Module,
355   IN UINT8                     *File,
356   IN UINT32                    Line,
357   IN UINT8                     *Message
358   );
359 
360 
361 /**
362   Return the length of the mask.
363 
364   Return the length of the mask. Valid values are 0 to 32.
365   If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
366   NetMask is in the host byte order.
367 
368   @param[in]  NetMask              The netmask to get the length from.
369 
370   @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
371 
372 **/
373 INTN
374 EFIAPI
375 NetGetMaskLength (
376   IN IP4_ADDR               NetMask
377   );
378 
379 /**
380   Return the class of the IP address, such as class A, B, C.
381   Addr is in host byte order.
382 
383   [ATTENTION]
384   Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
385   Caller of this function could only check the returned value against
386   IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
387 
388   The address of class A  starts with 0.
389   If the address belong to class A, return IP4_ADDR_CLASSA.
390   The address of class B  starts with 10.
391   If the address belong to class B, return IP4_ADDR_CLASSB.
392   The address of class C  starts with 110.
393   If the address belong to class C, return IP4_ADDR_CLASSC.
394   The address of class D  starts with 1110.
395   If the address belong to class D, return IP4_ADDR_CLASSD.
396   The address of class E  starts with 1111.
397   If the address belong to class E, return IP4_ADDR_CLASSE.
398 
399 
400   @param[in]   Addr                  The address to get the class from.
401 
402   @return IP address class, such as IP4_ADDR_CLASSA.
403 
404 **/
405 INTN
406 EFIAPI
407 NetGetIpClass (
408   IN IP4_ADDR               Addr
409   );
410 
411 /**
412   Check whether the IP is a valid unicast address according to
413   the netmask.
414 
415   ASSERT if NetMask is zero.
416 
417   If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.
418 
419   @param[in]  Ip                    The IP to check against.
420   @param[in]  NetMask               The mask of the IP.
421 
422   @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
423 
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp4IsUnicast (
428   IN IP4_ADDR               Ip,
429   IN IP4_ADDR               NetMask
430   );
431 
432 /**
433   Check whether the incoming IPv6 address is a valid unicast address.
434 
435   If the address is a multicast address has binary 0xFF at the start, it is not
436   a valid unicast address. If the address is unspecified ::, it is not a valid
437   unicast address to be assigned to any node. If the address is loopback address
438   ::1, it is also not a valid unicast address to be assigned to any physical
439   interface.
440 
441   @param[in]  Ip6                   The IPv6 address to check against.
442 
443   @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
444 
445 **/
446 BOOLEAN
447 EFIAPI
448 NetIp6IsValidUnicast (
449   IN EFI_IPv6_ADDRESS       *Ip6
450   );
451 
452 
453 /**
454   Check whether the incoming Ipv6 address is the unspecified address or not.
455 
456   @param[in] Ip6   - Ip6 address, in network order.
457 
458   @retval TRUE     - Yes, incoming Ipv6 address is the unspecified address.
459   @retval FALSE    - The incoming Ipv6 address is not the unspecified address
460 
461 **/
462 BOOLEAN
463 EFIAPI
464 NetIp6IsUnspecifiedAddr (
465   IN EFI_IPv6_ADDRESS       *Ip6
466   );
467 
468 /**
469   Check whether the incoming Ipv6 address is a link-local address.
470 
471   @param[in] Ip6   - Ip6 address, in network order.
472 
473   @retval TRUE  - The incoming Ipv6 address is a link-local address.
474   @retval FALSE - The incoming Ipv6 address is not a link-local address.
475 
476 **/
477 BOOLEAN
478 EFIAPI
479 NetIp6IsLinkLocalAddr (
480   IN EFI_IPv6_ADDRESS *Ip6
481   );
482 
483 /**
484   Check whether the Ipv6 address1 and address2 are on the connected network.
485 
486   @param[in] Ip1          - Ip6 address1, in network order.
487   @param[in] Ip2          - Ip6 address2, in network order.
488   @param[in] PrefixLength - The prefix length of the checking net.
489 
490   @retval TRUE            - Yes, the Ipv6 address1 and address2 are connected.
491   @retval FALSE           - No the Ipv6 address1 and address2 are not connected.
492 
493 **/
494 BOOLEAN
495 EFIAPI
496 NetIp6IsNetEqual (
497   EFI_IPv6_ADDRESS *Ip1,
498   EFI_IPv6_ADDRESS *Ip2,
499   UINT8            PrefixLength
500   );
501 
502 /**
503   Switches the endianess of an IPv6 address.
504 
505   This function swaps the bytes in a 128-bit IPv6 address to switch the value
506   from little endian to big endian or vice versa. The byte swapped value is
507   returned.
508 
509   @param  Ip6 Points to an IPv6 address.
510 
511   @return The byte swapped IPv6 address.
512 
513 **/
514 EFI_IPv6_ADDRESS *
515 EFIAPI
516 Ip6Swap128 (
517   EFI_IPv6_ADDRESS *Ip6
518   );
519 
520 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
521 
522 
523 extern EFI_IPv4_ADDRESS  mZeroIp4Addr;
524 
525 #define NET_IS_DIGIT(Ch)            (('0' <= (Ch)) && ((Ch) <= '9'))
526 #define NET_IS_HEX(Ch)              ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
527 #define NET_ROUNDUP(size, unit)     (((size) + (unit) - 1) & (~((unit) - 1)))
528 #define NET_IS_LOWER_CASE_CHAR(Ch)  (('a' <= (Ch)) && ((Ch) <= 'z'))
529 #define NET_IS_UPPER_CASE_CHAR(Ch)  (('A' <= (Ch)) && ((Ch) <= 'Z'))
530 
531 #define TICKS_PER_MS            10000U
532 #define TICKS_PER_SECOND        10000000U
533 
534 #define NET_RANDOM(Seed)        ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
535 
536 /**
537   Extract a UINT32 from a byte stream.
538 
539   This function copies a UINT32 from a byte stream, and then converts it from Network
540   byte order to host byte order. Use this function to avoid alignment error.
541 
542   @param[in]  Buf                 The buffer to extract the UINT32.
543 
544   @return The UINT32 extracted.
545 
546 **/
547 UINT32
548 EFIAPI
549 NetGetUint32 (
550   IN UINT8                  *Buf
551   );
552 
553 /**
554   Puts a UINT32 into the byte stream in network byte order.
555 
556   Converts a UINT32 from host byte order to network byte order, then copies it to the
557   byte stream.
558 
559   @param[in, out]  Buf          The buffer in which to put the UINT32.
560   @param[in]       Data         The data to be converted and put into the byte stream.
561 
562 **/
563 VOID
564 EFIAPI
565 NetPutUint32 (
566   IN OUT UINT8                 *Buf,
567   IN     UINT32                Data
568   );
569 
570 /**
571   Initialize a random seed using current time and monotonic count.
572 
573   Get current time and monotonic count first. Then initialize a random seed
574   based on some basic mathematics operation on the hour, day, minute, second,
575   nanosecond and year of the current time and the monotonic count value.
576 
577   @return The random seed initialized with current time.
578 
579 **/
580 UINT32
581 EFIAPI
582 NetRandomInitSeed (
583   VOID
584   );
585 
586 
587 #define NET_LIST_USER_STRUCT(Entry, Type, Field)        \
588           BASE_CR(Entry, Type, Field)
589 
590 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig)  \
591           CR(Entry, Type, Field, Sig)
592 
593 //
594 // Iterate through the double linked list. It is NOT delete safe
595 //
596 #define NET_LIST_FOR_EACH(Entry, ListHead) \
597   for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
598 
599 //
600 // Iterate through the double linked list. This is delete-safe.
601 // Don't touch NextEntry. Also, don't use this macro if list
602 // entries other than the Entry may be deleted when processing
603 // the current Entry.
604 //
605 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
606   for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
607       Entry != (ListHead); \
608       Entry = NextEntry, NextEntry = Entry->ForwardLink \
609      )
610 
611 //
612 // Make sure the list isn't empty before getting the first/last record.
613 //
614 #define NET_LIST_HEAD(ListHead, Type, Field)  \
615           NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
616 
617 #define NET_LIST_TAIL(ListHead, Type, Field)  \
618           NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
619 
620 
621 /**
622   Remove the first node entry on the list, and return the removed node entry.
623 
624   Removes the first node entry from a doubly linked list. It is up to the caller of
625   this function to release the memory used by the first node, if that is required. On
626   exit, the removed node is returned.
627 
628   If Head is NULL, then ASSERT().
629   If Head was not initialized, then ASSERT().
630   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
631   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
632   then ASSERT().
633 
634   @param[in, out]  Head                  The list header.
635 
636   @return The first node entry that is removed from the list, NULL if the list is empty.
637 
638 **/
639 LIST_ENTRY *
640 EFIAPI
641 NetListRemoveHead (
642   IN OUT LIST_ENTRY            *Head
643   );
644 
645 /**
646   Remove the last node entry on the list and return the removed node entry.
647 
648   Removes the last node entry from a doubly linked list. It is up to the caller of
649   this function to release the memory used by the first node, if that is required. On
650   exit, the removed node is returned.
651 
652   If Head is NULL, then ASSERT().
653   If Head was not initialized, then ASSERT().
654   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
655   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
656   then ASSERT().
657 
658   @param[in, out]  Head                  The list head.
659 
660   @return The last node entry that is removed from the list, NULL if the list is empty.
661 
662 **/
663 LIST_ENTRY *
664 EFIAPI
665 NetListRemoveTail (
666   IN OUT LIST_ENTRY            *Head
667   );
668 
669 /**
670   Insert a new node entry after a designated node entry of a doubly linked list.
671 
672   Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
673   of the doubly linked list.
674 
675   @param[in, out]  PrevEntry             The entry after which to insert.
676   @param[in, out]  NewEntry              The new entry to insert.
677 
678 **/
679 VOID
680 EFIAPI
681 NetListInsertAfter (
682   IN OUT LIST_ENTRY         *PrevEntry,
683   IN OUT LIST_ENTRY         *NewEntry
684   );
685 
686 /**
687   Insert a new node entry before a designated node entry of a doubly linked list.
688 
689   Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
690   of the doubly linked list.
691 
692   @param[in, out]  PostEntry             The entry to insert before.
693   @param[in, out]  NewEntry              The new entry to insert.
694 
695 **/
696 VOID
697 EFIAPI
698 NetListInsertBefore (
699   IN OUT LIST_ENTRY     *PostEntry,
700   IN OUT LIST_ENTRY     *NewEntry
701   );
702 
703 /**
704   Callback function which provided by user to remove one node in NetDestroyLinkList process.
705 
706   @param[in]    Entry           The entry to be removed.
707   @param[in]    Context         Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
708 
709   @retval EFI_SUCCESS           The entry has been removed successfully.
710   @retval Others                Fail to remove the entry.
711 
712 **/
713 typedef
714 EFI_STATUS
715 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
716   IN LIST_ENTRY         *Entry,
717   IN VOID               *Context   OPTIONAL
718   );
719 
720 /**
721   Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
722 
723   Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
724   This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
725   has been removed from the list or not.
726   If it has been removed, then restart the traversal from the head.
727   If it hasn't been removed, then continue with the next node directly.
728   This function will end the iterate and return the CallBack's last return value if error happens,
729   or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
730 
731   @param[in]    List             The head of the list.
732   @param[in]    CallBack         Pointer to the callback function to destroy one node in the list.
733   @param[in]    Context          Pointer to the callback function's context: corresponds to the
734                                  parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
735   @param[out]   ListLength       The length of the link list if the function returns successfully.
736 
737   @retval EFI_SUCCESS            Two complete passes are made with no changes in the number of children.
738   @retval EFI_INVALID_PARAMETER  The input parameter is invalid.
739   @retval Others                 Return the CallBack's last return value.
740 
741 **/
742 EFI_STATUS
743 EFIAPI
744 NetDestroyLinkList (
745   IN   LIST_ENTRY                       *List,
746   IN   NET_DESTROY_LINK_LIST_CALLBACK   CallBack,
747   IN   VOID                             *Context,    OPTIONAL
748   OUT  UINTN                            *ListLength  OPTIONAL
749   );
750 
751 /**
752   This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
753 
754   @param[in]  Handle             Handle to be checked.
755   @param[in]  NumberOfChildren   Number of Handles in ChildHandleBuffer.
756   @param[in]  ChildHandleBuffer  An array of child handles to be freed. May be NULL
757                                  if NumberOfChildren is 0.
758 
759   @retval TRUE                   Found the input Handle in ChildHandleBuffer.
760   @retval FALSE                  Can't find the input Handle in ChildHandleBuffer.
761 
762 **/
763 BOOLEAN
764 EFIAPI
765 NetIsInHandleBuffer (
766   IN  EFI_HANDLE          Handle,
767   IN  UINTN               NumberOfChildren,
768   IN  EFI_HANDLE          *ChildHandleBuffer OPTIONAL
769   );
770 
771 //
772 // Object container: EFI network stack spec defines various kinds of
773 // tokens. The drivers can share code to manage those objects.
774 //
775 typedef struct {
776   LIST_ENTRY                Link;
777   VOID                      *Key;
778   VOID                      *Value;
779 } NET_MAP_ITEM;
780 
781 typedef struct {
782   LIST_ENTRY                Used;
783   LIST_ENTRY                Recycled;
784   UINTN                     Count;
785 } NET_MAP;
786 
787 #define NET_MAP_INCREAMENT  64
788 
789 /**
790   Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
791 
792   Initialize the forward and backward links of two head nodes donated by Map->Used
793   and Map->Recycled of two doubly linked lists.
794   Initializes the count of the <Key, Value> pairs in the netmap to zero.
795 
796   If Map is NULL, then ASSERT().
797   If the address of Map->Used is NULL, then ASSERT().
798   If the address of Map->Recycled is NULl, then ASSERT().
799 
800   @param[in, out]  Map                   The netmap to initialize.
801 
802 **/
803 VOID
804 EFIAPI
805 NetMapInit (
806   IN OUT NET_MAP                *Map
807   );
808 
809 /**
810   To clean up the netmap, that is, release allocated memories.
811 
812   Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
813   Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
814   The number of the <Key, Value> pairs in the netmap is set to zero.
815 
816   If Map is NULL, then ASSERT().
817 
818   @param[in, out]  Map                   The netmap to clean up.
819 
820 **/
821 VOID
822 EFIAPI
823 NetMapClean (
824   IN OUT NET_MAP            *Map
825   );
826 
827 /**
828   Test whether the netmap is empty and return true if it is.
829 
830   If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
831 
832   If Map is NULL, then ASSERT().
833 
834 
835   @param[in]  Map                   The net map to test.
836 
837   @return TRUE if the netmap is empty, otherwise FALSE.
838 
839 **/
840 BOOLEAN
841 EFIAPI
842 NetMapIsEmpty (
843   IN NET_MAP                *Map
844   );
845 
846 /**
847   Return the number of the <Key, Value> pairs in the netmap.
848 
849   @param[in]  Map                   The netmap to get the entry number.
850 
851   @return The entry number in the netmap.
852 
853 **/
854 UINTN
855 EFIAPI
856 NetMapGetCount (
857   IN NET_MAP                *Map
858   );
859 
860 /**
861   Allocate an item to save the <Key, Value> pair to the head of the netmap.
862 
863   Allocate an item to save the <Key, Value> pair and add corresponding node entry
864   to the beginning of the Used doubly linked list. The number of the <Key, Value>
865   pairs in the netmap increase by 1.
866 
867   If Map is NULL, then ASSERT().
868 
869   @param[in, out]  Map                   The netmap to insert into.
870   @param[in]       Key                   The user's key.
871   @param[in]       Value                 The user's value for the key.
872 
873   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
874   @retval EFI_SUCCESS           The item is inserted to the head.
875 
876 **/
877 EFI_STATUS
878 EFIAPI
879 NetMapInsertHead (
880   IN OUT NET_MAP            *Map,
881   IN VOID                   *Key,
882   IN VOID                   *Value    OPTIONAL
883   );
884 
885 /**
886   Allocate an item to save the <Key, Value> pair to the tail of the netmap.
887 
888   Allocate an item to save the <Key, Value> pair and add corresponding node entry
889   to the tail of the Used doubly linked list. The number of the <Key, Value>
890   pairs in the netmap increase by 1.
891 
892   If Map is NULL, then ASSERT().
893 
894   @param[in, out]  Map                   The netmap to insert into.
895   @param[in]       Key                   The user's key.
896   @param[in]       Value                 The user's value for the key.
897 
898   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
899   @retval EFI_SUCCESS           The item is inserted to the tail.
900 
901 **/
902 EFI_STATUS
903 EFIAPI
904 NetMapInsertTail (
905   IN OUT NET_MAP            *Map,
906   IN VOID                   *Key,
907   IN VOID                   *Value    OPTIONAL
908   );
909 
910 /**
911   Finds the key in the netmap and returns the point to the item containing the Key.
912 
913   Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
914   item with the key to search. It returns the point to the item contains the Key if found.
915 
916   If Map is NULL, then ASSERT().
917 
918   @param[in]  Map                   The netmap to search within.
919   @param[in]  Key                   The key to search.
920 
921   @return The point to the item contains the Key, or NULL if Key isn't in the map.
922 
923 **/
924 NET_MAP_ITEM *
925 EFIAPI
926 NetMapFindKey (
927   IN  NET_MAP               *Map,
928   IN  VOID                  *Key
929   );
930 
931 /**
932   Remove the node entry of the item from the netmap and return the key of the removed item.
933 
934   Remove the node entry of the item from the Used doubly linked list of the netmap.
935   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
936   entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
937   Value will point to the value of the item. It returns the key of the removed item.
938 
939   If Map is NULL, then ASSERT().
940   If Item is NULL, then ASSERT().
941   if item in not in the netmap, then ASSERT().
942 
943   @param[in, out]  Map                   The netmap to remove the item from.
944   @param[in, out]  Item                  The item to remove.
945   @param[out]      Value                 The variable to receive the value if not NULL.
946 
947   @return                                The key of the removed item.
948 
949 **/
950 VOID *
951 EFIAPI
952 NetMapRemoveItem (
953   IN  OUT NET_MAP             *Map,
954   IN  OUT NET_MAP_ITEM        *Item,
955   OUT VOID                    **Value           OPTIONAL
956   );
957 
958 /**
959   Remove the first node entry on the netmap and return the key of the removed item.
960 
961   Remove the first node entry from the Used doubly linked list of the netmap.
962   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
963   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
964   parameter Value will point to the value of the item. It returns the key of the removed item.
965 
966   If Map is NULL, then ASSERT().
967   If the Used doubly linked list is empty, then ASSERT().
968 
969   @param[in, out]  Map                   The netmap to remove the head from.
970   @param[out]      Value                 The variable to receive the value if not NULL.
971 
972   @return                                The key of the item removed.
973 
974 **/
975 VOID *
976 EFIAPI
977 NetMapRemoveHead (
978   IN OUT NET_MAP            *Map,
979   OUT VOID                  **Value         OPTIONAL
980   );
981 
982 /**
983   Remove the last node entry on the netmap and return the key of the removed item.
984 
985   Remove the last node entry from the Used doubly linked list of the netmap.
986   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
987   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
988   parameter Value will point to the value of the item. It returns the key of the removed item.
989 
990   If Map is NULL, then ASSERT().
991   If the Used doubly linked list is empty, then ASSERT().
992 
993   @param[in, out]  Map                   The netmap to remove the tail from.
994   @param[out]      Value                 The variable to receive the value if not NULL.
995 
996   @return                                The key of the item removed.
997 
998 **/
999 VOID *
1000 EFIAPI
1001 NetMapRemoveTail (
1002   IN OUT NET_MAP            *Map,
1003   OUT VOID                  **Value       OPTIONAL
1004   );
1005 
1006 typedef
1007 EFI_STATUS
1008 (EFIAPI *NET_MAP_CALLBACK) (
1009   IN NET_MAP                *Map,
1010   IN NET_MAP_ITEM           *Item,
1011   IN VOID                   *Arg
1012   );
1013 
1014 /**
1015   Iterate through the netmap and call CallBack for each item.
1016 
1017   It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1018   from the loop. It returns the CallBack's last return value. This function is
1019   delete safe for the current item.
1020 
1021   If Map is NULL, then ASSERT().
1022   If CallBack is NULL, then ASSERT().
1023 
1024   @param[in]  Map                   The Map to iterate through.
1025   @param[in]  CallBack              The callback function to call for each item.
1026   @param[in]  Arg                   The opaque parameter to the callback.
1027 
1028   @retval EFI_SUCCESS            There is no item in the netmap, or CallBack for each item
1029                                  returns EFI_SUCCESS.
1030   @retval Others                 It returns the CallBack's last return value.
1031 
1032 **/
1033 EFI_STATUS
1034 EFIAPI
1035 NetMapIterate (
1036   IN NET_MAP                *Map,
1037   IN NET_MAP_CALLBACK       CallBack,
1038   IN VOID                   *Arg      OPTIONAL
1039   );
1040 
1041 
1042 //
1043 // Helper functions to implement driver binding and service binding protocols.
1044 //
1045 /**
1046   Create a child of the service that is identified by ServiceBindingGuid.
1047 
1048   Get the ServiceBinding Protocol first, then use it to create a child.
1049 
1050   If ServiceBindingGuid is NULL, then ASSERT().
1051   If ChildHandle is NULL, then ASSERT().
1052 
1053   @param[in]       Controller            The controller which has the service installed.
1054   @param[in]       Image                 The image handle used to open service.
1055   @param[in]       ServiceBindingGuid    The service's Guid.
1056   @param[in, out]  ChildHandle           The handle to receive the created child.
1057 
1058   @retval EFI_SUCCESS           The child was successfully created.
1059   @retval Others                Failed to create the child.
1060 
1061 **/
1062 EFI_STATUS
1063 EFIAPI
1064 NetLibCreateServiceChild (
1065   IN  EFI_HANDLE            Controller,
1066   IN  EFI_HANDLE            Image,
1067   IN  EFI_GUID              *ServiceBindingGuid,
1068   IN  OUT EFI_HANDLE        *ChildHandle
1069   );
1070 
1071 /**
1072   Destroy a child of the service that is identified by ServiceBindingGuid.
1073 
1074   Get the ServiceBinding Protocol first, then use it to destroy a child.
1075 
1076   If ServiceBindingGuid is NULL, then ASSERT().
1077 
1078   @param[in]   Controller            The controller which has the service installed.
1079   @param[in]   Image                 The image handle used to open service.
1080   @param[in]   ServiceBindingGuid    The service's Guid.
1081   @param[in]   ChildHandle           The child to destroy.
1082 
1083   @retval EFI_SUCCESS           The child was destroyed.
1084   @retval Others                Failed to destroy the child.
1085 
1086 **/
1087 EFI_STATUS
1088 EFIAPI
1089 NetLibDestroyServiceChild (
1090   IN  EFI_HANDLE            Controller,
1091   IN  EFI_HANDLE            Image,
1092   IN  EFI_GUID              *ServiceBindingGuid,
1093   IN  EFI_HANDLE            ChildHandle
1094   );
1095 
1096 /**
1097   Get handle with Simple Network Protocol installed on it.
1098 
1099   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1100   If Simple Network Protocol is already installed on the ServiceHandle, the
1101   ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1102   try to find its parent handle with SNP installed.
1103 
1104   @param[in]   ServiceHandle    The handle where network service binding protocols are
1105                                 installed on.
1106   @param[out]  Snp              The pointer to store the address of the SNP instance.
1107                                 This is an optional parameter that may be NULL.
1108 
1109   @return The SNP handle, or NULL if not found.
1110 
1111 **/
1112 EFI_HANDLE
1113 EFIAPI
1114 NetLibGetSnpHandle (
1115   IN   EFI_HANDLE                  ServiceHandle,
1116   OUT  EFI_SIMPLE_NETWORK_PROTOCOL **Snp  OPTIONAL
1117   );
1118 
1119 /**
1120   Retrieve VLAN ID of a VLAN device handle.
1121 
1122   Search VLAN device path node in Device Path of specified ServiceHandle and
1123   return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1124   is not a VLAN device handle, and 0 will be returned.
1125 
1126   @param[in]   ServiceHandle    The handle where network service binding protocols are
1127                                 installed on.
1128 
1129   @return VLAN ID of the device handle, or 0 if not a VLAN device.
1130 
1131 **/
1132 UINT16
1133 EFIAPI
1134 NetLibGetVlanId (
1135   IN EFI_HANDLE             ServiceHandle
1136   );
1137 
1138 /**
1139   Find VLAN device handle with specified VLAN ID.
1140 
1141   The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1142   This function will append VLAN device path node to the parent device path,
1143   and then use LocateDevicePath() to find the correct VLAN device handle.
1144 
1145   @param[in]   ControllerHandle The handle where network service binding protocols are
1146                                 installed on.
1147   @param[in]   VlanId           The configured VLAN ID for the VLAN device.
1148 
1149   @return The VLAN device handle, or NULL if not found.
1150 
1151 **/
1152 EFI_HANDLE
1153 EFIAPI
1154 NetLibGetVlanHandle (
1155   IN EFI_HANDLE             ControllerHandle,
1156   IN UINT16                 VlanId
1157   );
1158 
1159 /**
1160   Get MAC address associated with the network service handle.
1161 
1162   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1163   If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1164   be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1165 
1166   @param[in]   ServiceHandle    The handle where network service binding protocols are
1167                                 installed on.
1168   @param[out]  MacAddress       The pointer to store the returned MAC address.
1169   @param[out]  AddressSize      The length of returned MAC address.
1170 
1171   @retval EFI_SUCCESS           MAC address was returned successfully.
1172   @retval Others                Failed to get SNP mode data.
1173 
1174 **/
1175 EFI_STATUS
1176 EFIAPI
1177 NetLibGetMacAddress (
1178   IN  EFI_HANDLE            ServiceHandle,
1179   OUT EFI_MAC_ADDRESS       *MacAddress,
1180   OUT UINTN                 *AddressSize
1181   );
1182 
1183 /**
1184   Convert MAC address of the NIC associated with specified Service Binding Handle
1185   to a unicode string. Callers are responsible for freeing the string storage.
1186 
1187   Locate simple network protocol associated with the Service Binding Handle and
1188   get the mac address from SNP. Then convert the mac address into a unicode
1189   string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1190   Plus one unicode character for the null-terminator.
1191 
1192   @param[in]   ServiceHandle         The handle where network service binding protocol is
1193                                      installed.
1194   @param[in]   ImageHandle           The image handle used to act as the agent handle to
1195                                      get the simple network protocol. This parameter is
1196                                      optional and may be NULL.
1197   @param[out]  MacString             The pointer to store the address of the string
1198                                      representation of  the mac address.
1199 
1200   @retval EFI_SUCCESS           Converted the mac address a unicode string successfully.
1201   @retval EFI_OUT_OF_RESOURCES  There are not enough memory resources.
1202   @retval Others                Failed to open the simple network protocol.
1203 
1204 **/
1205 EFI_STATUS
1206 EFIAPI
1207 NetLibGetMacString (
1208   IN  EFI_HANDLE            ServiceHandle,
1209   IN  EFI_HANDLE            ImageHandle, OPTIONAL
1210   OUT CHAR16                **MacString
1211   );
1212 
1213 /**
1214   Detect media status for specified network device.
1215 
1216   The underlying UNDI driver may or may not support reporting media status from
1217   GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1218   will try to invoke Snp->GetStatus() to get the media status. If media is already
1219   present, it returns directly. If media is not present, it will stop SNP and then
1220   restart SNP to get the latest media status. This provides an opportunity to get
1221   the correct media status for old UNDI driver, which doesn't support reporting
1222   media status from GET_STATUS command.
1223   Note: there are two limitations for the current algorithm:
1224   1) For UNDI with this capability, when the cable is not attached, there will
1225      be an redundant Stop/Start() process.
1226   2) for UNDI without this capability, in case that network cable is attached when
1227      Snp->Initialize() is invoked while network cable is unattached later,
1228      NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1229      apps to wait for timeout time.
1230 
1231   @param[in]   ServiceHandle    The handle where network service binding protocols are
1232                                 installed.
1233   @param[out]  MediaPresent     The pointer to store the media status.
1234 
1235   @retval EFI_SUCCESS           Media detection success.
1236   @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1237   @retval EFI_UNSUPPORTED       The network device does not support media detection.
1238   @retval EFI_DEVICE_ERROR      SNP is in an unknown state.
1239 
1240 **/
1241 EFI_STATUS
1242 EFIAPI
1243 NetLibDetectMedia (
1244   IN  EFI_HANDLE            ServiceHandle,
1245   OUT BOOLEAN               *MediaPresent
1246   );
1247 
1248 /**
1249   Create an IPv4 device path node.
1250 
1251   The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1252   The header subtype of IPv4 device path node is MSG_IPv4_DP.
1253   The length of the IPv4 device path node in bytes is 19.
1254   Get other information from parameters to make up the whole IPv4 device path node.
1255 
1256   @param[in, out]  Node                  The pointer to the IPv4 device path node.
1257   @param[in]       Controller            The controller handle.
1258   @param[in]       LocalIp               The local IPv4 address.
1259   @param[in]       LocalPort             The local port.
1260   @param[in]       RemoteIp              The remote IPv4 address.
1261   @param[in]       RemotePort            The remote port.
1262   @param[in]       Protocol              The protocol type in the IP header.
1263   @param[in]       UseDefaultAddress     Whether this instance is using default address or not.
1264 
1265 **/
1266 VOID
1267 EFIAPI
1268 NetLibCreateIPv4DPathNode (
1269   IN OUT IPv4_DEVICE_PATH  *Node,
1270   IN EFI_HANDLE            Controller,
1271   IN IP4_ADDR              LocalIp,
1272   IN UINT16                LocalPort,
1273   IN IP4_ADDR              RemoteIp,
1274   IN UINT16                RemotePort,
1275   IN UINT16                Protocol,
1276   IN BOOLEAN               UseDefaultAddress
1277   );
1278 
1279 /**
1280   Create an IPv6 device path node.
1281 
1282   The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1283   The header subtype of IPv6 device path node is MSG_IPv6_DP.
1284   The length of the IPv6 device path node in bytes is 43.
1285   Get other information from parameters to make up the whole IPv6 device path node.
1286 
1287   @param[in, out]  Node                  The pointer to the IPv6 device path node.
1288   @param[in]       Controller            The controller handle.
1289   @param[in]       LocalIp               The local IPv6 address.
1290   @param[in]       LocalPort             The local port.
1291   @param[in]       RemoteIp              The remote IPv6 address.
1292   @param[in]       RemotePort            The remote port.
1293   @param[in]       Protocol              The protocol type in the IP header.
1294 
1295 **/
1296 VOID
1297 EFIAPI
1298 NetLibCreateIPv6DPathNode (
1299   IN OUT IPv6_DEVICE_PATH  *Node,
1300   IN EFI_HANDLE            Controller,
1301   IN EFI_IPv6_ADDRESS      *LocalIp,
1302   IN UINT16                LocalPort,
1303   IN EFI_IPv6_ADDRESS      *RemoteIp,
1304   IN UINT16                RemotePort,
1305   IN UINT16                Protocol
1306   );
1307 
1308 
1309 /**
1310   Find the UNDI/SNP handle from controller and protocol GUID.
1311 
1312   For example, IP will open an MNP child to transmit/receive
1313   packets. When MNP is stopped, IP should also be stopped. IP
1314   needs to find its own private data that is related the IP's
1315   service binding instance that is installed on the UNDI/SNP handle.
1316   The controller is then either an MNP or an ARP child handle. Note that
1317   IP opens these handles using BY_DRIVER. Use that information to get the
1318   UNDI/SNP handle.
1319 
1320   @param[in]  Controller            The protocol handle to check.
1321   @param[in]  ProtocolGuid          The protocol that is related with the handle.
1322 
1323   @return The UNDI/SNP handle or NULL for errors.
1324 
1325 **/
1326 EFI_HANDLE
1327 EFIAPI
1328 NetLibGetNicHandle (
1329   IN EFI_HANDLE             Controller,
1330   IN EFI_GUID               *ProtocolGuid
1331   );
1332 
1333 /**
1334   This is the default unload handle for all the network drivers.
1335 
1336   Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1337   Uninstall all the protocols installed in the driver entry point.
1338 
1339   @param[in]  ImageHandle       The drivers' driver image.
1340 
1341   @retval EFI_SUCCESS           The image is unloaded.
1342   @retval Others                Failed to unload the image.
1343 
1344 **/
1345 EFI_STATUS
1346 EFIAPI
1347 NetLibDefaultUnload (
1348   IN EFI_HANDLE             ImageHandle
1349   );
1350 
1351 /**
1352   Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1353 
1354   @param[in]      String         The pointer to the Ascii string.
1355   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1356 
1357   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1358   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip4Address is NULL.
1359 
1360 **/
1361 EFI_STATUS
1362 EFIAPI
1363 NetLibAsciiStrToIp4 (
1364   IN CONST CHAR8                 *String,
1365   OUT      EFI_IPv4_ADDRESS      *Ip4Address
1366   );
1367 
1368 /**
1369   Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1370   string is defined in RFC 4291 - Text Representation of Addresses.
1371 
1372   @param[in]      String         The pointer to the Ascii string.
1373   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1374 
1375   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1376   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip6Address is NULL.
1377 
1378 **/
1379 EFI_STATUS
1380 EFIAPI
1381 NetLibAsciiStrToIp6 (
1382   IN CONST CHAR8                 *String,
1383   OUT      EFI_IPv6_ADDRESS      *Ip6Address
1384   );
1385 
1386 /**
1387   Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1388 
1389   @param[in]      String         The pointer to the Ascii string.
1390   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1391 
1392   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1393   @retval EFI_INVALID_PARAMETER  The string is mal-formatted or Ip4Address is NULL.
1394   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to lack of resources.
1395 
1396 **/
1397 EFI_STATUS
1398 EFIAPI
1399 NetLibStrToIp4 (
1400   IN CONST CHAR16                *String,
1401   OUT      EFI_IPv4_ADDRESS      *Ip4Address
1402   );
1403 
1404 /**
1405   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS.  The format of
1406   the string is defined in RFC 4291 - Text Representation of Addresses.
1407 
1408   @param[in]      String         The pointer to the Ascii string.
1409   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1410 
1411   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1412   @retval EFI_INVALID_PARAMETER  The string is malformatted or Ip6Address is NULL.
1413   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1414 
1415 **/
1416 EFI_STATUS
1417 EFIAPI
1418 NetLibStrToIp6 (
1419   IN CONST CHAR16                *String,
1420   OUT      EFI_IPv6_ADDRESS      *Ip6Address
1421   );
1422 
1423 /**
1424   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1425   The format of the string is defined in RFC 4291 - Text Representation of Addresses
1426   Prefixes: ipv6-address/prefix-length.
1427 
1428   @param[in]      String         The pointer to the Ascii string.
1429   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1430   @param[out]     PrefixLength   The pointer to the converted prefix length.
1431 
1432   @retval EFI_SUCCESS            Converted to an  IPv6 address successfully.
1433   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip6Address is NULL.
1434   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1435 
1436 **/
1437 EFI_STATUS
1438 EFIAPI
1439 NetLibStrToIp6andPrefix (
1440   IN CONST CHAR16                *String,
1441   OUT      EFI_IPv6_ADDRESS      *Ip6Address,
1442   OUT      UINT8                 *PrefixLength
1443   );
1444 
1445 /**
1446 
1447   Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1448   The text representation of address is defined in RFC 4291.
1449 
1450   @param[in]       Ip6Address     The pointer to the IPv6 address.
1451   @param[out]      String         The buffer to return the converted string.
1452   @param[in]       StringSize     The length in bytes of the input String.
1453 
1454   @retval EFI_SUCCESS             Convert to string successfully.
1455   @retval EFI_INVALID_PARAMETER   The input parameter is invalid.
1456   @retval EFI_BUFFER_TOO_SMALL    The BufferSize is too small for the result. BufferSize has been
1457                                   updated with the size needed to complete the request.
1458 **/
1459 EFI_STATUS
1460 EFIAPI
1461 NetLibIp6ToStr (
1462   IN         EFI_IPv6_ADDRESS      *Ip6Address,
1463   OUT        CHAR16                *String,
1464   IN         UINTN                 StringSize
1465   );
1466 
1467 //
1468 // Various signatures
1469 //
1470 #define  NET_BUF_SIGNATURE    SIGNATURE_32 ('n', 'b', 'u', 'f')
1471 #define  NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1472 #define  NET_QUE_SIGNATURE    SIGNATURE_32 ('n', 'b', 'q', 'u')
1473 
1474 
1475 #define  NET_PROTO_DATA       64   // Opaque buffer for protocols
1476 #define  NET_BUF_HEAD         1    // Trim or allocate space from head
1477 #define  NET_BUF_TAIL         0    // Trim or allocate space from tail
1478 #define  NET_VECTOR_OWN_FIRST 0x01  // We allocated the 1st block in the vector
1479 
1480 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1481   ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1482 
1483 //
1484 // Single memory block in the vector.
1485 //
1486 typedef struct {
1487   UINT32              Len;        // The block's length
1488   UINT8               *Bulk;      // The block's Data
1489 } NET_BLOCK;
1490 
1491 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1492 
1493 //
1494 //NET_VECTOR contains several blocks to hold all packet's
1495 //fragments and other house-keeping stuff for sharing. It
1496 //doesn't specify the where actual packet fragment begins.
1497 //
1498 typedef struct {
1499   UINT32              Signature;
1500   INTN                RefCnt;  // Reference count to share NET_VECTOR.
1501   NET_VECTOR_EXT_FREE Free;    // external function to free NET_VECTOR
1502   VOID                *Arg;    // opaque argument to Free
1503   UINT32              Flag;    // Flags, NET_VECTOR_OWN_FIRST
1504   UINT32              Len;     // Total length of the associated BLOCKs
1505 
1506   UINT32              BlockNum;
1507   NET_BLOCK           Block[1];
1508 } NET_VECTOR;
1509 
1510 //
1511 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1512 //where the actual fragment begins and ends
1513 //
1514 typedef struct {
1515   UINT8               *BlockHead;   // Block's head, or the smallest valid Head
1516   UINT8               *BlockTail;   // Block's tail. BlockTail-BlockHead=block length
1517   UINT8               *Head;        // 1st byte of the data in the block
1518   UINT8               *Tail;        // Tail of the data in the block, Tail-Head=Size
1519   UINT32              Size;         // The size of the data
1520 } NET_BLOCK_OP;
1521 
1522 typedef union {
1523   IP4_HEAD          *Ip4;
1524   EFI_IP6_HEADER    *Ip6;
1525 } NET_IP_HEAD;
1526 
1527 //
1528 //NET_BUF is the buffer manage structure used by the
1529 //network stack. Every network packet may be fragmented. The Vector points to
1530 //memory blocks used by each fragment, and BlockOp
1531 //specifies where each fragment begins and ends.
1532 //
1533 //It also contains an opaque area for the protocol to store
1534 //per-packet information. Protocol must be careful not
1535 //to overwrite the members after that.
1536 //
1537 typedef struct {
1538   UINT32         Signature;
1539   INTN           RefCnt;
1540   LIST_ENTRY     List;                       // The List this NET_BUF is on
1541 
1542   NET_IP_HEAD    Ip;                         // Network layer header, for fast access
1543   TCP_HEAD       *Tcp;                       // Transport layer header, for fast access
1544   EFI_UDP_HEADER *Udp;                       // User Datagram Protocol header
1545   UINT8          ProtoData [NET_PROTO_DATA]; //Protocol specific data
1546 
1547   NET_VECTOR     *Vector;                    // The vector containing the packet
1548 
1549   UINT32         BlockOpNum;                 // Total number of BlockOp in the buffer
1550   UINT32         TotalSize;                  // Total size of the actual packet
1551   NET_BLOCK_OP   BlockOp[1];                 // Specify the position of actual packet
1552 } NET_BUF;
1553 
1554 //
1555 //A queue of NET_BUFs. It is a thin extension of
1556 //NET_BUF functions.
1557 //
1558 typedef struct {
1559   UINT32              Signature;
1560   INTN                RefCnt;
1561   LIST_ENTRY          List;       // The List this buffer queue is on
1562 
1563   LIST_ENTRY          BufList;    // list of queued buffers
1564   UINT32              BufSize;    // total length of DATA in the buffers
1565   UINT32              BufNum;     // total number of buffers on the chain
1566 } NET_BUF_QUEUE;
1567 
1568 //
1569 // Pseudo header for TCP and UDP checksum
1570 //
1571 #pragma pack(1)
1572 typedef struct {
1573   IP4_ADDR            SrcIp;
1574   IP4_ADDR            DstIp;
1575   UINT8               Reserved;
1576   UINT8               Protocol;
1577   UINT16              Len;
1578 } NET_PSEUDO_HDR;
1579 
1580 typedef struct {
1581   EFI_IPv6_ADDRESS    SrcIp;
1582   EFI_IPv6_ADDRESS    DstIp;
1583   UINT32              Len;
1584   UINT32              Reserved:24;
1585   UINT32              NextHeader:8;
1586 } NET_IP6_PSEUDO_HDR;
1587 #pragma pack()
1588 
1589 //
1590 // The fragment entry table used in network interfaces. This is
1591 // the same as NET_BLOCK now. Use two different to distinguish
1592 // the two in case that NET_BLOCK be enhanced later.
1593 //
1594 typedef struct {
1595   UINT32              Len;
1596   UINT8               *Bulk;
1597 } NET_FRAGMENT;
1598 
1599 #define NET_GET_REF(PData)      ((PData)->RefCnt++)
1600 #define NET_PUT_REF(PData)      ((PData)->RefCnt--)
1601 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1602 
1603 #define NET_BUF_SHARED(Buf) \
1604   (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1605 
1606 #define NET_VECTOR_SIZE(BlockNum) \
1607   (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1608 
1609 #define NET_BUF_SIZE(BlockOpNum)  \
1610   (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1611 
1612 #define NET_HEADSPACE(BlockOp)  \
1613   (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1614 
1615 #define NET_TAILSPACE(BlockOp)  \
1616   (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1617 
1618 /**
1619   Allocate a single block NET_BUF. Upon allocation, all the
1620   free space is in the tail room.
1621 
1622   @param[in]  Len              The length of the block.
1623 
1624   @return                      The pointer to the allocated NET_BUF, or NULL if the
1625                                allocation failed due to resource limitations.
1626 
1627 **/
1628 NET_BUF  *
1629 EFIAPI
1630 NetbufAlloc (
1631   IN UINT32                 Len
1632   );
1633 
1634 /**
1635   Free the net buffer and its associated NET_VECTOR.
1636 
1637   Decrease the reference count of the net buffer by one. Free the associated net
1638   vector and itself if the reference count of the net buffer is decreased to 0.
1639   The net vector free operation decreases the reference count of the net
1640   vector by one, and performs the resource free operation when the reference count
1641   of the net vector is 0.
1642 
1643   @param[in]  Nbuf                  The pointer to the NET_BUF to be freed.
1644 
1645 **/
1646 VOID
1647 EFIAPI
1648 NetbufFree (
1649   IN NET_BUF                *Nbuf
1650   );
1651 
1652 /**
1653   Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1654   buffer.
1655 
1656   For example, this function can be used to retrieve the IP header in the packet. It
1657   also can be used to get the fragment that contains the byte used
1658   mainly by the library implementation itself.
1659 
1660   @param[in]   Nbuf      The pointer to the net buffer.
1661   @param[in]   Offset    The offset of the byte.
1662   @param[out]  Index     Index of the NET_BLOCK_OP that contains the byte at
1663                          Offset.
1664 
1665   @return       The pointer to the Offset'th byte of data in the net buffer, or NULL
1666                 if there is no such data in the net buffer.
1667 
1668 **/
1669 UINT8  *
1670 EFIAPI
1671 NetbufGetByte (
1672   IN  NET_BUF               *Nbuf,
1673   IN  UINT32                Offset,
1674   OUT UINT32                *Index  OPTIONAL
1675   );
1676 
1677 /**
1678   Create a copy of the net buffer that shares the associated net vector.
1679 
1680   The reference count of the newly created net buffer is set to 1. The reference
1681   count of the associated net vector is increased by one.
1682 
1683   @param[in]  Nbuf              The pointer to the net buffer to be cloned.
1684 
1685   @return                       The pointer to the cloned net buffer, or NULL if the
1686                                 allocation failed due to resource limitations.
1687 
1688 **/
1689 NET_BUF *
1690 EFIAPI
1691 NetbufClone (
1692   IN NET_BUF                *Nbuf
1693   );
1694 
1695 /**
1696   Create a duplicated copy of the net buffer with data copied and HeadSpace
1697   bytes of head space reserved.
1698 
1699   The duplicated net buffer will allocate its own memory to hold the data of the
1700   source net buffer.
1701 
1702   @param[in]       Nbuf         The pointer to the net buffer to be duplicated from.
1703   @param[in, out]  Duplicate    The pointer to the net buffer to duplicate to. If
1704                                 NULL, a new net buffer is allocated.
1705   @param[in]      HeadSpace     The length of the head space to reserve.
1706 
1707   @return                       The pointer to the duplicated net buffer, or NULL if
1708                                 the allocation failed due to resource limitations.
1709 
1710 **/
1711 NET_BUF  *
1712 EFIAPI
1713 NetbufDuplicate (
1714   IN NET_BUF                *Nbuf,
1715   IN OUT NET_BUF            *Duplicate        OPTIONAL,
1716   IN UINT32                 HeadSpace
1717   );
1718 
1719 /**
1720   Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1721   Offset.
1722 
1723   A new NET_BUF structure will be created but the associated data in NET_VECTOR
1724   is shared. This function exists to perform IP packet fragmentation.
1725 
1726   @param[in]  Nbuf         The pointer to the net buffer to be extracted.
1727   @param[in]  Offset       Starting point of the data to be included in the new
1728                            net buffer.
1729   @param[in]  Len          The bytes of data to be included in the new net buffer.
1730   @param[in]  HeadSpace    The bytes of the head space to reserve for the protocol header.
1731 
1732   @return                  The pointer to the cloned net buffer, or NULL if the
1733                            allocation failed due to resource limitations.
1734 
1735 **/
1736 NET_BUF  *
1737 EFIAPI
1738 NetbufGetFragment (
1739   IN NET_BUF                *Nbuf,
1740   IN UINT32                 Offset,
1741   IN UINT32                 Len,
1742   IN UINT32                 HeadSpace
1743   );
1744 
1745 /**
1746   Reserve some space in the header room of the net buffer.
1747 
1748   Upon allocation, all the space is in the tail room of the buffer. Call this
1749   function to move space to the header room. This function is quite limited
1750   in that it can only reserve space from the first block of an empty NET_BUF not
1751   built from the external. However, it should be enough for the network stack.
1752 
1753   @param[in, out]  Nbuf     The pointer to the net buffer.
1754   @param[in]       Len      The length of buffer to be reserved from the header.
1755 
1756 **/
1757 VOID
1758 EFIAPI
1759 NetbufReserve (
1760   IN OUT NET_BUF            *Nbuf,
1761   IN UINT32                 Len
1762   );
1763 
1764 /**
1765   Allocate Len bytes of space from the header or tail of the buffer.
1766 
1767   @param[in, out]  Nbuf       The pointer to the net buffer.
1768   @param[in]       Len        The length of the buffer to be allocated.
1769   @param[in]       FromHead   The flag to indicate whether to reserve the data
1770                               from head (TRUE) or tail (FALSE).
1771 
1772   @return                     The pointer to the first byte of the allocated buffer,
1773                               or NULL, if there is no sufficient space.
1774 
1775 **/
1776 UINT8*
1777 EFIAPI
1778 NetbufAllocSpace (
1779   IN OUT NET_BUF            *Nbuf,
1780   IN UINT32                 Len,
1781   IN BOOLEAN                FromHead
1782   );
1783 
1784 /**
1785   Trim Len bytes from the header or the tail of the net buffer.
1786 
1787   @param[in, out]  Nbuf         The pointer to the net buffer.
1788   @param[in]       Len          The length of the data to be trimmed.
1789   @param[in]      FromHead      The flag to indicate whether trim data is from the
1790                                 head (TRUE) or the tail (FALSE).
1791 
1792   @return    The length of the actual trimmed data, which may be less
1793              than Len if the TotalSize of Nbuf is less than Len.
1794 
1795 **/
1796 UINT32
1797 EFIAPI
1798 NetbufTrim (
1799   IN OUT NET_BUF            *Nbuf,
1800   IN UINT32                 Len,
1801   IN BOOLEAN                FromHead
1802   );
1803 
1804 /**
1805   Copy Len bytes of data from the specific offset of the net buffer to the
1806   destination memory.
1807 
1808   The Len bytes of data may cross several fragments of the net buffer.
1809 
1810   @param[in]   Nbuf         The pointer to the net buffer.
1811   @param[in]   Offset       The sequence number of the first byte to copy.
1812   @param[in]   Len          The length of the data to copy.
1813   @param[in]   Dest         The destination of the data to copy to.
1814 
1815   @return           The length of the actual copied data, or 0 if the offset
1816                     specified exceeds the total size of net buffer.
1817 
1818 **/
1819 UINT32
1820 EFIAPI
1821 NetbufCopy (
1822   IN NET_BUF                *Nbuf,
1823   IN UINT32                 Offset,
1824   IN UINT32                 Len,
1825   IN UINT8                  *Dest
1826   );
1827 
1828 /**
1829   Build a NET_BUF from external blocks.
1830 
1831   A new NET_BUF structure will be created from external blocks. An additional block
1832   of memory will be allocated to hold reserved HeadSpace bytes of header room
1833   and existing HeadLen bytes of header, but the external blocks are shared by the
1834   net buffer to avoid data copying.
1835 
1836   @param[in]  ExtFragment           The pointer to the data block.
1837   @param[in]  ExtNum                The number of the data blocks.
1838   @param[in]  HeadSpace             The head space to be reserved.
1839   @param[in]  HeadLen               The length of the protocol header. The function
1840                                     pulls this amount of data into a linear block.
1841   @param[in]  ExtFree               The pointer to the caller-provided free function.
1842   @param[in]  Arg                   The argument passed to ExtFree when ExtFree is
1843                                     called.
1844 
1845   @return                  The pointer to the net buffer built from the data blocks,
1846                            or NULL if the allocation failed due to resource
1847                            limit.
1848 
1849 **/
1850 NET_BUF  *
1851 EFIAPI
1852 NetbufFromExt (
1853   IN NET_FRAGMENT           *ExtFragment,
1854   IN UINT32                 ExtNum,
1855   IN UINT32                 HeadSpace,
1856   IN UINT32                 HeadLen,
1857   IN NET_VECTOR_EXT_FREE    ExtFree,
1858   IN VOID                   *Arg          OPTIONAL
1859   );
1860 
1861 /**
1862   Build a fragment table to contain the fragments in the net buffer. This is the
1863   opposite operation of the NetbufFromExt.
1864 
1865   @param[in]       Nbuf                  Points to the net buffer.
1866   @param[in, out]  ExtFragment           The pointer to the data block.
1867   @param[in, out]  ExtNum                The number of the data blocks.
1868 
1869   @retval EFI_BUFFER_TOO_SMALL  The number of non-empty blocks is bigger than
1870                                 ExtNum.
1871   @retval EFI_SUCCESS           The fragment table was built successfully.
1872 
1873 **/
1874 EFI_STATUS
1875 EFIAPI
1876 NetbufBuildExt (
1877   IN NET_BUF                *Nbuf,
1878   IN OUT NET_FRAGMENT       *ExtFragment,
1879   IN OUT UINT32             *ExtNum
1880   );
1881 
1882 /**
1883   Build a net buffer from a list of net buffers.
1884 
1885   All the fragments will be collected from the list of NEW_BUF, and then a new
1886   net buffer will be created through NetbufFromExt.
1887 
1888   @param[in]   BufList    A List of the net buffer.
1889   @param[in]   HeadSpace  The head space to be reserved.
1890   @param[in]   HeaderLen  The length of the protocol header. The function
1891                           pulls this amount of data into a linear block.
1892   @param[in]   ExtFree    The pointer to the caller provided free function.
1893   @param[in]   Arg        The argument passed to ExtFree when ExtFree is called.
1894 
1895   @return                 The pointer to the net buffer built from the list of net
1896                           buffers.
1897 
1898 **/
1899 NET_BUF  *
1900 EFIAPI
1901 NetbufFromBufList (
1902   IN LIST_ENTRY             *BufList,
1903   IN UINT32                 HeadSpace,
1904   IN UINT32                 HeaderLen,
1905   IN NET_VECTOR_EXT_FREE    ExtFree,
1906   IN VOID                   *Arg              OPTIONAL
1907   );
1908 
1909 /**
1910   Free a list of net buffers.
1911 
1912   @param[in, out]  Head              The pointer to the head of linked net buffers.
1913 
1914 **/
1915 VOID
1916 EFIAPI
1917 NetbufFreeList (
1918   IN OUT LIST_ENTRY         *Head
1919   );
1920 
1921 /**
1922   Initiate the net buffer queue.
1923 
1924   @param[in, out]  NbufQue   The pointer to the net buffer queue to be initialized.
1925 
1926 **/
1927 VOID
1928 EFIAPI
1929 NetbufQueInit (
1930   IN OUT NET_BUF_QUEUE          *NbufQue
1931   );
1932 
1933 /**
1934   Allocate and initialize a net buffer queue.
1935 
1936   @return         The pointer to the allocated net buffer queue, or NULL if the
1937                   allocation failed due to resource limit.
1938 
1939 **/
1940 NET_BUF_QUEUE  *
1941 EFIAPI
1942 NetbufQueAlloc (
1943   VOID
1944   );
1945 
1946 /**
1947   Free a net buffer queue.
1948 
1949   Decrease the reference count of the net buffer queue by one. The real resource
1950   free operation isn't performed until the reference count of the net buffer
1951   queue is decreased to 0.
1952 
1953   @param[in]  NbufQue               The pointer to the net buffer queue to be freed.
1954 
1955 **/
1956 VOID
1957 EFIAPI
1958 NetbufQueFree (
1959   IN NET_BUF_QUEUE          *NbufQue
1960   );
1961 
1962 /**
1963   Remove a net buffer from the head in the specific queue and return it.
1964 
1965   @param[in, out]  NbufQue               The pointer to the net buffer queue.
1966 
1967   @return           The pointer to the net buffer removed from the specific queue,
1968                     or NULL if there is no net buffer in the specific queue.
1969 
1970 **/
1971 NET_BUF  *
1972 EFIAPI
1973 NetbufQueRemove (
1974   IN OUT NET_BUF_QUEUE          *NbufQue
1975   );
1976 
1977 /**
1978   Append a net buffer to the net buffer queue.
1979 
1980   @param[in, out]  NbufQue            The pointer to the net buffer queue.
1981   @param[in, out]  Nbuf               The pointer to the net buffer to be appended.
1982 
1983 **/
1984 VOID
1985 EFIAPI
1986 NetbufQueAppend (
1987   IN OUT NET_BUF_QUEUE          *NbufQue,
1988   IN OUT NET_BUF                *Nbuf
1989   );
1990 
1991 /**
1992   Copy Len bytes of data from the net buffer queue at the specific offset to the
1993   destination memory.
1994 
1995   The copying operation is the same as NetbufCopy, but applies to the net buffer
1996   queue instead of the net buffer.
1997 
1998   @param[in]   NbufQue         The pointer to the net buffer queue.
1999   @param[in]   Offset          The sequence number of the first byte to copy.
2000   @param[in]   Len             The length of the data to copy.
2001   @param[out]  Dest            The destination of the data to copy to.
2002 
2003   @return       The length of the actual copied data, or 0 if the offset
2004                 specified exceeds the total size of net buffer queue.
2005 
2006 **/
2007 UINT32
2008 EFIAPI
2009 NetbufQueCopy (
2010   IN NET_BUF_QUEUE          *NbufQue,
2011   IN UINT32                 Offset,
2012   IN UINT32                 Len,
2013   OUT UINT8                 *Dest
2014   );
2015 
2016 /**
2017   Trim Len bytes of data from the buffer queue and free any net buffer
2018   that is completely trimmed.
2019 
2020   The trimming operation is the same as NetbufTrim but applies to the net buffer
2021   queue instead of the net buffer.
2022 
2023   @param[in, out]  NbufQue               The pointer to the net buffer queue.
2024   @param[in]       Len                   The length of the data to trim.
2025 
2026   @return   The actual length of the data trimmed.
2027 
2028 **/
2029 UINT32
2030 EFIAPI
2031 NetbufQueTrim (
2032   IN OUT NET_BUF_QUEUE      *NbufQue,
2033   IN UINT32                 Len
2034   );
2035 
2036 
2037 /**
2038   Flush the net buffer queue.
2039 
2040   @param[in, out]  NbufQue               The pointer to the queue to be flushed.
2041 
2042 **/
2043 VOID
2044 EFIAPI
2045 NetbufQueFlush (
2046   IN OUT NET_BUF_QUEUE          *NbufQue
2047   );
2048 
2049 /**
2050   Compute the checksum for a bulk of data.
2051 
2052   @param[in]   Bulk                  The pointer to the data.
2053   @param[in]   Len                   The length of the data, in bytes.
2054 
2055   @return    The computed checksum.
2056 
2057 **/
2058 UINT16
2059 EFIAPI
2060 NetblockChecksum (
2061   IN UINT8                  *Bulk,
2062   IN UINT32                 Len
2063   );
2064 
2065 /**
2066   Add two checksums.
2067 
2068   @param[in]   Checksum1             The first checksum to be added.
2069   @param[in]   Checksum2             The second checksum to be added.
2070 
2071   @return         The new checksum.
2072 
2073 **/
2074 UINT16
2075 EFIAPI
2076 NetAddChecksum (
2077   IN UINT16                 Checksum1,
2078   IN UINT16                 Checksum2
2079   );
2080 
2081 /**
2082   Compute the checksum for a NET_BUF.
2083 
2084   @param[in]   Nbuf                  The pointer to the net buffer.
2085 
2086   @return    The computed checksum.
2087 
2088 **/
2089 UINT16
2090 EFIAPI
2091 NetbufChecksum (
2092   IN NET_BUF                *Nbuf
2093   );
2094 
2095 /**
2096   Compute the checksum for TCP/UDP pseudo header.
2097 
2098   Src and Dst are in network byte order, and Len is in host byte order.
2099 
2100   @param[in]   Src                   The source address of the packet.
2101   @param[in]   Dst                   The destination address of the packet.
2102   @param[in]   Proto                 The protocol type of the packet.
2103   @param[in]   Len                   The length of the packet.
2104 
2105   @return   The computed checksum.
2106 
2107 **/
2108 UINT16
2109 EFIAPI
2110 NetPseudoHeadChecksum (
2111   IN IP4_ADDR               Src,
2112   IN IP4_ADDR               Dst,
2113   IN UINT8                  Proto,
2114   IN UINT16                 Len
2115   );
2116 
2117 /**
2118   Compute the checksum for the TCP6/UDP6 pseudo header.
2119 
2120   Src and Dst are in network byte order, and Len is in host byte order.
2121 
2122   @param[in]   Src                   The source address of the packet.
2123   @param[in]   Dst                   The destination address of the packet.
2124   @param[in]   NextHeader            The protocol type of the packet.
2125   @param[in]   Len                   The length of the packet.
2126 
2127   @return   The computed checksum.
2128 
2129 **/
2130 UINT16
2131 EFIAPI
2132 NetIp6PseudoHeadChecksum (
2133   IN EFI_IPv6_ADDRESS       *Src,
2134   IN EFI_IPv6_ADDRESS       *Dst,
2135   IN UINT8                  NextHeader,
2136   IN UINT32                 Len
2137   );
2138 
2139 /**
2140   The function frees the net buffer which allocated by the IP protocol. It releases
2141   only the net buffer and doesn't call the external free function.
2142 
2143   This function should be called after finishing the process of mIpSec->ProcessExt()
2144   for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2145   buffer for the ESP, so there needs a function to free the old net buffer.
2146 
2147   @param[in]  Nbuf       The network buffer to be freed.
2148 
2149 **/
2150 VOID
2151 NetIpSecNetbufFree (
2152   NET_BUF   *Nbuf
2153   );
2154 
2155 /**
2156   This function obtains the system guid from the smbios table.
2157 
2158   @param[out]  SystemGuid     The pointer of the returned system guid.
2159 
2160   @retval EFI_SUCCESS         Successfully obtained the system guid.
2161   @retval EFI_NOT_FOUND       Did not find the SMBIOS table.
2162 
2163 **/
2164 EFI_STATUS
2165 EFIAPI
2166 NetLibGetSystemGuid (
2167   OUT EFI_GUID              *SystemGuid
2168   );
2169 
2170 /**
2171   Create Dns QName according the queried domain name.
2172   QName is a domain name represented as a sequence of labels,
2173   where each label consists of a length octet followed by that
2174   number of octets. The QName terminates with the zero
2175   length octet for the null label of the root. Caller should
2176   take responsibility to free the buffer in returned pointer.
2177 
2178   @param  DomainName    The pointer to the queried domain name string.
2179 
2180   @retval NULL          Failed to fill QName.
2181   @return               QName filled successfully.
2182 
2183 **/
2184 CHAR8 *
2185 EFIAPI
2186 NetLibCreateDnsQName (
2187   IN  CHAR16              *DomainName
2188   );
2189 
2190 #endif
2191