1 //===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the top level handling of macro expansion for the
11 // preprocessor.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/Preprocessor.h"
16 #include "clang/Basic/Attributes.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Lex/CodeCompletionHandler.h"
21 #include "clang/Lex/ExternalPreprocessorSource.h"
22 #include "clang/Lex/LexDiagnostic.h"
23 #include "clang/Lex/MacroArgs.h"
24 #include "clang/Lex/MacroInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cstdio>
33 #include <ctime>
34 using namespace clang;
35
36 MacroDirective *
getLocalMacroDirectiveHistory(const IdentifierInfo * II) const37 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
38 if (!II->hadMacroDefinition())
39 return nullptr;
40 auto Pos = CurSubmoduleState->Macros.find(II);
41 return Pos == CurSubmoduleState->Macros.end() ? nullptr
42 : Pos->second.getLatest();
43 }
44
appendMacroDirective(IdentifierInfo * II,MacroDirective * MD)45 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
46 assert(MD && "MacroDirective should be non-zero!");
47 assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
48
49 MacroState &StoredMD = CurSubmoduleState->Macros[II];
50 auto *OldMD = StoredMD.getLatest();
51 MD->setPrevious(OldMD);
52 StoredMD.setLatest(MD);
53 StoredMD.overrideActiveModuleMacros(*this, II);
54
55 if (needModuleMacros()) {
56 // Track that we created a new macro directive, so we know we should
57 // consider building a ModuleMacro for it when we get to the end of
58 // the module.
59 PendingModuleMacroNames.push_back(II);
60 }
61
62 // Set up the identifier as having associated macro history.
63 II->setHasMacroDefinition(true);
64 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
65 II->setHasMacroDefinition(false);
66 if (II->isFromAST())
67 II->setChangedSinceDeserialization();
68 }
69
setLoadedMacroDirective(IdentifierInfo * II,MacroDirective * MD)70 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
71 MacroDirective *MD) {
72 assert(II && MD);
73 MacroState &StoredMD = CurSubmoduleState->Macros[II];
74 assert(!StoredMD.getLatest() &&
75 "the macro history was modified before initializing it from a pch");
76 StoredMD = MD;
77 // Setup the identifier as having associated macro history.
78 II->setHasMacroDefinition(true);
79 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
80 II->setHasMacroDefinition(false);
81 }
82
addModuleMacro(Module * Mod,IdentifierInfo * II,MacroInfo * Macro,ArrayRef<ModuleMacro * > Overrides,bool & New)83 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
84 MacroInfo *Macro,
85 ArrayRef<ModuleMacro *> Overrides,
86 bool &New) {
87 llvm::FoldingSetNodeID ID;
88 ModuleMacro::Profile(ID, Mod, II);
89
90 void *InsertPos;
91 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
92 New = false;
93 return MM;
94 }
95
96 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
97 ModuleMacros.InsertNode(MM, InsertPos);
98
99 // Each overridden macro is now overridden by one more macro.
100 bool HidAny = false;
101 for (auto *O : Overrides) {
102 HidAny |= (O->NumOverriddenBy == 0);
103 ++O->NumOverriddenBy;
104 }
105
106 // If we were the first overrider for any macro, it's no longer a leaf.
107 auto &LeafMacros = LeafModuleMacros[II];
108 if (HidAny) {
109 LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
110 [](ModuleMacro *MM) {
111 return MM->NumOverriddenBy != 0;
112 }),
113 LeafMacros.end());
114 }
115
116 // The new macro is always a leaf macro.
117 LeafMacros.push_back(MM);
118 // The identifier now has defined macros (that may or may not be visible).
119 II->setHasMacroDefinition(true);
120
121 New = true;
122 return MM;
123 }
124
getModuleMacro(Module * Mod,IdentifierInfo * II)125 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
126 llvm::FoldingSetNodeID ID;
127 ModuleMacro::Profile(ID, Mod, II);
128
129 void *InsertPos;
130 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
131 }
132
updateModuleMacroInfo(const IdentifierInfo * II,ModuleMacroInfo & Info)133 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
134 ModuleMacroInfo &Info) {
135 assert(Info.ActiveModuleMacrosGeneration !=
136 CurSubmoduleState->VisibleModules.getGeneration() &&
137 "don't need to update this macro name info");
138 Info.ActiveModuleMacrosGeneration =
139 CurSubmoduleState->VisibleModules.getGeneration();
140
141 auto Leaf = LeafModuleMacros.find(II);
142 if (Leaf == LeafModuleMacros.end()) {
143 // No imported macros at all: nothing to do.
144 return;
145 }
146
147 Info.ActiveModuleMacros.clear();
148
149 // Every macro that's locally overridden is overridden by a visible macro.
150 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
151 for (auto *O : Info.OverriddenMacros)
152 NumHiddenOverrides[O] = -1;
153
154 // Collect all macros that are not overridden by a visible macro.
155 llvm::SmallVector<ModuleMacro *, 16> Worklist;
156 for (auto *LeafMM : Leaf->second) {
157 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
158 if (NumHiddenOverrides.lookup(LeafMM) == 0)
159 Worklist.push_back(LeafMM);
160 }
161 while (!Worklist.empty()) {
162 auto *MM = Worklist.pop_back_val();
163 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
164 // We only care about collecting definitions; undefinitions only act
165 // to override other definitions.
166 if (MM->getMacroInfo())
167 Info.ActiveModuleMacros.push_back(MM);
168 } else {
169 for (auto *O : MM->overrides())
170 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
171 Worklist.push_back(O);
172 }
173 }
174 // Our reverse postorder walk found the macros in reverse order.
175 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
176
177 // Determine whether the macro name is ambiguous.
178 MacroInfo *MI = nullptr;
179 bool IsSystemMacro = true;
180 bool IsAmbiguous = false;
181 if (auto *MD = Info.MD) {
182 while (MD && isa<VisibilityMacroDirective>(MD))
183 MD = MD->getPrevious();
184 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
185 MI = DMD->getInfo();
186 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
187 }
188 }
189 for (auto *Active : Info.ActiveModuleMacros) {
190 auto *NewMI = Active->getMacroInfo();
191
192 // Before marking the macro as ambiguous, check if this is a case where
193 // both macros are in system headers. If so, we trust that the system
194 // did not get it wrong. This also handles cases where Clang's own
195 // headers have a different spelling of certain system macros:
196 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
197 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
198 //
199 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
200 // overrides the system limits.h's macros, so there's no conflict here.
201 if (MI && NewMI != MI &&
202 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
203 IsAmbiguous = true;
204 IsSystemMacro &= Active->getOwningModule()->IsSystem ||
205 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
206 MI = NewMI;
207 }
208 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
209 }
210
dumpMacroInfo(const IdentifierInfo * II)211 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
212 ArrayRef<ModuleMacro*> Leaf;
213 auto LeafIt = LeafModuleMacros.find(II);
214 if (LeafIt != LeafModuleMacros.end())
215 Leaf = LeafIt->second;
216 const MacroState *State = nullptr;
217 auto Pos = CurSubmoduleState->Macros.find(II);
218 if (Pos != CurSubmoduleState->Macros.end())
219 State = &Pos->second;
220
221 llvm::errs() << "MacroState " << State << " " << II->getNameStart();
222 if (State && State->isAmbiguous(*this, II))
223 llvm::errs() << " ambiguous";
224 if (State && !State->getOverriddenMacros().empty()) {
225 llvm::errs() << " overrides";
226 for (auto *O : State->getOverriddenMacros())
227 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
228 }
229 llvm::errs() << "\n";
230
231 // Dump local macro directives.
232 for (auto *MD = State ? State->getLatest() : nullptr; MD;
233 MD = MD->getPrevious()) {
234 llvm::errs() << " ";
235 MD->dump();
236 }
237
238 // Dump module macros.
239 llvm::DenseSet<ModuleMacro*> Active;
240 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
241 Active.insert(MM);
242 llvm::DenseSet<ModuleMacro*> Visited;
243 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
244 while (!Worklist.empty()) {
245 auto *MM = Worklist.pop_back_val();
246 llvm::errs() << " ModuleMacro " << MM << " "
247 << MM->getOwningModule()->getFullModuleName();
248 if (!MM->getMacroInfo())
249 llvm::errs() << " undef";
250
251 if (Active.count(MM))
252 llvm::errs() << " active";
253 else if (!CurSubmoduleState->VisibleModules.isVisible(
254 MM->getOwningModule()))
255 llvm::errs() << " hidden";
256 else if (MM->getMacroInfo())
257 llvm::errs() << " overridden";
258
259 if (!MM->overrides().empty()) {
260 llvm::errs() << " overrides";
261 for (auto *O : MM->overrides()) {
262 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
263 if (Visited.insert(O).second)
264 Worklist.push_back(O);
265 }
266 }
267 llvm::errs() << "\n";
268 if (auto *MI = MM->getMacroInfo()) {
269 llvm::errs() << " ";
270 MI->dump();
271 llvm::errs() << "\n";
272 }
273 }
274 }
275
276 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
277 /// table and mark it as a builtin macro to be expanded.
RegisterBuiltinMacro(Preprocessor & PP,const char * Name)278 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
279 // Get the identifier.
280 IdentifierInfo *Id = PP.getIdentifierInfo(Name);
281
282 // Mark it as being a macro that is builtin.
283 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
284 MI->setIsBuiltinMacro();
285 PP.appendDefMacroDirective(Id, MI);
286 return Id;
287 }
288
289
290 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
291 /// identifier table.
RegisterBuiltinMacros()292 void Preprocessor::RegisterBuiltinMacros() {
293 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
294 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
295 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
296 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
297 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
298 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
299
300 // C++ Standing Document Extensions.
301 if (LangOpts.CPlusPlus)
302 Ident__has_cpp_attribute =
303 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
304 else
305 Ident__has_cpp_attribute = nullptr;
306
307 // GCC Extensions.
308 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
309 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
310 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
311
312 // Microsoft Extensions.
313 if (LangOpts.MicrosoftExt) {
314 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
315 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
316 } else {
317 Ident__identifier = nullptr;
318 Ident__pragma = nullptr;
319 }
320
321 // Clang Extensions.
322 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
323 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
324 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
325 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
326 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
327 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
328 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
329 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
330 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
331
332 // Modules.
333 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
334 if (!LangOpts.CurrentModule.empty())
335 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
336 else
337 Ident__MODULE__ = nullptr;
338 }
339
340 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
341 /// in its expansion, currently expands to that token literally.
isTrivialSingleTokenExpansion(const MacroInfo * MI,const IdentifierInfo * MacroIdent,Preprocessor & PP)342 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
343 const IdentifierInfo *MacroIdent,
344 Preprocessor &PP) {
345 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
346
347 // If the token isn't an identifier, it's always literally expanded.
348 if (!II) return true;
349
350 // If the information about this identifier is out of date, update it from
351 // the external source.
352 if (II->isOutOfDate())
353 PP.getExternalSource()->updateOutOfDateIdentifier(*II);
354
355 // If the identifier is a macro, and if that macro is enabled, it may be
356 // expanded so it's not a trivial expansion.
357 if (auto *ExpansionMI = PP.getMacroInfo(II))
358 if (ExpansionMI->isEnabled() &&
359 // Fast expanding "#define X X" is ok, because X would be disabled.
360 II != MacroIdent)
361 return false;
362
363 // If this is an object-like macro invocation, it is safe to trivially expand
364 // it.
365 if (MI->isObjectLike()) return true;
366
367 // If this is a function-like macro invocation, it's safe to trivially expand
368 // as long as the identifier is not a macro argument.
369 return std::find(MI->arg_begin(), MI->arg_end(), II) == MI->arg_end();
370
371 }
372
373
374 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
375 /// lexed is a '('. If so, consume the token and return true, if not, this
376 /// method should have no observable side-effect on the lexed tokens.
isNextPPTokenLParen()377 bool Preprocessor::isNextPPTokenLParen() {
378 // Do some quick tests for rejection cases.
379 unsigned Val;
380 if (CurLexer)
381 Val = CurLexer->isNextPPTokenLParen();
382 else if (CurPTHLexer)
383 Val = CurPTHLexer->isNextPPTokenLParen();
384 else
385 Val = CurTokenLexer->isNextTokenLParen();
386
387 if (Val == 2) {
388 // We have run off the end. If it's a source file we don't
389 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
390 // macro stack.
391 if (CurPPLexer)
392 return false;
393 for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
394 IncludeStackInfo &Entry = IncludeMacroStack[i-1];
395 if (Entry.TheLexer)
396 Val = Entry.TheLexer->isNextPPTokenLParen();
397 else if (Entry.ThePTHLexer)
398 Val = Entry.ThePTHLexer->isNextPPTokenLParen();
399 else
400 Val = Entry.TheTokenLexer->isNextTokenLParen();
401
402 if (Val != 2)
403 break;
404
405 // Ran off the end of a source file?
406 if (Entry.ThePPLexer)
407 return false;
408 }
409 }
410
411 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
412 // have found something that isn't a '(' or we found the end of the
413 // translation unit. In either case, return false.
414 return Val == 1;
415 }
416
417 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
418 /// expanded as a macro, handle it and return the next token as 'Identifier'.
HandleMacroExpandedIdentifier(Token & Identifier,const MacroDefinition & M)419 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
420 const MacroDefinition &M) {
421 MacroInfo *MI = M.getMacroInfo();
422
423 // If this is a macro expansion in the "#if !defined(x)" line for the file,
424 // then the macro could expand to different things in other contexts, we need
425 // to disable the optimization in this case.
426 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
427
428 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
429 if (MI->isBuiltinMacro()) {
430 if (Callbacks)
431 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
432 /*Args=*/nullptr);
433 ExpandBuiltinMacro(Identifier);
434 return true;
435 }
436
437 /// Args - If this is a function-like macro expansion, this contains,
438 /// for each macro argument, the list of tokens that were provided to the
439 /// invocation.
440 MacroArgs *Args = nullptr;
441
442 // Remember where the end of the expansion occurred. For an object-like
443 // macro, this is the identifier. For a function-like macro, this is the ')'.
444 SourceLocation ExpansionEnd = Identifier.getLocation();
445
446 // If this is a function-like macro, read the arguments.
447 if (MI->isFunctionLike()) {
448 // Remember that we are now parsing the arguments to a macro invocation.
449 // Preprocessor directives used inside macro arguments are not portable, and
450 // this enables the warning.
451 InMacroArgs = true;
452 Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
453
454 // Finished parsing args.
455 InMacroArgs = false;
456
457 // If there was an error parsing the arguments, bail out.
458 if (!Args) return true;
459
460 ++NumFnMacroExpanded;
461 } else {
462 ++NumMacroExpanded;
463 }
464
465 // Notice that this macro has been used.
466 markMacroAsUsed(MI);
467
468 // Remember where the token is expanded.
469 SourceLocation ExpandLoc = Identifier.getLocation();
470 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
471
472 if (Callbacks) {
473 if (InMacroArgs) {
474 // We can have macro expansion inside a conditional directive while
475 // reading the function macro arguments. To ensure, in that case, that
476 // MacroExpands callbacks still happen in source order, queue this
477 // callback to have it happen after the function macro callback.
478 DelayedMacroExpandsCallbacks.push_back(
479 MacroExpandsInfo(Identifier, M, ExpansionRange));
480 } else {
481 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
482 if (!DelayedMacroExpandsCallbacks.empty()) {
483 for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
484 MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
485 // FIXME: We lose macro args info with delayed callback.
486 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
487 /*Args=*/nullptr);
488 }
489 DelayedMacroExpandsCallbacks.clear();
490 }
491 }
492 }
493
494 // If the macro definition is ambiguous, complain.
495 if (M.isAmbiguous()) {
496 Diag(Identifier, diag::warn_pp_ambiguous_macro)
497 << Identifier.getIdentifierInfo();
498 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
499 << Identifier.getIdentifierInfo();
500 M.forAllDefinitions([&](const MacroInfo *OtherMI) {
501 if (OtherMI != MI)
502 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
503 << Identifier.getIdentifierInfo();
504 });
505 }
506
507 // If we started lexing a macro, enter the macro expansion body.
508
509 // If this macro expands to no tokens, don't bother to push it onto the
510 // expansion stack, only to take it right back off.
511 if (MI->getNumTokens() == 0) {
512 // No need for arg info.
513 if (Args) Args->destroy(*this);
514
515 // Propagate whitespace info as if we had pushed, then popped,
516 // a macro context.
517 Identifier.setFlag(Token::LeadingEmptyMacro);
518 PropagateLineStartLeadingSpaceInfo(Identifier);
519 ++NumFastMacroExpanded;
520 return false;
521 } else if (MI->getNumTokens() == 1 &&
522 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
523 *this)) {
524 // Otherwise, if this macro expands into a single trivially-expanded
525 // token: expand it now. This handles common cases like
526 // "#define VAL 42".
527
528 // No need for arg info.
529 if (Args) Args->destroy(*this);
530
531 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
532 // identifier to the expanded token.
533 bool isAtStartOfLine = Identifier.isAtStartOfLine();
534 bool hasLeadingSpace = Identifier.hasLeadingSpace();
535
536 // Replace the result token.
537 Identifier = MI->getReplacementToken(0);
538
539 // Restore the StartOfLine/LeadingSpace markers.
540 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
541 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
542
543 // Update the tokens location to include both its expansion and physical
544 // locations.
545 SourceLocation Loc =
546 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
547 ExpansionEnd,Identifier.getLength());
548 Identifier.setLocation(Loc);
549
550 // If this is a disabled macro or #define X X, we must mark the result as
551 // unexpandable.
552 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
553 if (MacroInfo *NewMI = getMacroInfo(NewII))
554 if (!NewMI->isEnabled() || NewMI == MI) {
555 Identifier.setFlag(Token::DisableExpand);
556 // Don't warn for "#define X X" like "#define bool bool" from
557 // stdbool.h.
558 if (NewMI != MI || MI->isFunctionLike())
559 Diag(Identifier, diag::pp_disabled_macro_expansion);
560 }
561 }
562
563 // Since this is not an identifier token, it can't be macro expanded, so
564 // we're done.
565 ++NumFastMacroExpanded;
566 return true;
567 }
568
569 // Start expanding the macro.
570 EnterMacro(Identifier, ExpansionEnd, MI, Args);
571 return false;
572 }
573
574 enum Bracket {
575 Brace,
576 Paren
577 };
578
579 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
580 /// token vector are properly nested.
CheckMatchedBrackets(const SmallVectorImpl<Token> & Tokens)581 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
582 SmallVector<Bracket, 8> Brackets;
583 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
584 E = Tokens.end();
585 I != E; ++I) {
586 if (I->is(tok::l_paren)) {
587 Brackets.push_back(Paren);
588 } else if (I->is(tok::r_paren)) {
589 if (Brackets.empty() || Brackets.back() == Brace)
590 return false;
591 Brackets.pop_back();
592 } else if (I->is(tok::l_brace)) {
593 Brackets.push_back(Brace);
594 } else if (I->is(tok::r_brace)) {
595 if (Brackets.empty() || Brackets.back() == Paren)
596 return false;
597 Brackets.pop_back();
598 }
599 }
600 return Brackets.empty();
601 }
602
603 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
604 /// vector of tokens in NewTokens. The new number of arguments will be placed
605 /// in NumArgs and the ranges which need to surrounded in parentheses will be
606 /// in ParenHints.
607 /// Returns false if the token stream cannot be changed. If this is because
608 /// of an initializer list starting a macro argument, the range of those
609 /// initializer lists will be place in InitLists.
GenerateNewArgTokens(Preprocessor & PP,SmallVectorImpl<Token> & OldTokens,SmallVectorImpl<Token> & NewTokens,unsigned & NumArgs,SmallVectorImpl<SourceRange> & ParenHints,SmallVectorImpl<SourceRange> & InitLists)610 static bool GenerateNewArgTokens(Preprocessor &PP,
611 SmallVectorImpl<Token> &OldTokens,
612 SmallVectorImpl<Token> &NewTokens,
613 unsigned &NumArgs,
614 SmallVectorImpl<SourceRange> &ParenHints,
615 SmallVectorImpl<SourceRange> &InitLists) {
616 if (!CheckMatchedBrackets(OldTokens))
617 return false;
618
619 // Once it is known that the brackets are matched, only a simple count of the
620 // braces is needed.
621 unsigned Braces = 0;
622
623 // First token of a new macro argument.
624 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
625
626 // First closing brace in a new macro argument. Used to generate
627 // SourceRanges for InitLists.
628 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
629 NumArgs = 0;
630 Token TempToken;
631 // Set to true when a macro separator token is found inside a braced list.
632 // If true, the fixed argument spans multiple old arguments and ParenHints
633 // will be updated.
634 bool FoundSeparatorToken = false;
635 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
636 E = OldTokens.end();
637 I != E; ++I) {
638 if (I->is(tok::l_brace)) {
639 ++Braces;
640 } else if (I->is(tok::r_brace)) {
641 --Braces;
642 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
643 ClosingBrace = I;
644 } else if (I->is(tok::eof)) {
645 // EOF token is used to separate macro arguments
646 if (Braces != 0) {
647 // Assume comma separator is actually braced list separator and change
648 // it back to a comma.
649 FoundSeparatorToken = true;
650 I->setKind(tok::comma);
651 I->setLength(1);
652 } else { // Braces == 0
653 // Separator token still separates arguments.
654 ++NumArgs;
655
656 // If the argument starts with a brace, it can't be fixed with
657 // parentheses. A different diagnostic will be given.
658 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
659 InitLists.push_back(
660 SourceRange(ArgStartIterator->getLocation(),
661 PP.getLocForEndOfToken(ClosingBrace->getLocation())));
662 ClosingBrace = E;
663 }
664
665 // Add left paren
666 if (FoundSeparatorToken) {
667 TempToken.startToken();
668 TempToken.setKind(tok::l_paren);
669 TempToken.setLocation(ArgStartIterator->getLocation());
670 TempToken.setLength(0);
671 NewTokens.push_back(TempToken);
672 }
673
674 // Copy over argument tokens
675 NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
676
677 // Add right paren and store the paren locations in ParenHints
678 if (FoundSeparatorToken) {
679 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
680 TempToken.startToken();
681 TempToken.setKind(tok::r_paren);
682 TempToken.setLocation(Loc);
683 TempToken.setLength(0);
684 NewTokens.push_back(TempToken);
685 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
686 Loc));
687 }
688
689 // Copy separator token
690 NewTokens.push_back(*I);
691
692 // Reset values
693 ArgStartIterator = I + 1;
694 FoundSeparatorToken = false;
695 }
696 }
697 }
698
699 return !ParenHints.empty() && InitLists.empty();
700 }
701
702 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
703 /// token is the '(' of the macro, this method is invoked to read all of the
704 /// actual arguments specified for the macro invocation. This returns null on
705 /// error.
ReadFunctionLikeMacroArgs(Token & MacroName,MacroInfo * MI,SourceLocation & MacroEnd)706 MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
707 MacroInfo *MI,
708 SourceLocation &MacroEnd) {
709 // The number of fixed arguments to parse.
710 unsigned NumFixedArgsLeft = MI->getNumArgs();
711 bool isVariadic = MI->isVariadic();
712
713 // Outer loop, while there are more arguments, keep reading them.
714 Token Tok;
715
716 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
717 // an argument value in a macro could expand to ',' or '(' or ')'.
718 LexUnexpandedToken(Tok);
719 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
720
721 // ArgTokens - Build up a list of tokens that make up each argument. Each
722 // argument is separated by an EOF token. Use a SmallVector so we can avoid
723 // heap allocations in the common case.
724 SmallVector<Token, 64> ArgTokens;
725 bool ContainsCodeCompletionTok = false;
726 bool FoundElidedComma = false;
727
728 SourceLocation TooManyArgsLoc;
729
730 unsigned NumActuals = 0;
731 while (Tok.isNot(tok::r_paren)) {
732 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
733 break;
734
735 assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
736 "only expect argument separators here");
737
738 unsigned ArgTokenStart = ArgTokens.size();
739 SourceLocation ArgStartLoc = Tok.getLocation();
740
741 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
742 // that we already consumed the first one.
743 unsigned NumParens = 0;
744
745 while (1) {
746 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
747 // an argument value in a macro could expand to ',' or '(' or ')'.
748 LexUnexpandedToken(Tok);
749
750 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
751 if (!ContainsCodeCompletionTok) {
752 Diag(MacroName, diag::err_unterm_macro_invoc);
753 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
754 << MacroName.getIdentifierInfo();
755 // Do not lose the EOF/EOD. Return it to the client.
756 MacroName = Tok;
757 return nullptr;
758 }
759 // Do not lose the EOF/EOD.
760 auto Toks = llvm::make_unique<Token[]>(1);
761 Toks[0] = Tok;
762 EnterTokenStream(std::move(Toks), 1, true);
763 break;
764 } else if (Tok.is(tok::r_paren)) {
765 // If we found the ) token, the macro arg list is done.
766 if (NumParens-- == 0) {
767 MacroEnd = Tok.getLocation();
768 if (!ArgTokens.empty() &&
769 ArgTokens.back().commaAfterElided()) {
770 FoundElidedComma = true;
771 }
772 break;
773 }
774 } else if (Tok.is(tok::l_paren)) {
775 ++NumParens;
776 } else if (Tok.is(tok::comma) && NumParens == 0 &&
777 !(Tok.getFlags() & Token::IgnoredComma)) {
778 // In Microsoft-compatibility mode, single commas from nested macro
779 // expansions should not be considered as argument separators. We test
780 // for this with the IgnoredComma token flag above.
781
782 // Comma ends this argument if there are more fixed arguments expected.
783 // However, if this is a variadic macro, and this is part of the
784 // variadic part, then the comma is just an argument token.
785 if (!isVariadic) break;
786 if (NumFixedArgsLeft > 1)
787 break;
788 } else if (Tok.is(tok::comment) && !KeepMacroComments) {
789 // If this is a comment token in the argument list and we're just in
790 // -C mode (not -CC mode), discard the comment.
791 continue;
792 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
793 // Reading macro arguments can cause macros that we are currently
794 // expanding from to be popped off the expansion stack. Doing so causes
795 // them to be reenabled for expansion. Here we record whether any
796 // identifiers we lex as macro arguments correspond to disabled macros.
797 // If so, we mark the token as noexpand. This is a subtle aspect of
798 // C99 6.10.3.4p2.
799 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
800 if (!MI->isEnabled())
801 Tok.setFlag(Token::DisableExpand);
802 } else if (Tok.is(tok::code_completion)) {
803 ContainsCodeCompletionTok = true;
804 if (CodeComplete)
805 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
806 MI, NumActuals);
807 // Don't mark that we reached the code-completion point because the
808 // parser is going to handle the token and there will be another
809 // code-completion callback.
810 }
811
812 ArgTokens.push_back(Tok);
813 }
814
815 // If this was an empty argument list foo(), don't add this as an empty
816 // argument.
817 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
818 break;
819
820 // If this is not a variadic macro, and too many args were specified, emit
821 // an error.
822 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
823 if (ArgTokens.size() != ArgTokenStart)
824 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
825 else
826 TooManyArgsLoc = ArgStartLoc;
827 }
828
829 // Empty arguments are standard in C99 and C++0x, and are supported as an
830 // extension in other modes.
831 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
832 Diag(Tok, LangOpts.CPlusPlus11 ?
833 diag::warn_cxx98_compat_empty_fnmacro_arg :
834 diag::ext_empty_fnmacro_arg);
835
836 // Add a marker EOF token to the end of the token list for this argument.
837 Token EOFTok;
838 EOFTok.startToken();
839 EOFTok.setKind(tok::eof);
840 EOFTok.setLocation(Tok.getLocation());
841 EOFTok.setLength(0);
842 ArgTokens.push_back(EOFTok);
843 ++NumActuals;
844 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
845 --NumFixedArgsLeft;
846 }
847
848 // Okay, we either found the r_paren. Check to see if we parsed too few
849 // arguments.
850 unsigned MinArgsExpected = MI->getNumArgs();
851
852 // If this is not a variadic macro, and too many args were specified, emit
853 // an error.
854 if (!isVariadic && NumActuals > MinArgsExpected &&
855 !ContainsCodeCompletionTok) {
856 // Emit the diagnostic at the macro name in case there is a missing ).
857 // Emitting it at the , could be far away from the macro name.
858 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
859 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
860 << MacroName.getIdentifierInfo();
861
862 // Commas from braced initializer lists will be treated as argument
863 // separators inside macros. Attempt to correct for this with parentheses.
864 // TODO: See if this can be generalized to angle brackets for templates
865 // inside macro arguments.
866
867 SmallVector<Token, 4> FixedArgTokens;
868 unsigned FixedNumArgs = 0;
869 SmallVector<SourceRange, 4> ParenHints, InitLists;
870 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
871 ParenHints, InitLists)) {
872 if (!InitLists.empty()) {
873 DiagnosticBuilder DB =
874 Diag(MacroName,
875 diag::note_init_list_at_beginning_of_macro_argument);
876 for (SourceRange Range : InitLists)
877 DB << Range;
878 }
879 return nullptr;
880 }
881 if (FixedNumArgs != MinArgsExpected)
882 return nullptr;
883
884 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
885 for (SourceRange ParenLocation : ParenHints) {
886 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
887 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
888 }
889 ArgTokens.swap(FixedArgTokens);
890 NumActuals = FixedNumArgs;
891 }
892
893 // See MacroArgs instance var for description of this.
894 bool isVarargsElided = false;
895
896 if (ContainsCodeCompletionTok) {
897 // Recover from not-fully-formed macro invocation during code-completion.
898 Token EOFTok;
899 EOFTok.startToken();
900 EOFTok.setKind(tok::eof);
901 EOFTok.setLocation(Tok.getLocation());
902 EOFTok.setLength(0);
903 for (; NumActuals < MinArgsExpected; ++NumActuals)
904 ArgTokens.push_back(EOFTok);
905 }
906
907 if (NumActuals < MinArgsExpected) {
908 // There are several cases where too few arguments is ok, handle them now.
909 if (NumActuals == 0 && MinArgsExpected == 1) {
910 // #define A(X) or #define A(...) ---> A()
911
912 // If there is exactly one argument, and that argument is missing,
913 // then we have an empty "()" argument empty list. This is fine, even if
914 // the macro expects one argument (the argument is just empty).
915 isVarargsElided = MI->isVariadic();
916 } else if ((FoundElidedComma || MI->isVariadic()) &&
917 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
918 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
919 // Varargs where the named vararg parameter is missing: OK as extension.
920 // #define A(x, ...)
921 // A("blah")
922 //
923 // If the macro contains the comma pasting extension, the diagnostic
924 // is suppressed; we know we'll get another diagnostic later.
925 if (!MI->hasCommaPasting()) {
926 Diag(Tok, diag::ext_missing_varargs_arg);
927 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
928 << MacroName.getIdentifierInfo();
929 }
930
931 // Remember this occurred, allowing us to elide the comma when used for
932 // cases like:
933 // #define A(x, foo...) blah(a, ## foo)
934 // #define B(x, ...) blah(a, ## __VA_ARGS__)
935 // #define C(...) blah(a, ## __VA_ARGS__)
936 // A(x) B(x) C()
937 isVarargsElided = true;
938 } else if (!ContainsCodeCompletionTok) {
939 // Otherwise, emit the error.
940 Diag(Tok, diag::err_too_few_args_in_macro_invoc);
941 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
942 << MacroName.getIdentifierInfo();
943 return nullptr;
944 }
945
946 // Add a marker EOF token to the end of the token list for this argument.
947 SourceLocation EndLoc = Tok.getLocation();
948 Tok.startToken();
949 Tok.setKind(tok::eof);
950 Tok.setLocation(EndLoc);
951 Tok.setLength(0);
952 ArgTokens.push_back(Tok);
953
954 // If we expect two arguments, add both as empty.
955 if (NumActuals == 0 && MinArgsExpected == 2)
956 ArgTokens.push_back(Tok);
957
958 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
959 !ContainsCodeCompletionTok) {
960 // Emit the diagnostic at the macro name in case there is a missing ).
961 // Emitting it at the , could be far away from the macro name.
962 Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
963 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
964 << MacroName.getIdentifierInfo();
965 return nullptr;
966 }
967
968 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
969 }
970
971 /// \brief Keeps macro expanded tokens for TokenLexers.
972 //
973 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
974 /// going to lex in the cache and when it finishes the tokens are removed
975 /// from the end of the cache.
cacheMacroExpandedTokens(TokenLexer * tokLexer,ArrayRef<Token> tokens)976 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
977 ArrayRef<Token> tokens) {
978 assert(tokLexer);
979 if (tokens.empty())
980 return nullptr;
981
982 size_t newIndex = MacroExpandedTokens.size();
983 bool cacheNeedsToGrow = tokens.size() >
984 MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
985 MacroExpandedTokens.append(tokens.begin(), tokens.end());
986
987 if (cacheNeedsToGrow) {
988 // Go through all the TokenLexers whose 'Tokens' pointer points in the
989 // buffer and update the pointers to the (potential) new buffer array.
990 for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
991 TokenLexer *prevLexer;
992 size_t tokIndex;
993 std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
994 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
995 }
996 }
997
998 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
999 return MacroExpandedTokens.data() + newIndex;
1000 }
1001
removeCachedMacroExpandedTokensOfLastLexer()1002 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1003 assert(!MacroExpandingLexersStack.empty());
1004 size_t tokIndex = MacroExpandingLexersStack.back().second;
1005 assert(tokIndex < MacroExpandedTokens.size());
1006 // Pop the cached macro expanded tokens from the end.
1007 MacroExpandedTokens.resize(tokIndex);
1008 MacroExpandingLexersStack.pop_back();
1009 }
1010
1011 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1012 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1013 /// the identifier tokens inserted.
ComputeDATE_TIME(SourceLocation & DATELoc,SourceLocation & TIMELoc,Preprocessor & PP)1014 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1015 Preprocessor &PP) {
1016 time_t TT = time(nullptr);
1017 struct tm *TM = localtime(&TT);
1018
1019 static const char * const Months[] = {
1020 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1021 };
1022
1023 {
1024 SmallString<32> TmpBuffer;
1025 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1026 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1027 TM->tm_mday, TM->tm_year + 1900);
1028 Token TmpTok;
1029 TmpTok.startToken();
1030 PP.CreateString(TmpStream.str(), TmpTok);
1031 DATELoc = TmpTok.getLocation();
1032 }
1033
1034 {
1035 SmallString<32> TmpBuffer;
1036 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1037 TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1038 TM->tm_hour, TM->tm_min, TM->tm_sec);
1039 Token TmpTok;
1040 TmpTok.startToken();
1041 PP.CreateString(TmpStream.str(), TmpTok);
1042 TIMELoc = TmpTok.getLocation();
1043 }
1044 }
1045
1046
1047 /// HasFeature - Return true if we recognize and implement the feature
1048 /// specified by the identifier as a standard language feature.
HasFeature(const Preprocessor & PP,StringRef Feature)1049 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1050 const LangOptions &LangOpts = PP.getLangOpts();
1051
1052 // Normalize the feature name, __foo__ becomes foo.
1053 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1054 Feature = Feature.substr(2, Feature.size() - 4);
1055
1056 return llvm::StringSwitch<bool>(Feature)
1057 .Case("address_sanitizer",
1058 LangOpts.Sanitize.hasOneOf(SanitizerKind::Address |
1059 SanitizerKind::KernelAddress))
1060 .Case("assume_nonnull", true)
1061 .Case("attribute_analyzer_noreturn", true)
1062 .Case("attribute_availability", true)
1063 .Case("attribute_availability_with_message", true)
1064 .Case("attribute_availability_app_extension", true)
1065 .Case("attribute_availability_with_version_underscores", true)
1066 .Case("attribute_availability_tvos", true)
1067 .Case("attribute_availability_watchos", true)
1068 .Case("attribute_availability_with_strict", true)
1069 .Case("attribute_availability_with_replacement", true)
1070 .Case("attribute_availability_in_templates", true)
1071 .Case("attribute_cf_returns_not_retained", true)
1072 .Case("attribute_cf_returns_retained", true)
1073 .Case("attribute_cf_returns_on_parameters", true)
1074 .Case("attribute_deprecated_with_message", true)
1075 .Case("attribute_deprecated_with_replacement", true)
1076 .Case("attribute_ext_vector_type", true)
1077 .Case("attribute_ns_returns_not_retained", true)
1078 .Case("attribute_ns_returns_retained", true)
1079 .Case("attribute_ns_consumes_self", true)
1080 .Case("attribute_ns_consumed", true)
1081 .Case("attribute_cf_consumed", true)
1082 .Case("attribute_objc_ivar_unused", true)
1083 .Case("attribute_objc_method_family", true)
1084 .Case("attribute_overloadable", true)
1085 .Case("attribute_unavailable_with_message", true)
1086 .Case("attribute_unused_on_fields", true)
1087 .Case("blocks", LangOpts.Blocks)
1088 .Case("c_thread_safety_attributes", true)
1089 .Case("cxx_exceptions", LangOpts.CXXExceptions)
1090 .Case("cxx_rtti", LangOpts.RTTI && LangOpts.RTTIData)
1091 .Case("enumerator_attributes", true)
1092 .Case("nullability", true)
1093 .Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory))
1094 .Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread))
1095 .Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow))
1096 .Case("efficiency_sanitizer",
1097 LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency))
1098 // Objective-C features
1099 .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
1100 .Case("objc_arc", LangOpts.ObjCAutoRefCount)
1101 .Case("objc_arc_weak", LangOpts.ObjCWeak)
1102 .Case("objc_default_synthesize_properties", LangOpts.ObjC2)
1103 .Case("objc_fixed_enum", LangOpts.ObjC2)
1104 .Case("objc_instancetype", LangOpts.ObjC2)
1105 .Case("objc_kindof", LangOpts.ObjC2)
1106 .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
1107 .Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
1108 .Case("objc_property_explicit_atomic",
1109 true) // Does clang support explicit "atomic" keyword?
1110 .Case("objc_protocol_qualifier_mangling", true)
1111 .Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
1112 .Case("ownership_holds", true)
1113 .Case("ownership_returns", true)
1114 .Case("ownership_takes", true)
1115 .Case("objc_bool", true)
1116 .Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
1117 .Case("objc_array_literals", LangOpts.ObjC2)
1118 .Case("objc_dictionary_literals", LangOpts.ObjC2)
1119 .Case("objc_boxed_expressions", LangOpts.ObjC2)
1120 .Case("objc_boxed_nsvalue_expressions", LangOpts.ObjC2)
1121 .Case("arc_cf_code_audited", true)
1122 .Case("objc_bridge_id", true)
1123 .Case("objc_bridge_id_on_typedefs", true)
1124 .Case("objc_generics", LangOpts.ObjC2)
1125 .Case("objc_generics_variance", LangOpts.ObjC2)
1126 .Case("objc_class_property", LangOpts.ObjC2)
1127 // C11 features
1128 .Case("c_alignas", LangOpts.C11)
1129 .Case("c_alignof", LangOpts.C11)
1130 .Case("c_atomic", LangOpts.C11)
1131 .Case("c_generic_selections", LangOpts.C11)
1132 .Case("c_static_assert", LangOpts.C11)
1133 .Case("c_thread_local",
1134 LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
1135 // C++11 features
1136 .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
1137 .Case("cxx_alias_templates", LangOpts.CPlusPlus11)
1138 .Case("cxx_alignas", LangOpts.CPlusPlus11)
1139 .Case("cxx_alignof", LangOpts.CPlusPlus11)
1140 .Case("cxx_atomic", LangOpts.CPlusPlus11)
1141 .Case("cxx_attributes", LangOpts.CPlusPlus11)
1142 .Case("cxx_auto_type", LangOpts.CPlusPlus11)
1143 .Case("cxx_constexpr", LangOpts.CPlusPlus11)
1144 .Case("cxx_decltype", LangOpts.CPlusPlus11)
1145 .Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
1146 .Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
1147 .Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
1148 .Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
1149 .Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
1150 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
1151 .Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
1152 .Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
1153 .Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
1154 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
1155 .Case("cxx_lambdas", LangOpts.CPlusPlus11)
1156 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
1157 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
1158 .Case("cxx_noexcept", LangOpts.CPlusPlus11)
1159 .Case("cxx_nullptr", LangOpts.CPlusPlus11)
1160 .Case("cxx_override_control", LangOpts.CPlusPlus11)
1161 .Case("cxx_range_for", LangOpts.CPlusPlus11)
1162 .Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
1163 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
1164 .Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
1165 .Case("cxx_strong_enums", LangOpts.CPlusPlus11)
1166 .Case("cxx_static_assert", LangOpts.CPlusPlus11)
1167 .Case("cxx_thread_local",
1168 LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
1169 .Case("cxx_trailing_return", LangOpts.CPlusPlus11)
1170 .Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
1171 .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
1172 .Case("cxx_user_literals", LangOpts.CPlusPlus11)
1173 .Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
1174 // C++1y features
1175 .Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14)
1176 .Case("cxx_binary_literals", LangOpts.CPlusPlus14)
1177 .Case("cxx_contextual_conversions", LangOpts.CPlusPlus14)
1178 .Case("cxx_decltype_auto", LangOpts.CPlusPlus14)
1179 .Case("cxx_generic_lambdas", LangOpts.CPlusPlus14)
1180 .Case("cxx_init_captures", LangOpts.CPlusPlus14)
1181 .Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14)
1182 .Case("cxx_return_type_deduction", LangOpts.CPlusPlus14)
1183 .Case("cxx_variable_templates", LangOpts.CPlusPlus14)
1184 // C++ TSes
1185 //.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays)
1186 //.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts)
1187 // FIXME: Should this be __has_feature or __has_extension?
1188 //.Case("raw_invocation_type", LangOpts.CPlusPlus)
1189 // Type traits
1190 // N.B. Additional type traits should not be added to the following list.
1191 // Instead, they should be detected by has_extension.
1192 .Case("has_nothrow_assign", LangOpts.CPlusPlus)
1193 .Case("has_nothrow_copy", LangOpts.CPlusPlus)
1194 .Case("has_nothrow_constructor", LangOpts.CPlusPlus)
1195 .Case("has_trivial_assign", LangOpts.CPlusPlus)
1196 .Case("has_trivial_copy", LangOpts.CPlusPlus)
1197 .Case("has_trivial_constructor", LangOpts.CPlusPlus)
1198 .Case("has_trivial_destructor", LangOpts.CPlusPlus)
1199 .Case("has_virtual_destructor", LangOpts.CPlusPlus)
1200 .Case("is_abstract", LangOpts.CPlusPlus)
1201 .Case("is_base_of", LangOpts.CPlusPlus)
1202 .Case("is_class", LangOpts.CPlusPlus)
1203 .Case("is_constructible", LangOpts.CPlusPlus)
1204 .Case("is_convertible_to", LangOpts.CPlusPlus)
1205 .Case("is_empty", LangOpts.CPlusPlus)
1206 .Case("is_enum", LangOpts.CPlusPlus)
1207 .Case("is_final", LangOpts.CPlusPlus)
1208 .Case("is_literal", LangOpts.CPlusPlus)
1209 .Case("is_standard_layout", LangOpts.CPlusPlus)
1210 .Case("is_pod", LangOpts.CPlusPlus)
1211 .Case("is_polymorphic", LangOpts.CPlusPlus)
1212 .Case("is_sealed", LangOpts.CPlusPlus && LangOpts.MicrosoftExt)
1213 .Case("is_trivial", LangOpts.CPlusPlus)
1214 .Case("is_trivially_assignable", LangOpts.CPlusPlus)
1215 .Case("is_trivially_constructible", LangOpts.CPlusPlus)
1216 .Case("is_trivially_copyable", LangOpts.CPlusPlus)
1217 .Case("is_union", LangOpts.CPlusPlus)
1218 .Case("modules", LangOpts.Modules)
1219 .Case("safe_stack", LangOpts.Sanitize.has(SanitizerKind::SafeStack))
1220 .Case("tls", PP.getTargetInfo().isTLSSupported())
1221 .Case("underlying_type", LangOpts.CPlusPlus)
1222 .Default(false);
1223 }
1224
1225 /// HasExtension - Return true if we recognize and implement the feature
1226 /// specified by the identifier, either as an extension or a standard language
1227 /// feature.
HasExtension(const Preprocessor & PP,StringRef Extension)1228 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1229 if (HasFeature(PP, Extension))
1230 return true;
1231
1232 // If the use of an extension results in an error diagnostic, extensions are
1233 // effectively unavailable, so just return false here.
1234 if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1235 diag::Severity::Error)
1236 return false;
1237
1238 const LangOptions &LangOpts = PP.getLangOpts();
1239
1240 // Normalize the extension name, __foo__ becomes foo.
1241 if (Extension.startswith("__") && Extension.endswith("__") &&
1242 Extension.size() >= 4)
1243 Extension = Extension.substr(2, Extension.size() - 4);
1244
1245 // Because we inherit the feature list from HasFeature, this string switch
1246 // must be less restrictive than HasFeature's.
1247 return llvm::StringSwitch<bool>(Extension)
1248 // C11 features supported by other languages as extensions.
1249 .Case("c_alignas", true)
1250 .Case("c_alignof", true)
1251 .Case("c_atomic", true)
1252 .Case("c_generic_selections", true)
1253 .Case("c_static_assert", true)
1254 .Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
1255 // C++11 features supported by other languages as extensions.
1256 .Case("cxx_atomic", LangOpts.CPlusPlus)
1257 .Case("cxx_deleted_functions", LangOpts.CPlusPlus)
1258 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
1259 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
1260 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
1261 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
1262 .Case("cxx_override_control", LangOpts.CPlusPlus)
1263 .Case("cxx_range_for", LangOpts.CPlusPlus)
1264 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
1265 .Case("cxx_rvalue_references", LangOpts.CPlusPlus)
1266 .Case("cxx_variadic_templates", LangOpts.CPlusPlus)
1267 // C++1y features supported by other languages as extensions.
1268 .Case("cxx_binary_literals", true)
1269 .Case("cxx_init_captures", LangOpts.CPlusPlus11)
1270 .Case("cxx_variable_templates", LangOpts.CPlusPlus)
1271 .Default(false);
1272 }
1273
1274 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1275 /// or '__has_include_next("path")' expression.
1276 /// Returns true if successful.
EvaluateHasIncludeCommon(Token & Tok,IdentifierInfo * II,Preprocessor & PP,const DirectoryLookup * LookupFrom,const FileEntry * LookupFromFile)1277 static bool EvaluateHasIncludeCommon(Token &Tok,
1278 IdentifierInfo *II, Preprocessor &PP,
1279 const DirectoryLookup *LookupFrom,
1280 const FileEntry *LookupFromFile) {
1281 // Save the location of the current token. If a '(' is later found, use
1282 // that location. If not, use the end of this location instead.
1283 SourceLocation LParenLoc = Tok.getLocation();
1284
1285 // These expressions are only allowed within a preprocessor directive.
1286 if (!PP.isParsingIfOrElifDirective()) {
1287 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
1288 // Return a valid identifier token.
1289 assert(Tok.is(tok::identifier));
1290 Tok.setIdentifierInfo(II);
1291 return false;
1292 }
1293
1294 // Get '('.
1295 PP.LexNonComment(Tok);
1296
1297 // Ensure we have a '('.
1298 if (Tok.isNot(tok::l_paren)) {
1299 // No '(', use end of last token.
1300 LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1301 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1302 // If the next token looks like a filename or the start of one,
1303 // assume it is and process it as such.
1304 if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
1305 !Tok.is(tok::less))
1306 return false;
1307 } else {
1308 // Save '(' location for possible missing ')' message.
1309 LParenLoc = Tok.getLocation();
1310
1311 if (PP.getCurrentLexer()) {
1312 // Get the file name.
1313 PP.getCurrentLexer()->LexIncludeFilename(Tok);
1314 } else {
1315 // We're in a macro, so we can't use LexIncludeFilename; just
1316 // grab the next token.
1317 PP.Lex(Tok);
1318 }
1319 }
1320
1321 // Reserve a buffer to get the spelling.
1322 SmallString<128> FilenameBuffer;
1323 StringRef Filename;
1324 SourceLocation EndLoc;
1325
1326 switch (Tok.getKind()) {
1327 case tok::eod:
1328 // If the token kind is EOD, the error has already been diagnosed.
1329 return false;
1330
1331 case tok::angle_string_literal:
1332 case tok::string_literal: {
1333 bool Invalid = false;
1334 Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1335 if (Invalid)
1336 return false;
1337 break;
1338 }
1339
1340 case tok::less:
1341 // This could be a <foo/bar.h> file coming from a macro expansion. In this
1342 // case, glue the tokens together into FilenameBuffer and interpret those.
1343 FilenameBuffer.push_back('<');
1344 if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
1345 // Let the caller know a <eod> was found by changing the Token kind.
1346 Tok.setKind(tok::eod);
1347 return false; // Found <eod> but no ">"? Diagnostic already emitted.
1348 }
1349 Filename = FilenameBuffer;
1350 break;
1351 default:
1352 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1353 return false;
1354 }
1355
1356 SourceLocation FilenameLoc = Tok.getLocation();
1357
1358 // Get ')'.
1359 PP.LexNonComment(Tok);
1360
1361 // Ensure we have a trailing ).
1362 if (Tok.isNot(tok::r_paren)) {
1363 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1364 << II << tok::r_paren;
1365 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1366 return false;
1367 }
1368
1369 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1370 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1371 // error.
1372 if (Filename.empty())
1373 return false;
1374
1375 // Search include directories.
1376 const DirectoryLookup *CurDir;
1377 const FileEntry *File =
1378 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1379 CurDir, nullptr, nullptr, nullptr);
1380
1381 // Get the result value. A result of true means the file exists.
1382 return File != nullptr;
1383 }
1384
1385 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1386 /// Returns true if successful.
EvaluateHasInclude(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1387 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1388 Preprocessor &PP) {
1389 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1390 }
1391
1392 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1393 /// Returns true if successful.
EvaluateHasIncludeNext(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1394 static bool EvaluateHasIncludeNext(Token &Tok,
1395 IdentifierInfo *II, Preprocessor &PP) {
1396 // __has_include_next is like __has_include, except that we start
1397 // searching after the current found directory. If we can't do this,
1398 // issue a diagnostic.
1399 // FIXME: Factor out duplication with
1400 // Preprocessor::HandleIncludeNextDirective.
1401 const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1402 const FileEntry *LookupFromFile = nullptr;
1403 if (PP.isInPrimaryFile()) {
1404 Lookup = nullptr;
1405 PP.Diag(Tok, diag::pp_include_next_in_primary);
1406 } else if (PP.getCurrentSubmodule()) {
1407 // Start looking up in the directory *after* the one in which the current
1408 // file would be found, if any.
1409 assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1410 LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1411 Lookup = nullptr;
1412 } else if (!Lookup) {
1413 PP.Diag(Tok, diag::pp_include_next_absolute_path);
1414 } else {
1415 // Start looking up in the next directory.
1416 ++Lookup;
1417 }
1418
1419 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1420 }
1421
1422 /// \brief Process single-argument builtin feature-like macros that return
1423 /// integer values.
EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream & OS,Token & Tok,IdentifierInfo * II,Preprocessor & PP,llvm::function_ref<int (Token & Tok,bool & HasLexedNextTok)> Op)1424 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1425 Token &Tok, IdentifierInfo *II,
1426 Preprocessor &PP,
1427 llvm::function_ref<
1428 int(Token &Tok,
1429 bool &HasLexedNextTok)> Op) {
1430 // Parse the initial '('.
1431 PP.LexUnexpandedToken(Tok);
1432 if (Tok.isNot(tok::l_paren)) {
1433 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1434 << tok::l_paren;
1435
1436 // Provide a dummy '0' value on output stream to elide further errors.
1437 if (!Tok.isOneOf(tok::eof, tok::eod)) {
1438 OS << 0;
1439 Tok.setKind(tok::numeric_constant);
1440 }
1441 return;
1442 }
1443
1444 unsigned ParenDepth = 1;
1445 SourceLocation LParenLoc = Tok.getLocation();
1446 llvm::Optional<int> Result;
1447
1448 Token ResultTok;
1449 bool SuppressDiagnostic = false;
1450 while (true) {
1451 // Parse next token.
1452 PP.LexUnexpandedToken(Tok);
1453
1454 already_lexed:
1455 switch (Tok.getKind()) {
1456 case tok::eof:
1457 case tok::eod:
1458 // Don't provide even a dummy value if the eod or eof marker is
1459 // reached. Simply provide a diagnostic.
1460 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1461 return;
1462
1463 case tok::comma:
1464 if (!SuppressDiagnostic) {
1465 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1466 SuppressDiagnostic = true;
1467 }
1468 continue;
1469
1470 case tok::l_paren:
1471 ++ParenDepth;
1472 if (Result.hasValue())
1473 break;
1474 if (!SuppressDiagnostic) {
1475 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1476 SuppressDiagnostic = true;
1477 }
1478 continue;
1479
1480 case tok::r_paren:
1481 if (--ParenDepth > 0)
1482 continue;
1483
1484 // The last ')' has been reached; return the value if one found or
1485 // a diagnostic and a dummy value.
1486 if (Result.hasValue())
1487 OS << Result.getValue();
1488 else {
1489 OS << 0;
1490 if (!SuppressDiagnostic)
1491 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1492 }
1493 Tok.setKind(tok::numeric_constant);
1494 return;
1495
1496 default: {
1497 // Parse the macro argument, if one not found so far.
1498 if (Result.hasValue())
1499 break;
1500
1501 bool HasLexedNextToken = false;
1502 Result = Op(Tok, HasLexedNextToken);
1503 ResultTok = Tok;
1504 if (HasLexedNextToken)
1505 goto already_lexed;
1506 continue;
1507 }
1508 }
1509
1510 // Diagnose missing ')'.
1511 if (!SuppressDiagnostic) {
1512 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1513 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1514 Diag << LastII;
1515 else
1516 Diag << ResultTok.getKind();
1517 Diag << tok::r_paren << ResultTok.getLocation();
1518 }
1519 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1520 SuppressDiagnostic = true;
1521 }
1522 }
1523 }
1524
1525 /// \brief Helper function to return the IdentifierInfo structure of a Token
1526 /// or generate a diagnostic if none available.
ExpectFeatureIdentifierInfo(Token & Tok,Preprocessor & PP,signed DiagID)1527 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1528 Preprocessor &PP,
1529 signed DiagID) {
1530 IdentifierInfo *II;
1531 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1532 return II;
1533
1534 PP.Diag(Tok.getLocation(), DiagID);
1535 return nullptr;
1536 }
1537
1538 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1539 /// as a builtin macro, handle it and return the next token as 'Tok'.
ExpandBuiltinMacro(Token & Tok)1540 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1541 // Figure out which token this is.
1542 IdentifierInfo *II = Tok.getIdentifierInfo();
1543 assert(II && "Can't be a macro without id info!");
1544
1545 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1546 // invoke the pragma handler, then lex the token after it.
1547 if (II == Ident_Pragma)
1548 return Handle_Pragma(Tok);
1549 else if (II == Ident__pragma) // in non-MS mode this is null
1550 return HandleMicrosoft__pragma(Tok);
1551
1552 ++NumBuiltinMacroExpanded;
1553
1554 SmallString<128> TmpBuffer;
1555 llvm::raw_svector_ostream OS(TmpBuffer);
1556
1557 // Set up the return result.
1558 Tok.setIdentifierInfo(nullptr);
1559 Tok.clearFlag(Token::NeedsCleaning);
1560
1561 if (II == Ident__LINE__) {
1562 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1563 // source file) of the current source line (an integer constant)". This can
1564 // be affected by #line.
1565 SourceLocation Loc = Tok.getLocation();
1566
1567 // Advance to the location of the first _, this might not be the first byte
1568 // of the token if it starts with an escaped newline.
1569 Loc = AdvanceToTokenCharacter(Loc, 0);
1570
1571 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1572 // a macro expansion. This doesn't matter for object-like macros, but
1573 // can matter for a function-like macro that expands to contain __LINE__.
1574 // Skip down through expansion points until we find a file loc for the
1575 // end of the expansion history.
1576 Loc = SourceMgr.getExpansionRange(Loc).second;
1577 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1578
1579 // __LINE__ expands to a simple numeric value.
1580 OS << (PLoc.isValid()? PLoc.getLine() : 1);
1581 Tok.setKind(tok::numeric_constant);
1582 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
1583 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1584 // character string literal)". This can be affected by #line.
1585 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1586
1587 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1588 // #include stack instead of the current file.
1589 if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1590 SourceLocation NextLoc = PLoc.getIncludeLoc();
1591 while (NextLoc.isValid()) {
1592 PLoc = SourceMgr.getPresumedLoc(NextLoc);
1593 if (PLoc.isInvalid())
1594 break;
1595
1596 NextLoc = PLoc.getIncludeLoc();
1597 }
1598 }
1599
1600 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1601 SmallString<128> FN;
1602 if (PLoc.isValid()) {
1603 FN += PLoc.getFilename();
1604 Lexer::Stringify(FN);
1605 OS << '"' << FN << '"';
1606 }
1607 Tok.setKind(tok::string_literal);
1608 } else if (II == Ident__DATE__) {
1609 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1610 if (!DATELoc.isValid())
1611 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1612 Tok.setKind(tok::string_literal);
1613 Tok.setLength(strlen("\"Mmm dd yyyy\""));
1614 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1615 Tok.getLocation(),
1616 Tok.getLength()));
1617 return;
1618 } else if (II == Ident__TIME__) {
1619 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1620 if (!TIMELoc.isValid())
1621 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1622 Tok.setKind(tok::string_literal);
1623 Tok.setLength(strlen("\"hh:mm:ss\""));
1624 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1625 Tok.getLocation(),
1626 Tok.getLength()));
1627 return;
1628 } else if (II == Ident__INCLUDE_LEVEL__) {
1629 // Compute the presumed include depth of this token. This can be affected
1630 // by GNU line markers.
1631 unsigned Depth = 0;
1632
1633 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1634 if (PLoc.isValid()) {
1635 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1636 for (; PLoc.isValid(); ++Depth)
1637 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1638 }
1639
1640 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1641 OS << Depth;
1642 Tok.setKind(tok::numeric_constant);
1643 } else if (II == Ident__TIMESTAMP__) {
1644 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1645 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1646 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1647
1648 // Get the file that we are lexing out of. If we're currently lexing from
1649 // a macro, dig into the include stack.
1650 const FileEntry *CurFile = nullptr;
1651 PreprocessorLexer *TheLexer = getCurrentFileLexer();
1652
1653 if (TheLexer)
1654 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1655
1656 const char *Result;
1657 if (CurFile) {
1658 time_t TT = CurFile->getModificationTime();
1659 struct tm *TM = localtime(&TT);
1660 Result = asctime(TM);
1661 } else {
1662 Result = "??? ??? ?? ??:??:?? ????\n";
1663 }
1664 // Surround the string with " and strip the trailing newline.
1665 OS << '"' << StringRef(Result).drop_back() << '"';
1666 Tok.setKind(tok::string_literal);
1667 } else if (II == Ident__COUNTER__) {
1668 // __COUNTER__ expands to a simple numeric value.
1669 OS << CounterValue++;
1670 Tok.setKind(tok::numeric_constant);
1671 } else if (II == Ident__has_feature) {
1672 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1673 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1674 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1675 diag::err_feature_check_malformed);
1676 return II && HasFeature(*this, II->getName());
1677 });
1678 } else if (II == Ident__has_extension) {
1679 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1680 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1681 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1682 diag::err_feature_check_malformed);
1683 return II && HasExtension(*this, II->getName());
1684 });
1685 } else if (II == Ident__has_builtin) {
1686 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1687 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1688 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1689 diag::err_feature_check_malformed);
1690 if (!II)
1691 return false;
1692 else if (II->getBuiltinID() != 0)
1693 return true;
1694 else {
1695 const LangOptions &LangOpts = getLangOpts();
1696 return llvm::StringSwitch<bool>(II->getName())
1697 .Case("__make_integer_seq", LangOpts.CPlusPlus)
1698 .Case("__type_pack_element", LangOpts.CPlusPlus)
1699 .Default(false);
1700 }
1701 });
1702 } else if (II == Ident__is_identifier) {
1703 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1704 [](Token &Tok, bool &HasLexedNextToken) -> int {
1705 return Tok.is(tok::identifier);
1706 });
1707 } else if (II == Ident__has_attribute) {
1708 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1709 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1710 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1711 diag::err_feature_check_malformed);
1712 return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
1713 getTargetInfo(), getLangOpts()) : 0;
1714 });
1715 } else if (II == Ident__has_declspec) {
1716 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1717 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1718 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1719 diag::err_feature_check_malformed);
1720 return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
1721 getTargetInfo(), getLangOpts()) : 0;
1722 });
1723 } else if (II == Ident__has_cpp_attribute) {
1724 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1725 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1726 IdentifierInfo *ScopeII = nullptr;
1727 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1728 diag::err_feature_check_malformed);
1729 if (!II)
1730 return false;
1731
1732 // It is possible to receive a scope token. Read the "::", if it is
1733 // available, and the subsequent identifier.
1734 LexUnexpandedToken(Tok);
1735 if (Tok.isNot(tok::coloncolon))
1736 HasLexedNextToken = true;
1737 else {
1738 ScopeII = II;
1739 LexUnexpandedToken(Tok);
1740 II = ExpectFeatureIdentifierInfo(Tok, *this,
1741 diag::err_feature_check_malformed);
1742 }
1743
1744 return II ? hasAttribute(AttrSyntax::CXX, ScopeII, II,
1745 getTargetInfo(), getLangOpts()) : 0;
1746 });
1747 } else if (II == Ident__has_include ||
1748 II == Ident__has_include_next) {
1749 // The argument to these two builtins should be a parenthesized
1750 // file name string literal using angle brackets (<>) or
1751 // double-quotes ("").
1752 bool Value;
1753 if (II == Ident__has_include)
1754 Value = EvaluateHasInclude(Tok, II, *this);
1755 else
1756 Value = EvaluateHasIncludeNext(Tok, II, *this);
1757
1758 if (Tok.isNot(tok::r_paren))
1759 return;
1760 OS << (int)Value;
1761 Tok.setKind(tok::numeric_constant);
1762 } else if (II == Ident__has_warning) {
1763 // The argument should be a parenthesized string literal.
1764 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1765 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1766 std::string WarningName;
1767 SourceLocation StrStartLoc = Tok.getLocation();
1768
1769 HasLexedNextToken = Tok.is(tok::string_literal);
1770 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1771 /*MacroExpansion=*/false))
1772 return false;
1773
1774 // FIXME: Should we accept "-R..." flags here, or should that be
1775 // handled by a separate __has_remark?
1776 if (WarningName.size() < 3 || WarningName[0] != '-' ||
1777 WarningName[1] != 'W') {
1778 Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1779 return false;
1780 }
1781
1782 // Finally, check if the warning flags maps to a diagnostic group.
1783 // We construct a SmallVector here to talk to getDiagnosticIDs().
1784 // Although we don't use the result, this isn't a hot path, and not
1785 // worth special casing.
1786 SmallVector<diag::kind, 10> Diags;
1787 return !getDiagnostics().getDiagnosticIDs()->
1788 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1789 WarningName.substr(2), Diags);
1790 });
1791 } else if (II == Ident__building_module) {
1792 // The argument to this builtin should be an identifier. The
1793 // builtin evaluates to 1 when that identifier names the module we are
1794 // currently building.
1795 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1796 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1797 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1798 diag::err_expected_id_building_module);
1799 return getLangOpts().CompilingModule && II &&
1800 (II->getName() == getLangOpts().CurrentModule);
1801 });
1802 } else if (II == Ident__MODULE__) {
1803 // The current module as an identifier.
1804 OS << getLangOpts().CurrentModule;
1805 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1806 Tok.setIdentifierInfo(ModuleII);
1807 Tok.setKind(ModuleII->getTokenID());
1808 } else if (II == Ident__identifier) {
1809 SourceLocation Loc = Tok.getLocation();
1810
1811 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1812 // if the parens are missing.
1813 LexNonComment(Tok);
1814 if (Tok.isNot(tok::l_paren)) {
1815 // No '(', use end of last token.
1816 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1817 << II << tok::l_paren;
1818 // If the next token isn't valid as our argument, we can't recover.
1819 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1820 Tok.setKind(tok::identifier);
1821 return;
1822 }
1823
1824 SourceLocation LParenLoc = Tok.getLocation();
1825 LexNonComment(Tok);
1826
1827 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1828 Tok.setKind(tok::identifier);
1829 else {
1830 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1831 << Tok.getKind();
1832 // Don't walk past anything that's not a real token.
1833 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1834 return;
1835 }
1836
1837 // Discard the ')', preserving 'Tok' as our result.
1838 Token RParen;
1839 LexNonComment(RParen);
1840 if (RParen.isNot(tok::r_paren)) {
1841 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1842 << Tok.getKind() << tok::r_paren;
1843 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1844 }
1845 return;
1846 } else {
1847 llvm_unreachable("Unknown identifier!");
1848 }
1849 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1850 }
1851
markMacroAsUsed(MacroInfo * MI)1852 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1853 // If the 'used' status changed, and the macro requires 'unused' warning,
1854 // remove its SourceLocation from the warn-for-unused-macro locations.
1855 if (MI->isWarnIfUnused() && !MI->isUsed())
1856 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1857 MI->setIsUsed(true);
1858 }
1859