1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime. The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Compiler.h"
36 #include <cstdarg>
37
38 using namespace clang;
39 using namespace CodeGen;
40
41 namespace {
42 /// Class that lazily initialises the runtime function. Avoids inserting the
43 /// types and the function declaration into a module if they're not used, and
44 /// avoids constructing the type more than once if it's used more than once.
45 class LazyRuntimeFunction {
46 CodeGenModule *CGM;
47 llvm::FunctionType *FTy;
48 const char *FunctionName;
49 llvm::Constant *Function;
50
51 public:
52 /// Constructor leaves this class uninitialized, because it is intended to
53 /// be used as a field in another class and not all of the types that are
54 /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()55 LazyRuntimeFunction()
56 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
57
58 /// Initialises the lazy function with the name, return type, and the types
59 /// of the arguments.
60 LLVM_END_WITH_NULL
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,...)61 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, ...) {
62 CGM = Mod;
63 FunctionName = name;
64 Function = nullptr;
65 std::vector<llvm::Type *> ArgTys;
66 va_list Args;
67 va_start(Args, RetTy);
68 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type *))
69 ArgTys.push_back(ArgTy);
70 va_end(Args);
71 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
72 }
73
getType()74 llvm::FunctionType *getType() { return FTy; }
75
76 /// Overloaded cast operator, allows the class to be implicitly cast to an
77 /// LLVM constant.
operator llvm::Constant*()78 operator llvm::Constant *() {
79 if (!Function) {
80 if (!FunctionName)
81 return nullptr;
82 Function =
83 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
84 }
85 return Function;
86 }
operator llvm::Function*()87 operator llvm::Function *() {
88 return cast<llvm::Function>((llvm::Constant *)*this);
89 }
90 };
91
92
93 /// GNU Objective-C runtime code generation. This class implements the parts of
94 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
95 /// GNUstep and ObjFW).
96 class CGObjCGNU : public CGObjCRuntime {
97 protected:
98 /// The LLVM module into which output is inserted
99 llvm::Module &TheModule;
100 /// strut objc_super. Used for sending messages to super. This structure
101 /// contains the receiver (object) and the expected class.
102 llvm::StructType *ObjCSuperTy;
103 /// struct objc_super*. The type of the argument to the superclass message
104 /// lookup functions.
105 llvm::PointerType *PtrToObjCSuperTy;
106 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
107 /// SEL is included in a header somewhere, in which case it will be whatever
108 /// type is declared in that header, most likely {i8*, i8*}.
109 llvm::PointerType *SelectorTy;
110 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
111 /// places where it's used
112 llvm::IntegerType *Int8Ty;
113 /// Pointer to i8 - LLVM type of char*, for all of the places where the
114 /// runtime needs to deal with C strings.
115 llvm::PointerType *PtrToInt8Ty;
116 /// Instance Method Pointer type. This is a pointer to a function that takes,
117 /// at a minimum, an object and a selector, and is the generic type for
118 /// Objective-C methods. Due to differences between variadic / non-variadic
119 /// calling conventions, it must always be cast to the correct type before
120 /// actually being used.
121 llvm::PointerType *IMPTy;
122 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
123 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
124 /// but if the runtime header declaring it is included then it may be a
125 /// pointer to a structure.
126 llvm::PointerType *IdTy;
127 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
128 /// message lookup function and some GC-related functions.
129 llvm::PointerType *PtrToIdTy;
130 /// The clang type of id. Used when using the clang CGCall infrastructure to
131 /// call Objective-C methods.
132 CanQualType ASTIdTy;
133 /// LLVM type for C int type.
134 llvm::IntegerType *IntTy;
135 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
136 /// used in the code to document the difference between i8* meaning a pointer
137 /// to a C string and i8* meaning a pointer to some opaque type.
138 llvm::PointerType *PtrTy;
139 /// LLVM type for C long type. The runtime uses this in a lot of places where
140 /// it should be using intptr_t, but we can't fix this without breaking
141 /// compatibility with GCC...
142 llvm::IntegerType *LongTy;
143 /// LLVM type for C size_t. Used in various runtime data structures.
144 llvm::IntegerType *SizeTy;
145 /// LLVM type for C intptr_t.
146 llvm::IntegerType *IntPtrTy;
147 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
148 llvm::IntegerType *PtrDiffTy;
149 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
150 /// variables.
151 llvm::PointerType *PtrToIntTy;
152 /// LLVM type for Objective-C BOOL type.
153 llvm::Type *BoolTy;
154 /// 32-bit integer type, to save us needing to look it up every time it's used.
155 llvm::IntegerType *Int32Ty;
156 /// 64-bit integer type, to save us needing to look it up every time it's used.
157 llvm::IntegerType *Int64Ty;
158 /// Metadata kind used to tie method lookups to message sends. The GNUstep
159 /// runtime provides some LLVM passes that can use this to do things like
160 /// automatic IMP caching and speculative inlining.
161 unsigned msgSendMDKind;
162
163 /// Helper function that generates a constant string and returns a pointer to
164 /// the start of the string. The result of this function can be used anywhere
165 /// where the C code specifies const char*.
MakeConstantString(const std::string & Str,const std::string & Name="")166 llvm::Constant *MakeConstantString(const std::string &Str,
167 const std::string &Name="") {
168 ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name.c_str());
169 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
170 Array.getPointer(), Zeros);
171 }
172
173 /// Emits a linkonce_odr string, whose name is the prefix followed by the
174 /// string value. This allows the linker to combine the strings between
175 /// different modules. Used for EH typeinfo names, selector strings, and a
176 /// few other things.
ExportUniqueString(const std::string & Str,const std::string prefix)177 llvm::Constant *ExportUniqueString(const std::string &Str,
178 const std::string prefix) {
179 std::string name = prefix + Str;
180 auto *ConstStr = TheModule.getGlobalVariable(name);
181 if (!ConstStr) {
182 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
183 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
184 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
185 }
186 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
187 ConstStr, Zeros);
188 }
189
190 /// Generates a global structure, initialized by the elements in the vector.
191 /// The element types must match the types of the structure elements in the
192 /// first argument.
MakeGlobal(llvm::StructType * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)193 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
194 ArrayRef<llvm::Constant *> V,
195 CharUnits Align,
196 StringRef Name="",
197 llvm::GlobalValue::LinkageTypes linkage
198 =llvm::GlobalValue::InternalLinkage) {
199 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
200 auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
201 linkage, C, Name);
202 GV->setAlignment(Align.getQuantity());
203 return GV;
204 }
205
206 /// Generates a global array. The vector must contain the same number of
207 /// elements that the array type declares, of the type specified as the array
208 /// element type.
MakeGlobal(llvm::ArrayType * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)209 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
210 ArrayRef<llvm::Constant *> V,
211 CharUnits Align,
212 StringRef Name="",
213 llvm::GlobalValue::LinkageTypes linkage
214 =llvm::GlobalValue::InternalLinkage) {
215 llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
216 auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
217 linkage, C, Name);
218 GV->setAlignment(Align.getQuantity());
219 return GV;
220 }
221
222 /// Generates a global array, inferring the array type from the specified
223 /// element type and the size of the initialiser.
MakeGlobalArray(llvm::Type * Ty,ArrayRef<llvm::Constant * > V,CharUnits Align,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)224 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
225 ArrayRef<llvm::Constant *> V,
226 CharUnits Align,
227 StringRef Name="",
228 llvm::GlobalValue::LinkageTypes linkage
229 =llvm::GlobalValue::InternalLinkage) {
230 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
231 return MakeGlobal(ArrayTy, V, Align, Name, linkage);
232 }
233
234 /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)235 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
236 const Decl *Container) {
237 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
238 if ((R.getKind() == ObjCRuntime::GNUstep) &&
239 (R.getVersion() >= VersionTuple(1, 6))) {
240 std::string NameAndAttributes;
241 std::string TypeStr;
242 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
243 NameAndAttributes += '\0';
244 NameAndAttributes += TypeStr.length() + 3;
245 NameAndAttributes += TypeStr;
246 NameAndAttributes += '\0';
247 NameAndAttributes += PD->getNameAsString();
248 return MakeConstantString(NameAndAttributes);
249 }
250 return MakeConstantString(PD->getNameAsString());
251 }
252
253 /// Push the property attributes into two structure fields.
PushPropertyAttributes(std::vector<llvm::Constant * > & Fields,ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)254 void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
255 ObjCPropertyDecl *property, bool isSynthesized=true, bool
256 isDynamic=true) {
257 int attrs = property->getPropertyAttributes();
258 // For read-only properties, clear the copy and retain flags
259 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
260 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
261 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
262 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
263 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
264 }
265 // The first flags field has the same attribute values as clang uses internally
266 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
267 attrs >>= 8;
268 attrs <<= 2;
269 // For protocol properties, synthesized and dynamic have no meaning, so we
270 // reuse these flags to indicate that this is a protocol property (both set
271 // has no meaning, as a property can't be both synthesized and dynamic)
272 attrs |= isSynthesized ? (1<<0) : 0;
273 attrs |= isDynamic ? (1<<1) : 0;
274 // The second field is the next four fields left shifted by two, with the
275 // low bit set to indicate whether the field is synthesized or dynamic.
276 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
277 // Two padding fields
278 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
279 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
280 }
281
282 /// Ensures that the value has the required type, by inserting a bitcast if
283 /// required. This function lets us avoid inserting bitcasts that are
284 /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)285 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
286 if (V->getType() == Ty) return V;
287 return B.CreateBitCast(V, Ty);
288 }
EnforceType(CGBuilderTy & B,Address V,llvm::Type * Ty)289 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
290 if (V.getType() == Ty) return V;
291 return B.CreateBitCast(V, Ty);
292 }
293
294 // Some zeros used for GEPs in lots of places.
295 llvm::Constant *Zeros[2];
296 /// Null pointer value. Mainly used as a terminator in various arrays.
297 llvm::Constant *NULLPtr;
298 /// LLVM context.
299 llvm::LLVMContext &VMContext;
300
301 private:
302 /// Placeholder for the class. Lots of things refer to the class before we've
303 /// actually emitted it. We use this alias as a placeholder, and then replace
304 /// it with a pointer to the class structure before finally emitting the
305 /// module.
306 llvm::GlobalAlias *ClassPtrAlias;
307 /// Placeholder for the metaclass. Lots of things refer to the class before
308 /// we've / actually emitted it. We use this alias as a placeholder, and then
309 /// replace / it with a pointer to the metaclass structure before finally
310 /// emitting the / module.
311 llvm::GlobalAlias *MetaClassPtrAlias;
312 /// All of the classes that have been generated for this compilation units.
313 std::vector<llvm::Constant*> Classes;
314 /// All of the categories that have been generated for this compilation units.
315 std::vector<llvm::Constant*> Categories;
316 /// All of the Objective-C constant strings that have been generated for this
317 /// compilation units.
318 std::vector<llvm::Constant*> ConstantStrings;
319 /// Map from string values to Objective-C constant strings in the output.
320 /// Used to prevent emitting Objective-C strings more than once. This should
321 /// not be required at all - CodeGenModule should manage this list.
322 llvm::StringMap<llvm::Constant*> ObjCStrings;
323 /// All of the protocols that have been declared.
324 llvm::StringMap<llvm::Constant*> ExistingProtocols;
325 /// For each variant of a selector, we store the type encoding and a
326 /// placeholder value. For an untyped selector, the type will be the empty
327 /// string. Selector references are all done via the module's selector table,
328 /// so we create an alias as a placeholder and then replace it with the real
329 /// value later.
330 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
331 /// Type of the selector map. This is roughly equivalent to the structure
332 /// used in the GNUstep runtime, which maintains a list of all of the valid
333 /// types for a selector in a table.
334 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
335 SelectorMap;
336 /// A map from selectors to selector types. This allows us to emit all
337 /// selectors of the same name and type together.
338 SelectorMap SelectorTable;
339
340 /// Selectors related to memory management. When compiling in GC mode, we
341 /// omit these.
342 Selector RetainSel, ReleaseSel, AutoreleaseSel;
343 /// Runtime functions used for memory management in GC mode. Note that clang
344 /// supports code generation for calling these functions, but neither GNU
345 /// runtime actually supports this API properly yet.
346 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
347 WeakAssignFn, GlobalAssignFn;
348
349 typedef std::pair<std::string, std::string> ClassAliasPair;
350 /// All classes that have aliases set for them.
351 std::vector<ClassAliasPair> ClassAliases;
352
353 protected:
354 /// Function used for throwing Objective-C exceptions.
355 LazyRuntimeFunction ExceptionThrowFn;
356 /// Function used for rethrowing exceptions, used at the end of \@finally or
357 /// \@synchronize blocks.
358 LazyRuntimeFunction ExceptionReThrowFn;
359 /// Function called when entering a catch function. This is required for
360 /// differentiating Objective-C exceptions and foreign exceptions.
361 LazyRuntimeFunction EnterCatchFn;
362 /// Function called when exiting from a catch block. Used to do exception
363 /// cleanup.
364 LazyRuntimeFunction ExitCatchFn;
365 /// Function called when entering an \@synchronize block. Acquires the lock.
366 LazyRuntimeFunction SyncEnterFn;
367 /// Function called when exiting an \@synchronize block. Releases the lock.
368 LazyRuntimeFunction SyncExitFn;
369
370 private:
371 /// Function called if fast enumeration detects that the collection is
372 /// modified during the update.
373 LazyRuntimeFunction EnumerationMutationFn;
374 /// Function for implementing synthesized property getters that return an
375 /// object.
376 LazyRuntimeFunction GetPropertyFn;
377 /// Function for implementing synthesized property setters that return an
378 /// object.
379 LazyRuntimeFunction SetPropertyFn;
380 /// Function used for non-object declared property getters.
381 LazyRuntimeFunction GetStructPropertyFn;
382 /// Function used for non-object declared property setters.
383 LazyRuntimeFunction SetStructPropertyFn;
384
385 /// The version of the runtime that this class targets. Must match the
386 /// version in the runtime.
387 int RuntimeVersion;
388 /// The version of the protocol class. Used to differentiate between ObjC1
389 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
390 /// components and can not contain declared properties. We always emit
391 /// Objective-C 2 property structures, but we have to pretend that they're
392 /// Objective-C 1 property structures when targeting the GCC runtime or it
393 /// will abort.
394 const int ProtocolVersion;
395
396 /// Generates an instance variable list structure. This is a structure
397 /// containing a size and an array of structures containing instance variable
398 /// metadata. This is used purely for introspection in the fragile ABI. In
399 /// the non-fragile ABI, it's used for instance variable fixup.
400 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
401 ArrayRef<llvm::Constant *> IvarTypes,
402 ArrayRef<llvm::Constant *> IvarOffsets);
403
404 /// Generates a method list structure. This is a structure containing a size
405 /// and an array of structures containing method metadata.
406 ///
407 /// This structure is used by both classes and categories, and contains a next
408 /// pointer allowing them to be chained together in a linked list.
409 llvm::Constant *GenerateMethodList(StringRef ClassName,
410 StringRef CategoryName,
411 ArrayRef<Selector> MethodSels,
412 ArrayRef<llvm::Constant *> MethodTypes,
413 bool isClassMethodList);
414
415 /// Emits an empty protocol. This is used for \@protocol() where no protocol
416 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
417 /// real protocol.
418 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
419
420 /// Generates a list of property metadata structures. This follows the same
421 /// pattern as method and instance variable metadata lists.
422 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
423 SmallVectorImpl<Selector> &InstanceMethodSels,
424 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
425
426 /// Generates a list of referenced protocols. Classes, categories, and
427 /// protocols all use this structure.
428 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
429
430 /// To ensure that all protocols are seen by the runtime, we add a category on
431 /// a class defined in the runtime, declaring no methods, but adopting the
432 /// protocols. This is a horribly ugly hack, but it allows us to collect all
433 /// of the protocols without changing the ABI.
434 void GenerateProtocolHolderCategory();
435
436 /// Generates a class structure.
437 llvm::Constant *GenerateClassStructure(
438 llvm::Constant *MetaClass,
439 llvm::Constant *SuperClass,
440 unsigned info,
441 const char *Name,
442 llvm::Constant *Version,
443 llvm::Constant *InstanceSize,
444 llvm::Constant *IVars,
445 llvm::Constant *Methods,
446 llvm::Constant *Protocols,
447 llvm::Constant *IvarOffsets,
448 llvm::Constant *Properties,
449 llvm::Constant *StrongIvarBitmap,
450 llvm::Constant *WeakIvarBitmap,
451 bool isMeta=false);
452
453 /// Generates a method list. This is used by protocols to define the required
454 /// and optional methods.
455 llvm::Constant *GenerateProtocolMethodList(
456 ArrayRef<llvm::Constant *> MethodNames,
457 ArrayRef<llvm::Constant *> MethodTypes);
458
459 /// Returns a selector with the specified type encoding. An empty string is
460 /// used to return an untyped selector (with the types field set to NULL).
461 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
462 const std::string &TypeEncoding);
463
464 /// Returns the variable used to store the offset of an instance variable.
465 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
466 const ObjCIvarDecl *Ivar);
467 /// Emits a reference to a class. This allows the linker to object if there
468 /// is no class of the matching name.
469
470 protected:
471 void EmitClassRef(const std::string &className);
472
473 /// Emits a pointer to the named class
474 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
475 const std::string &Name, bool isWeak);
476
477 /// Looks up the method for sending a message to the specified object. This
478 /// mechanism differs between the GCC and GNU runtimes, so this method must be
479 /// overridden in subclasses.
480 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
481 llvm::Value *&Receiver,
482 llvm::Value *cmd,
483 llvm::MDNode *node,
484 MessageSendInfo &MSI) = 0;
485
486 /// Looks up the method for sending a message to a superclass. This
487 /// mechanism differs between the GCC and GNU runtimes, so this method must
488 /// be overridden in subclasses.
489 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
490 Address ObjCSuper,
491 llvm::Value *cmd,
492 MessageSendInfo &MSI) = 0;
493
494 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
495 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
496 /// bits set to their values, LSB first, while larger ones are stored in a
497 /// structure of this / form:
498 ///
499 /// struct { int32_t length; int32_t values[length]; };
500 ///
501 /// The values in the array are stored in host-endian format, with the least
502 /// significant bit being assumed to come first in the bitfield. Therefore,
503 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
504 /// while a bitfield / with the 63rd bit set will be 1<<64.
505 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
506
507 public:
508 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
509 unsigned protocolClassVersion);
510
511 ConstantAddress GenerateConstantString(const StringLiteral *) override;
512
513 RValue
514 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
515 QualType ResultType, Selector Sel,
516 llvm::Value *Receiver, const CallArgList &CallArgs,
517 const ObjCInterfaceDecl *Class,
518 const ObjCMethodDecl *Method) override;
519 RValue
520 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
521 QualType ResultType, Selector Sel,
522 const ObjCInterfaceDecl *Class,
523 bool isCategoryImpl, llvm::Value *Receiver,
524 bool IsClassMessage, const CallArgList &CallArgs,
525 const ObjCMethodDecl *Method) override;
526 llvm::Value *GetClass(CodeGenFunction &CGF,
527 const ObjCInterfaceDecl *OID) override;
528 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
529 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
530 llvm::Value *GetSelector(CodeGenFunction &CGF,
531 const ObjCMethodDecl *Method) override;
532 llvm::Constant *GetEHType(QualType T) override;
533
534 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
535 const ObjCContainerDecl *CD) override;
536 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
537 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
538 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
539 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
540 const ObjCProtocolDecl *PD) override;
541 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
542 llvm::Function *ModuleInitFunction() override;
543 llvm::Constant *GetPropertyGetFunction() override;
544 llvm::Constant *GetPropertySetFunction() override;
545 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
546 bool copy) override;
547 llvm::Constant *GetSetStructFunction() override;
548 llvm::Constant *GetGetStructFunction() override;
549 llvm::Constant *GetCppAtomicObjectGetFunction() override;
550 llvm::Constant *GetCppAtomicObjectSetFunction() override;
551 llvm::Constant *EnumerationMutationFunction() override;
552
553 void EmitTryStmt(CodeGenFunction &CGF,
554 const ObjCAtTryStmt &S) override;
555 void EmitSynchronizedStmt(CodeGenFunction &CGF,
556 const ObjCAtSynchronizedStmt &S) override;
557 void EmitThrowStmt(CodeGenFunction &CGF,
558 const ObjCAtThrowStmt &S,
559 bool ClearInsertionPoint=true) override;
560 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
561 Address AddrWeakObj) override;
562 void EmitObjCWeakAssign(CodeGenFunction &CGF,
563 llvm::Value *src, Address dst) override;
564 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
565 llvm::Value *src, Address dest,
566 bool threadlocal=false) override;
567 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
568 Address dest, llvm::Value *ivarOffset) override;
569 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
570 llvm::Value *src, Address dest) override;
571 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
572 Address SrcPtr,
573 llvm::Value *Size) override;
574 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
575 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
576 unsigned CVRQualifiers) override;
577 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
578 const ObjCInterfaceDecl *Interface,
579 const ObjCIvarDecl *Ivar) override;
580 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)581 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
582 const CGBlockInfo &blockInfo) override {
583 return NULLPtr;
584 }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)585 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
586 const CGBlockInfo &blockInfo) override {
587 return NULLPtr;
588 }
589
BuildByrefLayout(CodeGenModule & CGM,QualType T)590 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
591 return NULLPtr;
592 }
593
GetClassGlobal(StringRef Name,bool Weak=false)594 llvm::GlobalVariable *GetClassGlobal(StringRef Name,
595 bool Weak = false) override {
596 return nullptr;
597 }
598 };
599
600 /// Class representing the legacy GCC Objective-C ABI. This is the default when
601 /// -fobjc-nonfragile-abi is not specified.
602 ///
603 /// The GCC ABI target actually generates code that is approximately compatible
604 /// with the new GNUstep runtime ABI, but refrains from using any features that
605 /// would not work with the GCC runtime. For example, clang always generates
606 /// the extended form of the class structure, and the extra fields are simply
607 /// ignored by GCC libobjc.
608 class CGObjCGCC : public CGObjCGNU {
609 /// The GCC ABI message lookup function. Returns an IMP pointing to the
610 /// method implementation for this message.
611 LazyRuntimeFunction MsgLookupFn;
612 /// The GCC ABI superclass message lookup function. Takes a pointer to a
613 /// structure describing the receiver and the class, and a selector as
614 /// arguments. Returns the IMP for the corresponding method.
615 LazyRuntimeFunction MsgLookupSuperFn;
616
617 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)618 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
619 llvm::Value *cmd, llvm::MDNode *node,
620 MessageSendInfo &MSI) override {
621 CGBuilderTy &Builder = CGF.Builder;
622 llvm::Value *args[] = {
623 EnforceType(Builder, Receiver, IdTy),
624 EnforceType(Builder, cmd, SelectorTy) };
625 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
626 imp->setMetadata(msgSendMDKind, node);
627 return imp.getInstruction();
628 }
629
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)630 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
631 llvm::Value *cmd, MessageSendInfo &MSI) override {
632 CGBuilderTy &Builder = CGF.Builder;
633 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
634 PtrToObjCSuperTy).getPointer(), cmd};
635 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
636 }
637
638 public:
CGObjCGCC(CodeGenModule & Mod)639 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
640 // IMP objc_msg_lookup(id, SEL);
641 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
642 nullptr);
643 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
644 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
645 PtrToObjCSuperTy, SelectorTy, nullptr);
646 }
647 };
648
649 /// Class used when targeting the new GNUstep runtime ABI.
650 class CGObjCGNUstep : public CGObjCGNU {
651 /// The slot lookup function. Returns a pointer to a cacheable structure
652 /// that contains (among other things) the IMP.
653 LazyRuntimeFunction SlotLookupFn;
654 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
655 /// a structure describing the receiver and the class, and a selector as
656 /// arguments. Returns the slot for the corresponding method. Superclass
657 /// message lookup rarely changes, so this is a good caching opportunity.
658 LazyRuntimeFunction SlotLookupSuperFn;
659 /// Specialised function for setting atomic retain properties
660 LazyRuntimeFunction SetPropertyAtomic;
661 /// Specialised function for setting atomic copy properties
662 LazyRuntimeFunction SetPropertyAtomicCopy;
663 /// Specialised function for setting nonatomic retain properties
664 LazyRuntimeFunction SetPropertyNonAtomic;
665 /// Specialised function for setting nonatomic copy properties
666 LazyRuntimeFunction SetPropertyNonAtomicCopy;
667 /// Function to perform atomic copies of C++ objects with nontrivial copy
668 /// constructors from Objective-C ivars.
669 LazyRuntimeFunction CxxAtomicObjectGetFn;
670 /// Function to perform atomic copies of C++ objects with nontrivial copy
671 /// constructors to Objective-C ivars.
672 LazyRuntimeFunction CxxAtomicObjectSetFn;
673 /// Type of an slot structure pointer. This is returned by the various
674 /// lookup functions.
675 llvm::Type *SlotTy;
676
677 public:
678 llvm::Constant *GetEHType(QualType T) override;
679
680 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)681 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
682 llvm::Value *cmd, llvm::MDNode *node,
683 MessageSendInfo &MSI) override {
684 CGBuilderTy &Builder = CGF.Builder;
685 llvm::Function *LookupFn = SlotLookupFn;
686
687 // Store the receiver on the stack so that we can reload it later
688 Address ReceiverPtr =
689 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
690 Builder.CreateStore(Receiver, ReceiverPtr);
691
692 llvm::Value *self;
693
694 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
695 self = CGF.LoadObjCSelf();
696 } else {
697 self = llvm::ConstantPointerNull::get(IdTy);
698 }
699
700 // The lookup function is guaranteed not to capture the receiver pointer.
701 LookupFn->setDoesNotCapture(1);
702
703 llvm::Value *args[] = {
704 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
705 EnforceType(Builder, cmd, SelectorTy),
706 EnforceType(Builder, self, IdTy) };
707 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
708 slot.setOnlyReadsMemory();
709 slot->setMetadata(msgSendMDKind, node);
710
711 // Load the imp from the slot
712 llvm::Value *imp = Builder.CreateAlignedLoad(
713 Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4),
714 CGF.getPointerAlign());
715
716 // The lookup function may have changed the receiver, so make sure we use
717 // the new one.
718 Receiver = Builder.CreateLoad(ReceiverPtr, true);
719 return imp;
720 }
721
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)722 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
723 llvm::Value *cmd,
724 MessageSendInfo &MSI) override {
725 CGBuilderTy &Builder = CGF.Builder;
726 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
727
728 llvm::CallInst *slot =
729 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
730 slot->setOnlyReadsMemory();
731
732 return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
733 CGF.getPointerAlign());
734 }
735
736 public:
CGObjCGNUstep(CodeGenModule & Mod)737 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
738 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
739
740 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
741 PtrTy, PtrTy, IntTy, IMPTy, nullptr);
742 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
743 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
744 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
745 SelectorTy, IdTy, nullptr);
746 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
747 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
748 PtrToObjCSuperTy, SelectorTy, nullptr);
749 // If we're in ObjC++ mode, then we want to make
750 if (CGM.getLangOpts().CPlusPlus) {
751 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
752 // void *__cxa_begin_catch(void *e)
753 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
754 // void __cxa_end_catch(void)
755 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
756 // void _Unwind_Resume_or_Rethrow(void*)
757 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
758 PtrTy, nullptr);
759 } else if (R.getVersion() >= VersionTuple(1, 7)) {
760 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
761 // id objc_begin_catch(void *e)
762 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
763 // void objc_end_catch(void)
764 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
765 // void _Unwind_Resume_or_Rethrow(void*)
766 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
767 PtrTy, nullptr);
768 }
769 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
770 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
771 SelectorTy, IdTy, PtrDiffTy, nullptr);
772 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
773 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
774 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
775 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
776 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
777 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
778 // void objc_setCppObjectAtomic(void *dest, const void *src, void
779 // *helper);
780 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
781 PtrTy, PtrTy, nullptr);
782 // void objc_getCppObjectAtomic(void *dest, const void *src, void
783 // *helper);
784 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
785 PtrTy, PtrTy, nullptr);
786 }
787
GetCppAtomicObjectGetFunction()788 llvm::Constant *GetCppAtomicObjectGetFunction() override {
789 // The optimised functions were added in version 1.7 of the GNUstep
790 // runtime.
791 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
792 VersionTuple(1, 7));
793 return CxxAtomicObjectGetFn;
794 }
795
GetCppAtomicObjectSetFunction()796 llvm::Constant *GetCppAtomicObjectSetFunction() override {
797 // The optimised functions were added in version 1.7 of the GNUstep
798 // runtime.
799 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
800 VersionTuple(1, 7));
801 return CxxAtomicObjectSetFn;
802 }
803
GetOptimizedPropertySetFunction(bool atomic,bool copy)804 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
805 bool copy) override {
806 // The optimised property functions omit the GC check, and so are not
807 // safe to use in GC mode. The standard functions are fast in GC mode,
808 // so there is less advantage in using them.
809 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
810 // The optimised functions were added in version 1.7 of the GNUstep
811 // runtime.
812 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
813 VersionTuple(1, 7));
814
815 if (atomic) {
816 if (copy) return SetPropertyAtomicCopy;
817 return SetPropertyAtomic;
818 }
819
820 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
821 }
822 };
823
824 /// Support for the ObjFW runtime.
825 class CGObjCObjFW: public CGObjCGNU {
826 protected:
827 /// The GCC ABI message lookup function. Returns an IMP pointing to the
828 /// method implementation for this message.
829 LazyRuntimeFunction MsgLookupFn;
830 /// stret lookup function. While this does not seem to make sense at the
831 /// first look, this is required to call the correct forwarding function.
832 LazyRuntimeFunction MsgLookupFnSRet;
833 /// The GCC ABI superclass message lookup function. Takes a pointer to a
834 /// structure describing the receiver and the class, and a selector as
835 /// arguments. Returns the IMP for the corresponding method.
836 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
837
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)838 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
839 llvm::Value *cmd, llvm::MDNode *node,
840 MessageSendInfo &MSI) override {
841 CGBuilderTy &Builder = CGF.Builder;
842 llvm::Value *args[] = {
843 EnforceType(Builder, Receiver, IdTy),
844 EnforceType(Builder, cmd, SelectorTy) };
845
846 llvm::CallSite imp;
847 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
848 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
849 else
850 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
851
852 imp->setMetadata(msgSendMDKind, node);
853 return imp.getInstruction();
854 }
855
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)856 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
857 llvm::Value *cmd, MessageSendInfo &MSI) override {
858 CGBuilderTy &Builder = CGF.Builder;
859 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper.getPointer(),
860 PtrToObjCSuperTy), cmd};
861
862 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
863 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
864 else
865 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
866 }
867
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)868 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
869 const std::string &Name, bool isWeak) override {
870 if (isWeak)
871 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
872
873 EmitClassRef(Name);
874
875 std::string SymbolName = "_OBJC_CLASS_" + Name;
876
877 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
878
879 if (!ClassSymbol)
880 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
881 llvm::GlobalValue::ExternalLinkage,
882 nullptr, SymbolName);
883
884 return ClassSymbol;
885 }
886
887 public:
CGObjCObjFW(CodeGenModule & Mod)888 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
889 // IMP objc_msg_lookup(id, SEL);
890 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
891 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
892 SelectorTy, nullptr);
893 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
894 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
895 PtrToObjCSuperTy, SelectorTy, nullptr);
896 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
897 PtrToObjCSuperTy, SelectorTy, nullptr);
898 }
899 };
900 } // end anonymous namespace
901
902 /// Emits a reference to a dummy variable which is emitted with each class.
903 /// This ensures that a linker error will be generated when trying to link
904 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)905 void CGObjCGNU::EmitClassRef(const std::string &className) {
906 std::string symbolRef = "__objc_class_ref_" + className;
907 // Don't emit two copies of the same symbol
908 if (TheModule.getGlobalVariable(symbolRef))
909 return;
910 std::string symbolName = "__objc_class_name_" + className;
911 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
912 if (!ClassSymbol) {
913 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
914 llvm::GlobalValue::ExternalLinkage,
915 nullptr, symbolName);
916 }
917 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
918 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
919 }
920
SymbolNameForMethod(StringRef ClassName,StringRef CategoryName,const Selector MethodName,bool isClassMethod)921 static std::string SymbolNameForMethod( StringRef ClassName,
922 StringRef CategoryName, const Selector MethodName,
923 bool isClassMethod) {
924 std::string MethodNameColonStripped = MethodName.getAsString();
925 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
926 ':', '_');
927 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
928 CategoryName + "_" + MethodNameColonStripped).str();
929 }
930
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion)931 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
932 unsigned protocolClassVersion)
933 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
934 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
935 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
936 ProtocolVersion(protocolClassVersion) {
937
938 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
939
940 CodeGenTypes &Types = CGM.getTypes();
941 IntTy = cast<llvm::IntegerType>(
942 Types.ConvertType(CGM.getContext().IntTy));
943 LongTy = cast<llvm::IntegerType>(
944 Types.ConvertType(CGM.getContext().LongTy));
945 SizeTy = cast<llvm::IntegerType>(
946 Types.ConvertType(CGM.getContext().getSizeType()));
947 PtrDiffTy = cast<llvm::IntegerType>(
948 Types.ConvertType(CGM.getContext().getPointerDiffType()));
949 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
950
951 Int8Ty = llvm::Type::getInt8Ty(VMContext);
952 // C string type. Used in lots of places.
953 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
954
955 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
956 Zeros[1] = Zeros[0];
957 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
958 // Get the selector Type.
959 QualType selTy = CGM.getContext().getObjCSelType();
960 if (QualType() == selTy) {
961 SelectorTy = PtrToInt8Ty;
962 } else {
963 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
964 }
965
966 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
967 PtrTy = PtrToInt8Ty;
968
969 Int32Ty = llvm::Type::getInt32Ty(VMContext);
970 Int64Ty = llvm::Type::getInt64Ty(VMContext);
971
972 IntPtrTy =
973 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
974
975 // Object type
976 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
977 ASTIdTy = CanQualType();
978 if (UnqualIdTy != QualType()) {
979 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
980 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
981 } else {
982 IdTy = PtrToInt8Ty;
983 }
984 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
985
986 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
987 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
988
989 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
990
991 // void objc_exception_throw(id);
992 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
993 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
994 // int objc_sync_enter(id);
995 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
996 // int objc_sync_exit(id);
997 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
998
999 // void objc_enumerationMutation (id)
1000 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
1001 IdTy, nullptr);
1002
1003 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
1004 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
1005 PtrDiffTy, BoolTy, nullptr);
1006 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
1007 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
1008 PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
1009 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
1010 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
1011 PtrDiffTy, BoolTy, BoolTy, nullptr);
1012 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
1013 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
1014 PtrDiffTy, BoolTy, BoolTy, nullptr);
1015
1016 // IMP type
1017 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
1018 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
1019 true));
1020
1021 const LangOptions &Opts = CGM.getLangOpts();
1022 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
1023 RuntimeVersion = 10;
1024
1025 // Don't bother initialising the GC stuff unless we're compiling in GC mode
1026 if (Opts.getGC() != LangOptions::NonGC) {
1027 // This is a bit of an hack. We should sort this out by having a proper
1028 // CGObjCGNUstep subclass for GC, but we may want to really support the old
1029 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
1030 // Get selectors needed in GC mode
1031 RetainSel = GetNullarySelector("retain", CGM.getContext());
1032 ReleaseSel = GetNullarySelector("release", CGM.getContext());
1033 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
1034
1035 // Get functions needed in GC mode
1036
1037 // id objc_assign_ivar(id, id, ptrdiff_t);
1038 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
1039 nullptr);
1040 // id objc_assign_strongCast (id, id*)
1041 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1042 PtrToIdTy, nullptr);
1043 // id objc_assign_global(id, id*);
1044 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1045 nullptr);
1046 // id objc_assign_weak(id, id*);
1047 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1048 // id objc_read_weak(id*);
1049 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1050 // void *objc_memmove_collectable(void*, void *, size_t);
1051 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1052 SizeTy, nullptr);
1053 }
1054 }
1055
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1056 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1057 const std::string &Name,
1058 bool isWeak) {
1059 llvm::Constant *ClassName = MakeConstantString(Name);
1060 // With the incompatible ABI, this will need to be replaced with a direct
1061 // reference to the class symbol. For the compatible nonfragile ABI we are
1062 // still performing this lookup at run time but emitting the symbol for the
1063 // class externally so that we can make the switch later.
1064 //
1065 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1066 // with memoized versions or with static references if it's safe to do so.
1067 if (!isWeak)
1068 EmitClassRef(Name);
1069
1070 llvm::Constant *ClassLookupFn =
1071 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1072 "objc_lookup_class");
1073 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1074 }
1075
1076 // This has to perform the lookup every time, since posing and related
1077 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)1078 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1079 const ObjCInterfaceDecl *OID) {
1080 return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1081 }
1082
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)1083 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1084 return GetClassNamed(CGF, "NSAutoreleasePool", false);
1085 }
1086
GetSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)1087 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1088 const std::string &TypeEncoding) {
1089 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1090 llvm::GlobalAlias *SelValue = nullptr;
1091
1092 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1093 e = Types.end() ; i!=e ; i++) {
1094 if (i->first == TypeEncoding) {
1095 SelValue = i->second;
1096 break;
1097 }
1098 }
1099 if (!SelValue) {
1100 SelValue = llvm::GlobalAlias::create(
1101 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1102 ".objc_selector_" + Sel.getAsString(), &TheModule);
1103 Types.emplace_back(TypeEncoding, SelValue);
1104 }
1105
1106 return SelValue;
1107 }
1108
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1109 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1110 llvm::Value *SelValue = GetSelector(CGF, Sel);
1111
1112 // Store it to a temporary. Does this satisfy the semantics of
1113 // GetAddrOfSelector? Hopefully.
1114 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
1115 CGF.getPointerAlign());
1116 CGF.Builder.CreateStore(SelValue, tmp);
1117 return tmp;
1118 }
1119
GetSelector(CodeGenFunction & CGF,Selector Sel)1120 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1121 return GetSelector(CGF, Sel, std::string());
1122 }
1123
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1124 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1125 const ObjCMethodDecl *Method) {
1126 std::string SelTypes;
1127 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1128 return GetSelector(CGF, Method->getSelector(), SelTypes);
1129 }
1130
GetEHType(QualType T)1131 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1132 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1133 // With the old ABI, there was only one kind of catchall, which broke
1134 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
1135 // a pointer indicating object catchalls, and NULL to indicate real
1136 // catchalls
1137 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1138 return MakeConstantString("@id");
1139 } else {
1140 return nullptr;
1141 }
1142 }
1143
1144 // All other types should be Objective-C interface pointer types.
1145 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1146 assert(OPT && "Invalid @catch type.");
1147 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1148 assert(IDecl && "Invalid @catch type.");
1149 return MakeConstantString(IDecl->getIdentifier()->getName());
1150 }
1151
GetEHType(QualType T)1152 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1153 if (!CGM.getLangOpts().CPlusPlus)
1154 return CGObjCGNU::GetEHType(T);
1155
1156 // For Objective-C++, we want to provide the ability to catch both C++ and
1157 // Objective-C objects in the same function.
1158
1159 // There's a particular fixed type info for 'id'.
1160 if (T->isObjCIdType() ||
1161 T->isObjCQualifiedIdType()) {
1162 llvm::Constant *IDEHType =
1163 CGM.getModule().getGlobalVariable("__objc_id_type_info");
1164 if (!IDEHType)
1165 IDEHType =
1166 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1167 false,
1168 llvm::GlobalValue::ExternalLinkage,
1169 nullptr, "__objc_id_type_info");
1170 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1171 }
1172
1173 const ObjCObjectPointerType *PT =
1174 T->getAs<ObjCObjectPointerType>();
1175 assert(PT && "Invalid @catch type.");
1176 const ObjCInterfaceType *IT = PT->getInterfaceType();
1177 assert(IT && "Invalid @catch type.");
1178 std::string className = IT->getDecl()->getIdentifier()->getName();
1179
1180 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1181
1182 // Return the existing typeinfo if it exists
1183 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1184 if (typeinfo)
1185 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1186
1187 // Otherwise create it.
1188
1189 // vtable for gnustep::libobjc::__objc_class_type_info
1190 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
1191 // platform's name mangling.
1192 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1193 auto *Vtable = TheModule.getGlobalVariable(vtableName);
1194 if (!Vtable) {
1195 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1196 llvm::GlobalValue::ExternalLinkage,
1197 nullptr, vtableName);
1198 }
1199 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1200 auto *BVtable = llvm::ConstantExpr::getBitCast(
1201 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1202 PtrToInt8Ty);
1203
1204 llvm::Constant *typeName =
1205 ExportUniqueString(className, "__objc_eh_typename_");
1206
1207 std::vector<llvm::Constant*> fields;
1208 fields.push_back(BVtable);
1209 fields.push_back(typeName);
1210 llvm::Constant *TI =
1211 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr),
1212 fields, CGM.getPointerAlign(),
1213 "__objc_eh_typeinfo_" + className,
1214 llvm::GlobalValue::LinkOnceODRLinkage);
1215 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1216 }
1217
1218 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)1219 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1220
1221 std::string Str = SL->getString().str();
1222 CharUnits Align = CGM.getPointerAlign();
1223
1224 // Look for an existing one
1225 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1226 if (old != ObjCStrings.end())
1227 return ConstantAddress(old->getValue(), Align);
1228
1229 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1230
1231 if (StringClass.empty()) StringClass = "NXConstantString";
1232
1233 std::string Sym = "_OBJC_CLASS_";
1234 Sym += StringClass;
1235
1236 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1237
1238 if (!isa)
1239 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1240 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1241 else if (isa->getType() != PtrToIdTy)
1242 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1243
1244 std::vector<llvm::Constant*> Ivars;
1245 Ivars.push_back(isa);
1246 Ivars.push_back(MakeConstantString(Str));
1247 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1248 llvm::Constant *ObjCStr = MakeGlobal(
1249 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1250 Ivars, Align, ".objc_str");
1251 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1252 ObjCStrings[Str] = ObjCStr;
1253 ConstantStrings.push_back(ObjCStr);
1254 return ConstantAddress(ObjCStr, Align);
1255 }
1256
1257 ///Generates a message send where the super is the receiver. This is a message
1258 ///send to self with special delivery semantics indicating which class's method
1259 ///should be called.
1260 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)1261 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1262 ReturnValueSlot Return,
1263 QualType ResultType,
1264 Selector Sel,
1265 const ObjCInterfaceDecl *Class,
1266 bool isCategoryImpl,
1267 llvm::Value *Receiver,
1268 bool IsClassMessage,
1269 const CallArgList &CallArgs,
1270 const ObjCMethodDecl *Method) {
1271 CGBuilderTy &Builder = CGF.Builder;
1272 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1273 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1274 return RValue::get(EnforceType(Builder, Receiver,
1275 CGM.getTypes().ConvertType(ResultType)));
1276 }
1277 if (Sel == ReleaseSel) {
1278 return RValue::get(nullptr);
1279 }
1280 }
1281
1282 llvm::Value *cmd = GetSelector(CGF, Sel);
1283 CallArgList ActualArgs;
1284
1285 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1286 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1287 ActualArgs.addFrom(CallArgs);
1288
1289 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1290
1291 llvm::Value *ReceiverClass = nullptr;
1292 if (isCategoryImpl) {
1293 llvm::Constant *classLookupFunction = nullptr;
1294 if (IsClassMessage) {
1295 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1296 IdTy, PtrTy, true), "objc_get_meta_class");
1297 } else {
1298 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1299 IdTy, PtrTy, true), "objc_get_class");
1300 }
1301 ReceiverClass = Builder.CreateCall(classLookupFunction,
1302 MakeConstantString(Class->getNameAsString()));
1303 } else {
1304 // Set up global aliases for the metaclass or class pointer if they do not
1305 // already exist. These will are forward-references which will be set to
1306 // pointers to the class and metaclass structure created for the runtime
1307 // load function. To send a message to super, we look up the value of the
1308 // super_class pointer from either the class or metaclass structure.
1309 if (IsClassMessage) {
1310 if (!MetaClassPtrAlias) {
1311 MetaClassPtrAlias = llvm::GlobalAlias::create(
1312 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1313 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1314 }
1315 ReceiverClass = MetaClassPtrAlias;
1316 } else {
1317 if (!ClassPtrAlias) {
1318 ClassPtrAlias = llvm::GlobalAlias::create(
1319 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1320 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1321 }
1322 ReceiverClass = ClassPtrAlias;
1323 }
1324 }
1325 // Cast the pointer to a simplified version of the class structure
1326 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1327 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1328 llvm::PointerType::getUnqual(CastTy));
1329 // Get the superclass pointer
1330 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1331 // Load the superclass pointer
1332 ReceiverClass =
1333 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
1334 // Construct the structure used to look up the IMP
1335 llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1336 Receiver->getType(), IdTy, nullptr);
1337
1338 // FIXME: Is this really supposed to be a dynamic alloca?
1339 Address ObjCSuper = Address(Builder.CreateAlloca(ObjCSuperTy),
1340 CGF.getPointerAlign());
1341
1342 Builder.CreateStore(Receiver,
1343 Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1344 Builder.CreateStore(ReceiverClass,
1345 Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1346
1347 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1348
1349 // Get the IMP
1350 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1351 imp = EnforceType(Builder, imp, MSI.MessengerType);
1352
1353 llvm::Metadata *impMD[] = {
1354 llvm::MDString::get(VMContext, Sel.getAsString()),
1355 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1356 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1357 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1358 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1359
1360 llvm::Instruction *call;
1361 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1362 CGCalleeInfo(), &call);
1363 call->setMetadata(msgSendMDKind, node);
1364 return msgRet;
1365 }
1366
1367 /// Generate code for a message send expression.
1368 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1369 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1370 ReturnValueSlot Return,
1371 QualType ResultType,
1372 Selector Sel,
1373 llvm::Value *Receiver,
1374 const CallArgList &CallArgs,
1375 const ObjCInterfaceDecl *Class,
1376 const ObjCMethodDecl *Method) {
1377 CGBuilderTy &Builder = CGF.Builder;
1378
1379 // Strip out message sends to retain / release in GC mode
1380 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1381 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1382 return RValue::get(EnforceType(Builder, Receiver,
1383 CGM.getTypes().ConvertType(ResultType)));
1384 }
1385 if (Sel == ReleaseSel) {
1386 return RValue::get(nullptr);
1387 }
1388 }
1389
1390 // If the return type is something that goes in an integer register, the
1391 // runtime will handle 0 returns. For other cases, we fill in the 0 value
1392 // ourselves.
1393 //
1394 // The language spec says the result of this kind of message send is
1395 // undefined, but lots of people seem to have forgotten to read that
1396 // paragraph and insist on sending messages to nil that have structure
1397 // returns. With GCC, this generates a random return value (whatever happens
1398 // to be on the stack / in those registers at the time) on most platforms,
1399 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
1400 // the stack.
1401 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1402 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1403
1404 llvm::BasicBlock *startBB = nullptr;
1405 llvm::BasicBlock *messageBB = nullptr;
1406 llvm::BasicBlock *continueBB = nullptr;
1407
1408 if (!isPointerSizedReturn) {
1409 startBB = Builder.GetInsertBlock();
1410 messageBB = CGF.createBasicBlock("msgSend");
1411 continueBB = CGF.createBasicBlock("continue");
1412
1413 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1414 llvm::Constant::getNullValue(Receiver->getType()));
1415 Builder.CreateCondBr(isNil, continueBB, messageBB);
1416 CGF.EmitBlock(messageBB);
1417 }
1418
1419 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1420 llvm::Value *cmd;
1421 if (Method)
1422 cmd = GetSelector(CGF, Method);
1423 else
1424 cmd = GetSelector(CGF, Sel);
1425 cmd = EnforceType(Builder, cmd, SelectorTy);
1426 Receiver = EnforceType(Builder, Receiver, IdTy);
1427
1428 llvm::Metadata *impMD[] = {
1429 llvm::MDString::get(VMContext, Sel.getAsString()),
1430 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1431 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1432 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1433 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1434
1435 CallArgList ActualArgs;
1436 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1437 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1438 ActualArgs.addFrom(CallArgs);
1439
1440 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1441
1442 // Get the IMP to call
1443 llvm::Value *imp;
1444
1445 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1446 // functions. These are not supported on all platforms (or all runtimes on a
1447 // given platform), so we
1448 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1449 case CodeGenOptions::Legacy:
1450 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1451 break;
1452 case CodeGenOptions::Mixed:
1453 case CodeGenOptions::NonLegacy:
1454 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1455 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1456 "objc_msgSend_fpret");
1457 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1458 // The actual types here don't matter - we're going to bitcast the
1459 // function anyway
1460 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1461 "objc_msgSend_stret");
1462 } else {
1463 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1464 "objc_msgSend");
1465 }
1466 }
1467
1468 // Reset the receiver in case the lookup modified it
1469 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1470
1471 imp = EnforceType(Builder, imp, MSI.MessengerType);
1472
1473 llvm::Instruction *call;
1474 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1475 CGCalleeInfo(), &call);
1476 call->setMetadata(msgSendMDKind, node);
1477
1478
1479 if (!isPointerSizedReturn) {
1480 messageBB = CGF.Builder.GetInsertBlock();
1481 CGF.Builder.CreateBr(continueBB);
1482 CGF.EmitBlock(continueBB);
1483 if (msgRet.isScalar()) {
1484 llvm::Value *v = msgRet.getScalarVal();
1485 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1486 phi->addIncoming(v, messageBB);
1487 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1488 msgRet = RValue::get(phi);
1489 } else if (msgRet.isAggregate()) {
1490 Address v = msgRet.getAggregateAddress();
1491 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
1492 llvm::Type *RetTy = v.getElementType();
1493 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
1494 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
1495 phi->addIncoming(v.getPointer(), messageBB);
1496 phi->addIncoming(NullVal.getPointer(), startBB);
1497 msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
1498 } else /* isComplex() */ {
1499 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1500 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1501 phi->addIncoming(v.first, messageBB);
1502 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1503 startBB);
1504 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1505 phi2->addIncoming(v.second, messageBB);
1506 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1507 startBB);
1508 msgRet = RValue::getComplex(phi, phi2);
1509 }
1510 }
1511 return msgRet;
1512 }
1513
1514 /// Generates a MethodList. Used in construction of a objc_class and
1515 /// objc_category structures.
1516 llvm::Constant *CGObjCGNU::
GenerateMethodList(StringRef ClassName,StringRef CategoryName,ArrayRef<Selector> MethodSels,ArrayRef<llvm::Constant * > MethodTypes,bool isClassMethodList)1517 GenerateMethodList(StringRef ClassName,
1518 StringRef CategoryName,
1519 ArrayRef<Selector> MethodSels,
1520 ArrayRef<llvm::Constant *> MethodTypes,
1521 bool isClassMethodList) {
1522 if (MethodSels.empty())
1523 return NULLPtr;
1524 // Get the method structure type.
1525 llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1526 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1527 PtrToInt8Ty, // Method types
1528 IMPTy, //Method pointer
1529 nullptr);
1530 std::vector<llvm::Constant*> Methods;
1531 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1532 llvm::Constant *Method =
1533 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1534 MethodSels[i],
1535 isClassMethodList));
1536 assert(Method && "Can't generate metadata for method that doesn't exist");
1537 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1538 Method = llvm::ConstantExpr::getBitCast(Method,
1539 IMPTy);
1540 Methods.push_back(
1541 llvm::ConstantStruct::get(ObjCMethodTy, {C, MethodTypes[i], Method}));
1542 }
1543
1544 // Array of method structures
1545 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1546 Methods.size());
1547 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1548 Methods);
1549
1550 // Structure containing list pointer, array and array count
1551 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1552 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1553 ObjCMethodListTy->setBody(
1554 NextPtrTy,
1555 IntTy,
1556 ObjCMethodArrayTy,
1557 nullptr);
1558
1559 Methods.clear();
1560 Methods.push_back(llvm::ConstantPointerNull::get(
1561 llvm::PointerType::getUnqual(ObjCMethodListTy)));
1562 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1563 Methods.push_back(MethodArray);
1564
1565 // Create an instance of the structure
1566 return MakeGlobal(ObjCMethodListTy, Methods, CGM.getPointerAlign(),
1567 ".objc_method_list");
1568 }
1569
1570 /// Generates an IvarList. Used in construction of a objc_class.
1571 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets)1572 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1573 ArrayRef<llvm::Constant *> IvarTypes,
1574 ArrayRef<llvm::Constant *> IvarOffsets) {
1575 if (IvarNames.size() == 0)
1576 return NULLPtr;
1577 // Get the method structure type.
1578 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1579 PtrToInt8Ty,
1580 PtrToInt8Ty,
1581 IntTy,
1582 nullptr);
1583 std::vector<llvm::Constant*> Ivars;
1584 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1585 Ivars.push_back(llvm::ConstantStruct::get(
1586 ObjCIvarTy, {IvarNames[i], IvarTypes[i], IvarOffsets[i]}));
1587 }
1588
1589 // Array of method structures
1590 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1591 IvarNames.size());
1592
1593 llvm::Constant *Elements[] = {
1594 llvm::ConstantInt::get(IntTy, (int)IvarNames.size()),
1595 llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars)};
1596 // Structure containing array and array count
1597 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1598 ObjCIvarArrayTy,
1599 nullptr);
1600
1601 // Create an instance of the structure
1602 return MakeGlobal(ObjCIvarListTy, Elements, CGM.getPointerAlign(),
1603 ".objc_ivar_list");
1604 }
1605
1606 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)1607 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1608 llvm::Constant *MetaClass,
1609 llvm::Constant *SuperClass,
1610 unsigned info,
1611 const char *Name,
1612 llvm::Constant *Version,
1613 llvm::Constant *InstanceSize,
1614 llvm::Constant *IVars,
1615 llvm::Constant *Methods,
1616 llvm::Constant *Protocols,
1617 llvm::Constant *IvarOffsets,
1618 llvm::Constant *Properties,
1619 llvm::Constant *StrongIvarBitmap,
1620 llvm::Constant *WeakIvarBitmap,
1621 bool isMeta) {
1622 // Set up the class structure
1623 // Note: Several of these are char*s when they should be ids. This is
1624 // because the runtime performs this translation on load.
1625 //
1626 // Fields marked New ABI are part of the GNUstep runtime. We emit them
1627 // anyway; the classes will still work with the GNU runtime, they will just
1628 // be ignored.
1629 llvm::StructType *ClassTy = llvm::StructType::get(
1630 PtrToInt8Ty, // isa
1631 PtrToInt8Ty, // super_class
1632 PtrToInt8Ty, // name
1633 LongTy, // version
1634 LongTy, // info
1635 LongTy, // instance_size
1636 IVars->getType(), // ivars
1637 Methods->getType(), // methods
1638 // These are all filled in by the runtime, so we pretend
1639 PtrTy, // dtable
1640 PtrTy, // subclass_list
1641 PtrTy, // sibling_class
1642 PtrTy, // protocols
1643 PtrTy, // gc_object_type
1644 // New ABI:
1645 LongTy, // abi_version
1646 IvarOffsets->getType(), // ivar_offsets
1647 Properties->getType(), // properties
1648 IntPtrTy, // strong_pointers
1649 IntPtrTy, // weak_pointers
1650 nullptr);
1651 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1652 // Fill in the structure
1653 std::vector<llvm::Constant*> Elements;
1654 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1655 Elements.push_back(SuperClass);
1656 Elements.push_back(MakeConstantString(Name, ".class_name"));
1657 Elements.push_back(Zero);
1658 Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1659 if (isMeta) {
1660 llvm::DataLayout td(&TheModule);
1661 Elements.push_back(
1662 llvm::ConstantInt::get(LongTy,
1663 td.getTypeSizeInBits(ClassTy) /
1664 CGM.getContext().getCharWidth()));
1665 } else
1666 Elements.push_back(InstanceSize);
1667 Elements.push_back(IVars);
1668 Elements.push_back(Methods);
1669 Elements.push_back(NULLPtr);
1670 Elements.push_back(NULLPtr);
1671 Elements.push_back(NULLPtr);
1672 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1673 Elements.push_back(NULLPtr);
1674 Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1675 Elements.push_back(IvarOffsets);
1676 Elements.push_back(Properties);
1677 Elements.push_back(StrongIvarBitmap);
1678 Elements.push_back(WeakIvarBitmap);
1679 // Create an instance of the structure
1680 // This is now an externally visible symbol, so that we can speed up class
1681 // messages in the next ABI. We may already have some weak references to
1682 // this, so check and fix them properly.
1683 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1684 std::string(Name));
1685 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1686 llvm::Constant *Class =
1687 MakeGlobal(ClassTy, Elements, CGM.getPointerAlign(), ClassSym,
1688 llvm::GlobalValue::ExternalLinkage);
1689 if (ClassRef) {
1690 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1691 ClassRef->getType()));
1692 ClassRef->removeFromParent();
1693 Class->setName(ClassSym);
1694 }
1695 return Class;
1696 }
1697
1698 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<llvm::Constant * > MethodNames,ArrayRef<llvm::Constant * > MethodTypes)1699 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1700 ArrayRef<llvm::Constant *> MethodTypes) {
1701 // Get the method structure type.
1702 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1703 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1704 PtrToInt8Ty,
1705 nullptr);
1706 std::vector<llvm::Constant*> Methods;
1707 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1708 Methods.push_back(llvm::ConstantStruct::get(
1709 ObjCMethodDescTy, {MethodNames[i], MethodTypes[i]}));
1710 }
1711 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1712 MethodNames.size());
1713 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1714 Methods);
1715 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1716 IntTy, ObjCMethodArrayTy, nullptr);
1717 Methods.clear();
1718 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1719 Methods.push_back(Array);
1720 return MakeGlobal(ObjCMethodDescListTy, Methods, CGM.getPointerAlign(),
1721 ".objc_method_list");
1722 }
1723
1724 // Create the protocol list structure used in classes, categories and so on
GenerateProtocolList(ArrayRef<std::string> Protocols)1725 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1726 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1727 Protocols.size());
1728 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1729 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1730 SizeTy,
1731 ProtocolArrayTy,
1732 nullptr);
1733 std::vector<llvm::Constant*> Elements;
1734 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1735 iter != endIter ; iter++) {
1736 llvm::Constant *protocol = nullptr;
1737 llvm::StringMap<llvm::Constant*>::iterator value =
1738 ExistingProtocols.find(*iter);
1739 if (value == ExistingProtocols.end()) {
1740 protocol = GenerateEmptyProtocol(*iter);
1741 } else {
1742 protocol = value->getValue();
1743 }
1744 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1745 PtrToInt8Ty);
1746 Elements.push_back(Ptr);
1747 }
1748 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1749 Elements);
1750 Elements.clear();
1751 Elements.push_back(NULLPtr);
1752 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1753 Elements.push_back(ProtocolArray);
1754 return MakeGlobal(ProtocolListTy, Elements, CGM.getPointerAlign(),
1755 ".objc_protocol_list");
1756 }
1757
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1758 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1759 const ObjCProtocolDecl *PD) {
1760 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1761 llvm::Type *T =
1762 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1763 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1764 }
1765
GenerateEmptyProtocol(const std::string & ProtocolName)1766 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1767 const std::string &ProtocolName) {
1768 SmallVector<std::string, 0> EmptyStringVector;
1769 SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1770
1771 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1772 llvm::Constant *MethodList =
1773 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1774 // Protocols are objects containing lists of the methods implemented and
1775 // protocols adopted.
1776 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1777 PtrToInt8Ty,
1778 ProtocolList->getType(),
1779 MethodList->getType(),
1780 MethodList->getType(),
1781 MethodList->getType(),
1782 MethodList->getType(),
1783 nullptr);
1784 // The isa pointer must be set to a magic number so the runtime knows it's
1785 // the correct layout.
1786 llvm::Constant *Elements[] = {
1787 llvm::ConstantExpr::getIntToPtr(
1788 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy),
1789 MakeConstantString(ProtocolName, ".objc_protocol_name"), ProtocolList,
1790 MethodList, MethodList, MethodList, MethodList};
1791 return MakeGlobal(ProtocolTy, Elements, CGM.getPointerAlign(),
1792 ".objc_protocol");
1793 }
1794
GenerateProtocol(const ObjCProtocolDecl * PD)1795 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1796 ASTContext &Context = CGM.getContext();
1797 std::string ProtocolName = PD->getNameAsString();
1798
1799 // Use the protocol definition, if there is one.
1800 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1801 PD = Def;
1802
1803 SmallVector<std::string, 16> Protocols;
1804 for (const auto *PI : PD->protocols())
1805 Protocols.push_back(PI->getNameAsString());
1806 SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1807 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1808 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1809 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1810 for (const auto *I : PD->instance_methods()) {
1811 std::string TypeStr;
1812 Context.getObjCEncodingForMethodDecl(I, TypeStr);
1813 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1814 OptionalInstanceMethodNames.push_back(
1815 MakeConstantString(I->getSelector().getAsString()));
1816 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1817 } else {
1818 InstanceMethodNames.push_back(
1819 MakeConstantString(I->getSelector().getAsString()));
1820 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1821 }
1822 }
1823 // Collect information about class methods:
1824 SmallVector<llvm::Constant*, 16> ClassMethodNames;
1825 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1826 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1827 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1828 for (const auto *I : PD->class_methods()) {
1829 std::string TypeStr;
1830 Context.getObjCEncodingForMethodDecl(I,TypeStr);
1831 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1832 OptionalClassMethodNames.push_back(
1833 MakeConstantString(I->getSelector().getAsString()));
1834 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1835 } else {
1836 ClassMethodNames.push_back(
1837 MakeConstantString(I->getSelector().getAsString()));
1838 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1839 }
1840 }
1841
1842 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1843 llvm::Constant *InstanceMethodList =
1844 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1845 llvm::Constant *ClassMethodList =
1846 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1847 llvm::Constant *OptionalInstanceMethodList =
1848 GenerateProtocolMethodList(OptionalInstanceMethodNames,
1849 OptionalInstanceMethodTypes);
1850 llvm::Constant *OptionalClassMethodList =
1851 GenerateProtocolMethodList(OptionalClassMethodNames,
1852 OptionalClassMethodTypes);
1853
1854 // Property metadata: name, attributes, isSynthesized, setter name, setter
1855 // types, getter name, getter types.
1856 // The isSynthesized value is always set to 0 in a protocol. It exists to
1857 // simplify the runtime library by allowing it to use the same data
1858 // structures for protocol metadata everywhere.
1859 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1860 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1861 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1862 std::vector<llvm::Constant*> Properties;
1863 std::vector<llvm::Constant*> OptionalProperties;
1864
1865 // Add all of the property methods need adding to the method list and to the
1866 // property metadata list.
1867 for (auto *property : PD->instance_properties()) {
1868 std::vector<llvm::Constant*> Fields;
1869
1870 Fields.push_back(MakePropertyEncodingString(property, nullptr));
1871 PushPropertyAttributes(Fields, property);
1872
1873 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1874 std::string TypeStr;
1875 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1876 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1877 InstanceMethodTypes.push_back(TypeEncoding);
1878 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1879 Fields.push_back(TypeEncoding);
1880 } else {
1881 Fields.push_back(NULLPtr);
1882 Fields.push_back(NULLPtr);
1883 }
1884 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1885 std::string TypeStr;
1886 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1887 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1888 InstanceMethodTypes.push_back(TypeEncoding);
1889 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1890 Fields.push_back(TypeEncoding);
1891 } else {
1892 Fields.push_back(NULLPtr);
1893 Fields.push_back(NULLPtr);
1894 }
1895 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1896 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1897 } else {
1898 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1899 }
1900 }
1901 llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1902 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1903 llvm::Constant* PropertyListInitFields[] =
1904 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1905
1906 llvm::Constant *PropertyListInit =
1907 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1908 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1909 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1910 PropertyListInit, ".objc_property_list");
1911
1912 llvm::Constant *OptionalPropertyArray =
1913 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1914 OptionalProperties.size()) , OptionalProperties);
1915 llvm::Constant* OptionalPropertyListInitFields[] = {
1916 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1917 OptionalPropertyArray };
1918
1919 llvm::Constant *OptionalPropertyListInit =
1920 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1921 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1922 OptionalPropertyListInit->getType(), false,
1923 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1924 ".objc_property_list");
1925
1926 // Protocols are objects containing lists of the methods implemented and
1927 // protocols adopted.
1928 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1929 PtrToInt8Ty,
1930 ProtocolList->getType(),
1931 InstanceMethodList->getType(),
1932 ClassMethodList->getType(),
1933 OptionalInstanceMethodList->getType(),
1934 OptionalClassMethodList->getType(),
1935 PropertyList->getType(),
1936 OptionalPropertyList->getType(),
1937 nullptr);
1938 // The isa pointer must be set to a magic number so the runtime knows it's
1939 // the correct layout.
1940 llvm::Constant *Elements[] = {
1941 llvm::ConstantExpr::getIntToPtr(
1942 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy),
1943 MakeConstantString(ProtocolName, ".objc_protocol_name"), ProtocolList,
1944 InstanceMethodList, ClassMethodList, OptionalInstanceMethodList,
1945 OptionalClassMethodList, PropertyList, OptionalPropertyList};
1946 ExistingProtocols[ProtocolName] =
1947 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1948 CGM.getPointerAlign(), ".objc_protocol"), IdTy);
1949 }
GenerateProtocolHolderCategory()1950 void CGObjCGNU::GenerateProtocolHolderCategory() {
1951 // Collect information about instance methods
1952 SmallVector<Selector, 1> MethodSels;
1953 SmallVector<llvm::Constant*, 1> MethodTypes;
1954
1955 std::vector<llvm::Constant*> Elements;
1956 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1957 const std::string CategoryName = "AnotherHack";
1958 Elements.push_back(MakeConstantString(CategoryName));
1959 Elements.push_back(MakeConstantString(ClassName));
1960 // Instance method list
1961 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1962 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1963 // Class method list
1964 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1965 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1966 // Protocol list
1967 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1968 ExistingProtocols.size());
1969 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1970 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1971 SizeTy,
1972 ProtocolArrayTy,
1973 nullptr);
1974 std::vector<llvm::Constant*> ProtocolElements;
1975 for (llvm::StringMapIterator<llvm::Constant*> iter =
1976 ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1977 iter != endIter ; iter++) {
1978 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1979 PtrTy);
1980 ProtocolElements.push_back(Ptr);
1981 }
1982 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1983 ProtocolElements);
1984 ProtocolElements.clear();
1985 ProtocolElements.push_back(NULLPtr);
1986 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1987 ExistingProtocols.size()));
1988 ProtocolElements.push_back(ProtocolArray);
1989 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1990 ProtocolElements, CGM.getPointerAlign(),
1991 ".objc_protocol_list"), PtrTy));
1992 Categories.push_back(llvm::ConstantExpr::getBitCast(
1993 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1994 PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
1995 PtrTy));
1996 }
1997
1998 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1999 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
2000 /// bits set to their values, LSB first, while larger ones are stored in a
2001 /// structure of this / form:
2002 ///
2003 /// struct { int32_t length; int32_t values[length]; };
2004 ///
2005 /// The values in the array are stored in host-endian format, with the least
2006 /// significant bit being assumed to come first in the bitfield. Therefore, a
2007 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
2008 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)2009 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
2010 int bitCount = bits.size();
2011 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
2012 if (bitCount < ptrBits) {
2013 uint64_t val = 1;
2014 for (int i=0 ; i<bitCount ; ++i) {
2015 if (bits[i]) val |= 1ULL<<(i+1);
2016 }
2017 return llvm::ConstantInt::get(IntPtrTy, val);
2018 }
2019 SmallVector<llvm::Constant *, 8> values;
2020 int v=0;
2021 while (v < bitCount) {
2022 int32_t word = 0;
2023 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
2024 if (bits[v]) word |= 1<<i;
2025 v++;
2026 }
2027 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
2028 }
2029 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
2030 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
2031 llvm::Constant *fields[2] = {
2032 llvm::ConstantInt::get(Int32Ty, values.size()),
2033 array };
2034 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2035 nullptr), fields, CharUnits::fromQuantity(4));
2036 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2037 return ptr;
2038 }
2039
GenerateCategory(const ObjCCategoryImplDecl * OCD)2040 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2041 std::string ClassName = OCD->getClassInterface()->getNameAsString();
2042 std::string CategoryName = OCD->getNameAsString();
2043 // Collect information about instance methods
2044 SmallVector<Selector, 16> InstanceMethodSels;
2045 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2046 for (const auto *I : OCD->instance_methods()) {
2047 InstanceMethodSels.push_back(I->getSelector());
2048 std::string TypeStr;
2049 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2050 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2051 }
2052
2053 // Collect information about class methods
2054 SmallVector<Selector, 16> ClassMethodSels;
2055 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2056 for (const auto *I : OCD->class_methods()) {
2057 ClassMethodSels.push_back(I->getSelector());
2058 std::string TypeStr;
2059 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2060 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2061 }
2062
2063 // Collect the names of referenced protocols
2064 SmallVector<std::string, 16> Protocols;
2065 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2066 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2067 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2068 E = Protos.end(); I != E; ++I)
2069 Protocols.push_back((*I)->getNameAsString());
2070
2071 llvm::Constant *Elements[] = {
2072 MakeConstantString(CategoryName), MakeConstantString(ClassName),
2073 // Instance method list
2074 llvm::ConstantExpr::getBitCast(
2075 GenerateMethodList(ClassName, CategoryName, InstanceMethodSels,
2076 InstanceMethodTypes, false),
2077 PtrTy),
2078 // Class method list
2079 llvm::ConstantExpr::getBitCast(GenerateMethodList(ClassName, CategoryName,
2080 ClassMethodSels,
2081 ClassMethodTypes, true),
2082 PtrTy),
2083 // Protocol list
2084 llvm::ConstantExpr::getBitCast(GenerateProtocolList(Protocols), PtrTy)};
2085 Categories.push_back(llvm::ConstantExpr::getBitCast(
2086 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2087 PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
2088 PtrTy));
2089 }
2090
GeneratePropertyList(const ObjCImplementationDecl * OID,SmallVectorImpl<Selector> & InstanceMethodSels,SmallVectorImpl<llvm::Constant * > & InstanceMethodTypes)2091 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2092 SmallVectorImpl<Selector> &InstanceMethodSels,
2093 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2094 ASTContext &Context = CGM.getContext();
2095 // Property metadata: name, attributes, attributes2, padding1, padding2,
2096 // setter name, setter types, getter name, getter types.
2097 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2098 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2099 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2100 std::vector<llvm::Constant*> Properties;
2101
2102 // Add all of the property methods need adding to the method list and to the
2103 // property metadata list.
2104 for (auto *propertyImpl : OID->property_impls()) {
2105 std::vector<llvm::Constant*> Fields;
2106 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2107 bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2108 ObjCPropertyImplDecl::Synthesize);
2109 bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2110 ObjCPropertyImplDecl::Dynamic);
2111
2112 Fields.push_back(MakePropertyEncodingString(property, OID));
2113 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2114 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2115 std::string TypeStr;
2116 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2117 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2118 if (isSynthesized) {
2119 InstanceMethodTypes.push_back(TypeEncoding);
2120 InstanceMethodSels.push_back(getter->getSelector());
2121 }
2122 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2123 Fields.push_back(TypeEncoding);
2124 } else {
2125 Fields.push_back(NULLPtr);
2126 Fields.push_back(NULLPtr);
2127 }
2128 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2129 std::string TypeStr;
2130 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2131 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2132 if (isSynthesized) {
2133 InstanceMethodTypes.push_back(TypeEncoding);
2134 InstanceMethodSels.push_back(setter->getSelector());
2135 }
2136 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2137 Fields.push_back(TypeEncoding);
2138 } else {
2139 Fields.push_back(NULLPtr);
2140 Fields.push_back(NULLPtr);
2141 }
2142 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2143 }
2144 llvm::ArrayType *PropertyArrayTy =
2145 llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2146 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2147 Properties);
2148 llvm::Constant* PropertyListInitFields[] =
2149 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2150
2151 llvm::Constant *PropertyListInit =
2152 llvm::ConstantStruct::getAnon(PropertyListInitFields);
2153 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2154 llvm::GlobalValue::InternalLinkage, PropertyListInit,
2155 ".objc_property_list");
2156 }
2157
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)2158 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2159 // Get the class declaration for which the alias is specified.
2160 ObjCInterfaceDecl *ClassDecl =
2161 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2162 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
2163 OAD->getNameAsString());
2164 }
2165
GenerateClass(const ObjCImplementationDecl * OID)2166 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2167 ASTContext &Context = CGM.getContext();
2168
2169 // Get the superclass name.
2170 const ObjCInterfaceDecl * SuperClassDecl =
2171 OID->getClassInterface()->getSuperClass();
2172 std::string SuperClassName;
2173 if (SuperClassDecl) {
2174 SuperClassName = SuperClassDecl->getNameAsString();
2175 EmitClassRef(SuperClassName);
2176 }
2177
2178 // Get the class name
2179 ObjCInterfaceDecl *ClassDecl =
2180 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2181 std::string ClassName = ClassDecl->getNameAsString();
2182 // Emit the symbol that is used to generate linker errors if this class is
2183 // referenced in other modules but not declared.
2184 std::string classSymbolName = "__objc_class_name_" + ClassName;
2185 if (llvm::GlobalVariable *symbol =
2186 TheModule.getGlobalVariable(classSymbolName)) {
2187 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2188 } else {
2189 new llvm::GlobalVariable(TheModule, LongTy, false,
2190 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2191 classSymbolName);
2192 }
2193
2194 // Get the size of instances.
2195 int instanceSize =
2196 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2197
2198 // Collect information about instance variables.
2199 SmallVector<llvm::Constant*, 16> IvarNames;
2200 SmallVector<llvm::Constant*, 16> IvarTypes;
2201 SmallVector<llvm::Constant*, 16> IvarOffsets;
2202
2203 std::vector<llvm::Constant*> IvarOffsetValues;
2204 SmallVector<bool, 16> WeakIvars;
2205 SmallVector<bool, 16> StrongIvars;
2206
2207 int superInstanceSize = !SuperClassDecl ? 0 :
2208 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2209 // For non-fragile ivars, set the instance size to 0 - {the size of just this
2210 // class}. The runtime will then set this to the correct value on load.
2211 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2212 instanceSize = 0 - (instanceSize - superInstanceSize);
2213 }
2214
2215 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2216 IVD = IVD->getNextIvar()) {
2217 // Store the name
2218 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2219 // Get the type encoding for this ivar
2220 std::string TypeStr;
2221 Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2222 IvarTypes.push_back(MakeConstantString(TypeStr));
2223 // Get the offset
2224 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2225 uint64_t Offset = BaseOffset;
2226 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2227 Offset = BaseOffset - superInstanceSize;
2228 }
2229 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2230 // Create the direct offset value
2231 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2232 IVD->getNameAsString();
2233 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2234 if (OffsetVar) {
2235 OffsetVar->setInitializer(OffsetValue);
2236 // If this is the real definition, change its linkage type so that
2237 // different modules will use this one, rather than their private
2238 // copy.
2239 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2240 } else
2241 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2242 false, llvm::GlobalValue::ExternalLinkage,
2243 OffsetValue,
2244 "__objc_ivar_offset_value_" + ClassName +"." +
2245 IVD->getNameAsString());
2246 IvarOffsets.push_back(OffsetValue);
2247 IvarOffsetValues.push_back(OffsetVar);
2248 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2249 switch (lt) {
2250 case Qualifiers::OCL_Strong:
2251 StrongIvars.push_back(true);
2252 WeakIvars.push_back(false);
2253 break;
2254 case Qualifiers::OCL_Weak:
2255 StrongIvars.push_back(false);
2256 WeakIvars.push_back(true);
2257 break;
2258 default:
2259 StrongIvars.push_back(false);
2260 WeakIvars.push_back(false);
2261 }
2262 }
2263 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2264 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2265 llvm::GlobalVariable *IvarOffsetArray =
2266 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, CGM.getPointerAlign(),
2267 ".ivar.offsets");
2268
2269 // Collect information about instance methods
2270 SmallVector<Selector, 16> InstanceMethodSels;
2271 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2272 for (const auto *I : OID->instance_methods()) {
2273 InstanceMethodSels.push_back(I->getSelector());
2274 std::string TypeStr;
2275 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2276 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2277 }
2278
2279 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2280 InstanceMethodTypes);
2281
2282 // Collect information about class methods
2283 SmallVector<Selector, 16> ClassMethodSels;
2284 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2285 for (const auto *I : OID->class_methods()) {
2286 ClassMethodSels.push_back(I->getSelector());
2287 std::string TypeStr;
2288 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2289 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2290 }
2291 // Collect the names of referenced protocols
2292 SmallVector<std::string, 16> Protocols;
2293 for (const auto *I : ClassDecl->protocols())
2294 Protocols.push_back(I->getNameAsString());
2295
2296 // Get the superclass pointer.
2297 llvm::Constant *SuperClass;
2298 if (!SuperClassName.empty()) {
2299 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2300 } else {
2301 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2302 }
2303 // Empty vector used to construct empty method lists
2304 SmallVector<llvm::Constant*, 1> empty;
2305 // Generate the method and instance variable lists
2306 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2307 InstanceMethodSels, InstanceMethodTypes, false);
2308 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2309 ClassMethodSels, ClassMethodTypes, true);
2310 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2311 IvarOffsets);
2312 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2313 // we emit a symbol containing the offset for each ivar in the class. This
2314 // allows code compiled for the non-Fragile ABI to inherit from code compiled
2315 // for the legacy ABI, without causing problems. The converse is also
2316 // possible, but causes all ivar accesses to be fragile.
2317
2318 // Offset pointer for getting at the correct field in the ivar list when
2319 // setting up the alias. These are: The base address for the global, the
2320 // ivar array (second field), the ivar in this list (set for each ivar), and
2321 // the offset (third field in ivar structure)
2322 llvm::Type *IndexTy = Int32Ty;
2323 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2324 llvm::ConstantInt::get(IndexTy, 1), nullptr,
2325 llvm::ConstantInt::get(IndexTy, 2) };
2326
2327 unsigned ivarIndex = 0;
2328 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2329 IVD = IVD->getNextIvar()) {
2330 const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2331 + IVD->getNameAsString();
2332 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2333 // Get the correct ivar field
2334 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2335 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2336 offsetPointerIndexes);
2337 // Get the existing variable, if one exists.
2338 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2339 if (offset) {
2340 offset->setInitializer(offsetValue);
2341 // If this is the real definition, change its linkage type so that
2342 // different modules will use this one, rather than their private
2343 // copy.
2344 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2345 } else {
2346 // Add a new alias if there isn't one already.
2347 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2348 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2349 (void) offset; // Silence dead store warning.
2350 }
2351 ++ivarIndex;
2352 }
2353 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2354 //Generate metaclass for class methods
2355 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2356 NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2357 empty, empty, empty), ClassMethodList, NULLPtr,
2358 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2359
2360 // Generate the class structure
2361 llvm::Constant *ClassStruct =
2362 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2363 ClassName.c_str(), nullptr,
2364 llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2365 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2366 Properties, StrongIvarBitmap, WeakIvarBitmap);
2367
2368 // Resolve the class aliases, if they exist.
2369 if (ClassPtrAlias) {
2370 ClassPtrAlias->replaceAllUsesWith(
2371 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2372 ClassPtrAlias->eraseFromParent();
2373 ClassPtrAlias = nullptr;
2374 }
2375 if (MetaClassPtrAlias) {
2376 MetaClassPtrAlias->replaceAllUsesWith(
2377 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2378 MetaClassPtrAlias->eraseFromParent();
2379 MetaClassPtrAlias = nullptr;
2380 }
2381
2382 // Add class structure to list to be added to the symtab later
2383 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2384 Classes.push_back(ClassStruct);
2385 }
2386
ModuleInitFunction()2387 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2388 // Only emit an ObjC load function if no Objective-C stuff has been called
2389 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2390 ExistingProtocols.empty() && SelectorTable.empty())
2391 return nullptr;
2392
2393 // Add all referenced protocols to a category.
2394 GenerateProtocolHolderCategory();
2395
2396 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2397 SelectorTy->getElementType());
2398 llvm::Type *SelStructPtrTy = SelectorTy;
2399 if (!SelStructTy) {
2400 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2401 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2402 }
2403
2404 std::vector<llvm::Constant*> Elements;
2405 llvm::Constant *Statics = NULLPtr;
2406 // Generate statics list:
2407 if (!ConstantStrings.empty()) {
2408 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2409 ConstantStrings.size() + 1);
2410 ConstantStrings.push_back(NULLPtr);
2411
2412 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2413
2414 if (StringClass.empty()) StringClass = "NXConstantString";
2415
2416 Elements.push_back(MakeConstantString(StringClass,
2417 ".objc_static_class_name"));
2418 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2419 ConstantStrings));
2420 llvm::StructType *StaticsListTy =
2421 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2422 llvm::Type *StaticsListPtrTy =
2423 llvm::PointerType::getUnqual(StaticsListTy);
2424 Statics = MakeGlobal(StaticsListTy, Elements, CGM.getPointerAlign(),
2425 ".objc_statics");
2426 llvm::ArrayType *StaticsListArrayTy =
2427 llvm::ArrayType::get(StaticsListPtrTy, 2);
2428 Elements.clear();
2429 Elements.push_back(Statics);
2430 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2431 Statics = MakeGlobal(StaticsListArrayTy, Elements,
2432 CGM.getPointerAlign(), ".objc_statics_ptr");
2433 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2434 }
2435 // Array of classes, categories, and constant objects
2436 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2437 Classes.size() + Categories.size() + 2);
2438 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2439 llvm::Type::getInt16Ty(VMContext),
2440 llvm::Type::getInt16Ty(VMContext),
2441 ClassListTy, nullptr);
2442
2443 Elements.clear();
2444 // Pointer to an array of selectors used in this module.
2445 std::vector<llvm::Constant*> Selectors;
2446 std::vector<llvm::GlobalAlias*> SelectorAliases;
2447 for (SelectorMap::iterator iter = SelectorTable.begin(),
2448 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2449
2450 std::string SelNameStr = iter->first.getAsString();
2451 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2452
2453 SmallVectorImpl<TypedSelector> &Types = iter->second;
2454 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2455 e = Types.end() ; i!=e ; i++) {
2456
2457 llvm::Constant *SelectorTypeEncoding = NULLPtr;
2458 if (!i->first.empty())
2459 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2460
2461 Elements.push_back(SelName);
2462 Elements.push_back(SelectorTypeEncoding);
2463 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2464 Elements.clear();
2465
2466 // Store the selector alias for later replacement
2467 SelectorAliases.push_back(i->second);
2468 }
2469 }
2470 unsigned SelectorCount = Selectors.size();
2471 // NULL-terminate the selector list. This should not actually be required,
2472 // because the selector list has a length field. Unfortunately, the GCC
2473 // runtime decides to ignore the length field and expects a NULL terminator,
2474 // and GCC cooperates with this by always setting the length to 0.
2475 Elements.push_back(NULLPtr);
2476 Elements.push_back(NULLPtr);
2477 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2478 Elements.clear();
2479
2480 // Number of static selectors
2481 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2482 llvm::GlobalVariable *SelectorList =
2483 MakeGlobalArray(SelStructTy, Selectors, CGM.getPointerAlign(),
2484 ".objc_selector_list");
2485 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2486 SelStructPtrTy));
2487
2488 // Now that all of the static selectors exist, create pointers to them.
2489 for (unsigned int i=0 ; i<SelectorCount ; i++) {
2490
2491 llvm::Constant *Idxs[] = {Zeros[0],
2492 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2493 // FIXME: We're generating redundant loads and stores here!
2494 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2495 SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2496 // If selectors are defined as an opaque type, cast the pointer to this
2497 // type.
2498 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2499 SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2500 SelectorAliases[i]->eraseFromParent();
2501 }
2502
2503 // Number of classes defined.
2504 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2505 Classes.size()));
2506 // Number of categories defined
2507 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2508 Categories.size()));
2509 // Create an array of classes, then categories, then static object instances
2510 Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2511 // NULL-terminated list of static object instances (mainly constant strings)
2512 Classes.push_back(Statics);
2513 Classes.push_back(NULLPtr);
2514 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2515 Elements.push_back(ClassList);
2516 // Construct the symbol table
2517 llvm::Constant *SymTab =
2518 MakeGlobal(SymTabTy, Elements, CGM.getPointerAlign());
2519
2520 // The symbol table is contained in a module which has some version-checking
2521 // constants
2522 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2523 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2524 (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2525 Elements.clear();
2526 // Runtime version, used for ABI compatibility checking.
2527 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2528 // sizeof(ModuleTy)
2529 llvm::DataLayout td(&TheModule);
2530 Elements.push_back(
2531 llvm::ConstantInt::get(LongTy,
2532 td.getTypeSizeInBits(ModuleTy) /
2533 CGM.getContext().getCharWidth()));
2534
2535 // The path to the source file where this module was declared
2536 SourceManager &SM = CGM.getContext().getSourceManager();
2537 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2538 std::string path =
2539 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2540 Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2541 Elements.push_back(SymTab);
2542
2543 if (RuntimeVersion >= 10)
2544 switch (CGM.getLangOpts().getGC()) {
2545 case LangOptions::GCOnly:
2546 Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2547 break;
2548 case LangOptions::NonGC:
2549 if (CGM.getLangOpts().ObjCAutoRefCount)
2550 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2551 else
2552 Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2553 break;
2554 case LangOptions::HybridGC:
2555 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2556 break;
2557 }
2558
2559 llvm::Value *Module = MakeGlobal(ModuleTy, Elements, CGM.getPointerAlign());
2560
2561 // Create the load function calling the runtime entry point with the module
2562 // structure
2563 llvm::Function * LoadFunction = llvm::Function::Create(
2564 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2565 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2566 &TheModule);
2567 llvm::BasicBlock *EntryBB =
2568 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2569 CGBuilderTy Builder(CGM, VMContext);
2570 Builder.SetInsertPoint(EntryBB);
2571
2572 llvm::FunctionType *FT =
2573 llvm::FunctionType::get(Builder.getVoidTy(),
2574 llvm::PointerType::getUnqual(ModuleTy), true);
2575 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2576 Builder.CreateCall(Register, Module);
2577
2578 if (!ClassAliases.empty()) {
2579 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2580 llvm::FunctionType *RegisterAliasTy =
2581 llvm::FunctionType::get(Builder.getVoidTy(),
2582 ArgTypes, false);
2583 llvm::Function *RegisterAlias = llvm::Function::Create(
2584 RegisterAliasTy,
2585 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2586 &TheModule);
2587 llvm::BasicBlock *AliasBB =
2588 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2589 llvm::BasicBlock *NoAliasBB =
2590 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2591
2592 // Branch based on whether the runtime provided class_registerAlias_np()
2593 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2594 llvm::Constant::getNullValue(RegisterAlias->getType()));
2595 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2596
2597 // The true branch (has alias registration function):
2598 Builder.SetInsertPoint(AliasBB);
2599 // Emit alias registration calls:
2600 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2601 iter != ClassAliases.end(); ++iter) {
2602 llvm::Constant *TheClass =
2603 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2604 true);
2605 if (TheClass) {
2606 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2607 Builder.CreateCall(RegisterAlias,
2608 {TheClass, MakeConstantString(iter->second)});
2609 }
2610 }
2611 // Jump to end:
2612 Builder.CreateBr(NoAliasBB);
2613
2614 // Missing alias registration function, just return from the function:
2615 Builder.SetInsertPoint(NoAliasBB);
2616 }
2617 Builder.CreateRetVoid();
2618
2619 return LoadFunction;
2620 }
2621
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)2622 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2623 const ObjCContainerDecl *CD) {
2624 const ObjCCategoryImplDecl *OCD =
2625 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2626 StringRef CategoryName = OCD ? OCD->getName() : "";
2627 StringRef ClassName = CD->getName();
2628 Selector MethodName = OMD->getSelector();
2629 bool isClassMethod = !OMD->isInstanceMethod();
2630
2631 CodeGenTypes &Types = CGM.getTypes();
2632 llvm::FunctionType *MethodTy =
2633 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2634 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2635 MethodName, isClassMethod);
2636
2637 llvm::Function *Method
2638 = llvm::Function::Create(MethodTy,
2639 llvm::GlobalValue::InternalLinkage,
2640 FunctionName,
2641 &TheModule);
2642 return Method;
2643 }
2644
GetPropertyGetFunction()2645 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2646 return GetPropertyFn;
2647 }
2648
GetPropertySetFunction()2649 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2650 return SetPropertyFn;
2651 }
2652
GetOptimizedPropertySetFunction(bool atomic,bool copy)2653 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2654 bool copy) {
2655 return nullptr;
2656 }
2657
GetGetStructFunction()2658 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2659 return GetStructPropertyFn;
2660 }
2661
GetSetStructFunction()2662 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2663 return SetStructPropertyFn;
2664 }
2665
GetCppAtomicObjectGetFunction()2666 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2667 return nullptr;
2668 }
2669
GetCppAtomicObjectSetFunction()2670 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2671 return nullptr;
2672 }
2673
EnumerationMutationFunction()2674 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2675 return EnumerationMutationFn;
2676 }
2677
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)2678 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2679 const ObjCAtSynchronizedStmt &S) {
2680 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2681 }
2682
2683
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)2684 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2685 const ObjCAtTryStmt &S) {
2686 // Unlike the Apple non-fragile runtimes, which also uses
2687 // unwind-based zero cost exceptions, the GNU Objective C runtime's
2688 // EH support isn't a veneer over C++ EH. Instead, exception
2689 // objects are created by objc_exception_throw and destroyed by
2690 // the personality function; this avoids the need for bracketing
2691 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2692 // (or even _Unwind_DeleteException), but probably doesn't
2693 // interoperate very well with foreign exceptions.
2694 //
2695 // In Objective-C++ mode, we actually emit something equivalent to the C++
2696 // exception handler.
2697 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2698 }
2699
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)2700 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2701 const ObjCAtThrowStmt &S,
2702 bool ClearInsertionPoint) {
2703 llvm::Value *ExceptionAsObject;
2704
2705 if (const Expr *ThrowExpr = S.getThrowExpr()) {
2706 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2707 ExceptionAsObject = Exception;
2708 } else {
2709 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2710 "Unexpected rethrow outside @catch block.");
2711 ExceptionAsObject = CGF.ObjCEHValueStack.back();
2712 }
2713 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2714 llvm::CallSite Throw =
2715 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2716 Throw.setDoesNotReturn();
2717 CGF.Builder.CreateUnreachable();
2718 if (ClearInsertionPoint)
2719 CGF.Builder.ClearInsertionPoint();
2720 }
2721
EmitObjCWeakRead(CodeGenFunction & CGF,Address AddrWeakObj)2722 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2723 Address AddrWeakObj) {
2724 CGBuilderTy &B = CGF.Builder;
2725 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2726 return B.CreateCall(WeakReadFn.getType(), WeakReadFn,
2727 AddrWeakObj.getPointer());
2728 }
2729
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)2730 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2731 llvm::Value *src, Address dst) {
2732 CGBuilderTy &B = CGF.Builder;
2733 src = EnforceType(B, src, IdTy);
2734 dst = EnforceType(B, dst, PtrToIdTy);
2735 B.CreateCall(WeakAssignFn.getType(), WeakAssignFn,
2736 {src, dst.getPointer()});
2737 }
2738
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)2739 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2740 llvm::Value *src, Address dst,
2741 bool threadlocal) {
2742 CGBuilderTy &B = CGF.Builder;
2743 src = EnforceType(B, src, IdTy);
2744 dst = EnforceType(B, dst, PtrToIdTy);
2745 // FIXME. Add threadloca assign API
2746 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
2747 B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn,
2748 {src, dst.getPointer()});
2749 }
2750
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)2751 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2752 llvm::Value *src, Address dst,
2753 llvm::Value *ivarOffset) {
2754 CGBuilderTy &B = CGF.Builder;
2755 src = EnforceType(B, src, IdTy);
2756 dst = EnforceType(B, dst, IdTy);
2757 B.CreateCall(IvarAssignFn.getType(), IvarAssignFn,
2758 {src, dst.getPointer(), ivarOffset});
2759 }
2760
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)2761 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2762 llvm::Value *src, Address dst) {
2763 CGBuilderTy &B = CGF.Builder;
2764 src = EnforceType(B, src, IdTy);
2765 dst = EnforceType(B, dst, PtrToIdTy);
2766 B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn,
2767 {src, dst.getPointer()});
2768 }
2769
EmitGCMemmoveCollectable(CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)2770 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2771 Address DestPtr,
2772 Address SrcPtr,
2773 llvm::Value *Size) {
2774 CGBuilderTy &B = CGF.Builder;
2775 DestPtr = EnforceType(B, DestPtr, PtrTy);
2776 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2777
2778 B.CreateCall(MemMoveFn.getType(), MemMoveFn,
2779 {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
2780 }
2781
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)2782 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2783 const ObjCInterfaceDecl *ID,
2784 const ObjCIvarDecl *Ivar) {
2785 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2786 + '.' + Ivar->getNameAsString();
2787 // Emit the variable and initialize it with what we think the correct value
2788 // is. This allows code compiled with non-fragile ivars to work correctly
2789 // when linked against code which isn't (most of the time).
2790 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2791 if (!IvarOffsetPointer) {
2792 // This will cause a run-time crash if we accidentally use it. A value of
2793 // 0 would seem more sensible, but will silently overwrite the isa pointer
2794 // causing a great deal of confusion.
2795 uint64_t Offset = -1;
2796 // We can't call ComputeIvarBaseOffset() here if we have the
2797 // implementation, because it will create an invalid ASTRecordLayout object
2798 // that we are then stuck with forever, so we only initialize the ivar
2799 // offset variable with a guess if we only have the interface. The
2800 // initializer will be reset later anyway, when we are generating the class
2801 // description.
2802 if (!CGM.getContext().getObjCImplementation(
2803 const_cast<ObjCInterfaceDecl *>(ID)))
2804 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2805
2806 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2807 /*isSigned*/true);
2808 // Don't emit the guess in non-PIC code because the linker will not be able
2809 // to replace it with the real version for a library. In non-PIC code you
2810 // must compile with the fragile ABI if you want to use ivars from a
2811 // GCC-compiled class.
2812 if (CGM.getLangOpts().PICLevel) {
2813 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2814 Int32Ty, false,
2815 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2816 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2817 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2818 IvarOffsetGV, Name);
2819 } else {
2820 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2821 llvm::Type::getInt32PtrTy(VMContext), false,
2822 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2823 }
2824 }
2825 return IvarOffsetPointer;
2826 }
2827
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2828 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2829 QualType ObjectTy,
2830 llvm::Value *BaseValue,
2831 const ObjCIvarDecl *Ivar,
2832 unsigned CVRQualifiers) {
2833 const ObjCInterfaceDecl *ID =
2834 ObjectTy->getAs<ObjCObjectType>()->getInterface();
2835 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2836 EmitIvarOffset(CGF, ID, Ivar));
2837 }
2838
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)2839 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2840 const ObjCInterfaceDecl *OID,
2841 const ObjCIvarDecl *OIVD) {
2842 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2843 next = next->getNextIvar()) {
2844 if (OIVD == next)
2845 return OID;
2846 }
2847
2848 // Otherwise check in the super class.
2849 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2850 return FindIvarInterface(Context, Super, OIVD);
2851
2852 return nullptr;
2853 }
2854
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2855 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2856 const ObjCInterfaceDecl *Interface,
2857 const ObjCIvarDecl *Ivar) {
2858 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2859 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2860 if (RuntimeVersion < 10)
2861 return CGF.Builder.CreateZExtOrBitCast(
2862 CGF.Builder.CreateDefaultAlignedLoad(CGF.Builder.CreateAlignedLoad(
2863 ObjCIvarOffsetVariable(Interface, Ivar),
2864 CGF.getPointerAlign(), "ivar")),
2865 PtrDiffTy);
2866 std::string name = "__objc_ivar_offset_value_" +
2867 Interface->getNameAsString() +"." + Ivar->getNameAsString();
2868 CharUnits Align = CGM.getIntAlign();
2869 llvm::Value *Offset = TheModule.getGlobalVariable(name);
2870 if (!Offset) {
2871 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
2872 false, llvm::GlobalValue::LinkOnceAnyLinkage,
2873 llvm::Constant::getNullValue(IntTy), name);
2874 GV->setAlignment(Align.getQuantity());
2875 Offset = GV;
2876 }
2877 Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
2878 if (Offset->getType() != PtrDiffTy)
2879 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2880 return Offset;
2881 }
2882 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2883 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2884 }
2885
2886 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)2887 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2888 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2889 case ObjCRuntime::GNUstep:
2890 return new CGObjCGNUstep(CGM);
2891
2892 case ObjCRuntime::GCC:
2893 return new CGObjCGCC(CGM);
2894
2895 case ObjCRuntime::ObjFW:
2896 return new CGObjCObjFW(CGM);
2897
2898 case ObjCRuntime::FragileMacOSX:
2899 case ObjCRuntime::MacOSX:
2900 case ObjCRuntime::iOS:
2901 case ObjCRuntime::WatchOS:
2902 llvm_unreachable("these runtimes are not GNU runtimes");
2903 }
2904 llvm_unreachable("bad runtime");
2905 }
2906