1 #ifndef _TCUMATRIX_HPP
2 #define _TCUMATRIX_HPP
3 /*-------------------------------------------------------------------------
4 * drawElements Quality Program Tester Core
5 * ----------------------------------------
6 *
7 * Copyright 2014 The Android Open Source Project
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License");
10 * you may not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS,
17 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 *//*!
22 * \file
23 * \brief Templatized matrix class.
24 *//*--------------------------------------------------------------------*/
25
26 #include "tcuDefs.hpp"
27 #include "tcuVector.hpp"
28 #include "tcuArray.hpp"
29
30 namespace tcu
31 {
32
33 // Templated matrix class.
34 template <typename T, int Rows, int Cols>
35 class Matrix
36 {
37 public:
38 typedef Vector<T, Rows> Element;
39 typedef T Scalar;
40
41 enum
42 {
43 SIZE = Cols,
44 ROWS = Rows,
45 COLS = Cols,
46 };
47
48 Matrix (void);
49 explicit Matrix (const T& src);
50 explicit Matrix (const T src[Rows*Cols]);
51 Matrix (const Vector<T, Rows>& src);
52 Matrix (const Matrix<T, Rows, Cols>& src);
53 ~Matrix (void);
54
55 Matrix<T, Rows, Cols>& operator= (const Matrix<T, Rows, Cols>& src);
56 Matrix<T, Rows, Cols>& operator*= (const Matrix<T, Rows, Cols>& src);
57
58 void setRow (int rowNdx, const Vector<T, Cols>& vec);
59 void setColumn (int colNdx, const Vector<T, Rows>& vec);
60
61 Vector<T, Cols> getRow (int ndx) const;
62 Vector<T, Rows>& getColumn (int ndx);
63 const Vector<T, Rows>& getColumn (int ndx) const;
64
operator [](int ndx)65 Vector<T, Rows>& operator[] (int ndx) { return getColumn(ndx); }
operator [](int ndx) const66 const Vector<T, Rows>& operator[] (int ndx) const { return getColumn(ndx); }
67
operator ()(int row,int col) const68 inline const T& operator() (int row, int col) const { return m_data[col][row]; }
operator ()(int row,int col)69 inline T& operator() (int row, int col) { return m_data[col][row]; }
70
71 Array<T, Rows*Cols> getRowMajorData (void) const;
72 Array<T, Rows*Cols> getColumnMajorData (void) const;
73
74 private:
75 Vector<Vector<T, Rows>, Cols> m_data;
76 } DE_WARN_UNUSED_TYPE;
77
78 // Operators.
79
80 // Mat * Mat.
81 template <typename T, int Rows0, int Cols0, int Rows1, int Cols1>
82 Matrix<T, Rows0, Cols1> operator* (const Matrix<T, Rows0, Cols0>& a, const Matrix<T, Rows1, Cols1>& b);
83
84 // Mat * Vec (column vector).
85 template <typename T, int Rows, int Cols>
86 Vector<T, Rows> operator* (const Matrix<T, Rows, Cols>& mtx, const Vector<T, Cols>& vec);
87
88 // Vec * Mat (row vector).
89 template <typename T, int Rows, int Cols>
90 Vector<T, Cols> operator* (const Vector<T, Rows>& vec, const Matrix<T, Rows, Cols>& mtx);
91
92 template <typename T, int Rows, int Cols>
93 bool operator== (const Matrix<T, Rows, Cols>& lhs, const Matrix<T, Rows, Cols>& rhs);
94
95 template <typename T, int Rows, int Cols>
96 bool operator!= (const Matrix<T, Rows, Cols>& lhs, const Matrix<T, Rows, Cols>& rhs);
97
98 // Further operations
99
100 template <typename T, int Size>
101 struct SquareMatrixOps
102 {
103 static T doDeterminant (const Matrix<T, Size, Size>& mat);
104 static Matrix<T, Size, Size> doInverse (const Matrix<T, Size, Size>& mat);
105 };
106
107 template <typename T>
108 struct SquareMatrixOps<T, 2>
109 {
110 static T doDeterminant (const Matrix<T, 2, 2>& mat);
111 static Matrix<T, 2, 2> doInverse (const Matrix<T, 2, 2>& mat);
112 };
113
114 template <typename T>
115 struct SquareMatrixOps<T, 3>
116 {
117 static T doDeterminant (const Matrix<T, 3, 3>& mat);
118 static Matrix<T, 3, 3> doInverse (const Matrix<T, 3, 3>& mat);
119 };
120
121 template <typename T>
122 struct SquareMatrixOps<T, 4>
123 {
124 static T doDeterminant (const Matrix<T, 4, 4>& mat);
125 static Matrix<T, 4, 4> doInverse (const Matrix<T, 4, 4>& mat);
126 };
127
128 namespace matrix
129 {
130
131 template <typename T, int Size>
determinant(const Matrix<T,Size,Size> & mat)132 T determinant (const Matrix<T, Size, Size>& mat)
133 {
134 return SquareMatrixOps<T, Size>::doDeterminant(mat);
135 }
136
137 template <typename T, int Size>
inverse(const Matrix<T,Size,Size> & mat)138 Matrix<T, Size, Size> inverse (const Matrix<T, Size, Size>& mat)
139 {
140 return SquareMatrixOps<T, Size>::doInverse(mat);
141 }
142
143 } // matrix
144
145 // Template implementations.
146
147 template <typename T>
doDeterminant(const Matrix<T,2,2> & mat)148 T SquareMatrixOps<T, 2>::doDeterminant (const Matrix<T, 2, 2>& mat)
149 {
150 return mat(0,0) * mat(1,1) - mat(1,0) * mat(0,1);
151 }
152
153 template <typename T>
doDeterminant(const Matrix<T,3,3> & mat)154 T SquareMatrixOps<T, 3>::doDeterminant (const Matrix<T, 3, 3>& mat)
155 {
156 return + mat(0,0) * mat(1,1) * mat(2,2)
157 + mat(0,1) * mat(1,2) * mat(2,0)
158 + mat(0,2) * mat(1,0) * mat(2,1)
159 - mat(0,0) * mat(1,2) * mat(2,1)
160 - mat(0,1) * mat(1,0) * mat(2,2)
161 - mat(0,2) * mat(1,1) * mat(2,0);
162 }
163
164 template <typename T>
doDeterminant(const Matrix<T,4,4> & mat)165 T SquareMatrixOps<T, 4>::doDeterminant (const Matrix<T, 4, 4>& mat)
166 {
167 using matrix::determinant;
168
169 const T minorMatrices[4][3*3] =
170 {
171 {
172 mat(1,1), mat(2,1), mat(3,1),
173 mat(1,2), mat(2,2), mat(3,2),
174 mat(1,3), mat(2,3), mat(3,3),
175 },
176 {
177 mat(1,0), mat(2,0), mat(3,0),
178 mat(1,2), mat(2,2), mat(3,2),
179 mat(1,3), mat(2,3), mat(3,3),
180 },
181 {
182 mat(1,0), mat(2,0), mat(3,0),
183 mat(1,1), mat(2,1), mat(3,1),
184 mat(1,3), mat(2,3), mat(3,3),
185 },
186 {
187 mat(1,0), mat(2,0), mat(3,0),
188 mat(1,1), mat(2,1), mat(3,1),
189 mat(1,2), mat(2,2), mat(3,2),
190 }
191 };
192
193 return + mat(0,0) * determinant(Matrix<T, 3, 3>(minorMatrices[0]))
194 - mat(0,1) * determinant(Matrix<T, 3, 3>(minorMatrices[1]))
195 + mat(0,2) * determinant(Matrix<T, 3, 3>(minorMatrices[2]))
196 - mat(0,3) * determinant(Matrix<T, 3, 3>(minorMatrices[3]));
197 }
198
199 template <typename T>
doInverse(const Matrix<T,2,2> & mat)200 Matrix<T, 2, 2> SquareMatrixOps<T, 2>::doInverse (const Matrix<T, 2, 2>& mat)
201 {
202 using matrix::determinant;
203
204 const T det = determinant(mat);
205 Matrix<T, 2, 2> retVal;
206
207 retVal(0, 0) = mat(1, 1) / det;
208 retVal(0, 1) = -mat(0, 1) / det;
209 retVal(1, 0) = -mat(1, 0) / det;
210 retVal(1, 1) = mat(0, 0) / det;
211
212 return retVal;
213 }
214
215 template <typename T>
doInverse(const Matrix<T,3,3> & mat)216 Matrix<T, 3, 3> SquareMatrixOps<T, 3>::doInverse (const Matrix<T, 3, 3>& mat)
217 {
218 // Blockwise inversion
219 using matrix::inverse;
220
221 const T areaA[2*2] =
222 {
223 mat(0,0), mat(0,1),
224 mat(1,0), mat(1,1)
225 };
226 const T areaB[2] =
227 {
228 mat(0,2),
229 mat(1,2),
230 };
231 const T areaC[2] =
232 {
233 mat(2,0), mat(2,1),
234 };
235 const T areaD[1] =
236 {
237 mat(2,2)
238 };
239 const T nullField[4] = { T(0.0f) };
240
241 const Matrix<T, 2, 2> invA = inverse(Matrix<T, 2, 2>(areaA));
242 const Matrix<T, 2, 1> matB = Matrix<T, 2, 1>(areaB);
243 const Matrix<T, 1, 2> matC = Matrix<T, 1, 2>(areaC);
244 const Matrix<T, 1, 1> matD = Matrix<T, 1, 1>(areaD);
245
246 const T schurComplement = T(1.0f) / (matD - matC*invA*matB)(0,0);
247 const Matrix<T, 2, 2> zeroMat = Matrix<T, 2, 2>(nullField);
248
249 const Matrix<T, 2, 2> blockA = invA + invA*matB*schurComplement*matC*invA;
250 const Matrix<T, 2, 1> blockB = (zeroMat-invA)*matB*schurComplement;
251 const Matrix<T, 1, 2> blockC = matC*invA*(-schurComplement);
252 const T blockD = schurComplement;
253
254 const T result[3*3] =
255 {
256 blockA(0,0), blockA(0,1), blockB(0,0),
257 blockA(1,0), blockA(1,1), blockB(1,0),
258 blockC(0,0), blockC(0,1), blockD,
259 };
260
261 return Matrix<T, 3, 3>(result);
262 }
263
264 template <typename T>
doInverse(const Matrix<T,4,4> & mat)265 Matrix<T, 4, 4> SquareMatrixOps<T, 4>::doInverse (const Matrix<T, 4, 4>& mat)
266 {
267 // Blockwise inversion
268 using matrix::inverse;
269
270 const T areaA[2*2] =
271 {
272 mat(0,0), mat(0,1),
273 mat(1,0), mat(1,1)
274 };
275 const T areaB[2*2] =
276 {
277 mat(0,2), mat(0,3),
278 mat(1,2), mat(1,3)
279 };
280 const T areaC[2*2] =
281 {
282 mat(2,0), mat(2,1),
283 mat(3,0), mat(3,1)
284 };
285 const T areaD[2*2] =
286 {
287 mat(2,2), mat(2,3),
288 mat(3,2), mat(3,3)
289 };
290 const T nullField[4] = { T(0.0f) };
291
292 const Matrix<T, 2, 2> invA = inverse(Matrix<T, 2, 2>(areaA));
293 const Matrix<T, 2, 2> matB = Matrix<T, 2, 2>(areaB);
294 const Matrix<T, 2, 2> matC = Matrix<T, 2, 2>(areaC);
295 const Matrix<T, 2, 2> matD = Matrix<T, 2, 2>(areaD);
296
297 const Matrix<T, 2, 2> schurComplement = inverse(matD - matC*invA*matB);
298 const Matrix<T, 2, 2> zeroMat = Matrix<T, 2, 2>(nullField);
299
300 const Matrix<T, 2, 2> blockA = invA + invA*matB*schurComplement*matC*invA;
301 const Matrix<T, 2, 2> blockB = (zeroMat-invA)*matB*schurComplement;
302 const Matrix<T, 2, 2> blockC = (zeroMat-schurComplement)*matC*invA;
303 const Matrix<T, 2, 2> blockD = schurComplement;
304
305 const T result[4*4] =
306 {
307 blockA(0,0), blockA(0,1), blockB(0,0), blockB(0,1),
308 blockA(1,0), blockA(1,1), blockB(1,0), blockB(1,1),
309 blockC(0,0), blockC(0,1), blockD(0,0), blockD(0,1),
310 blockC(1,0), blockC(1,1), blockD(1,0), blockD(1,1),
311 };
312
313 return Matrix<T, 4, 4>(result);
314 }
315
316 // Initialize to identity.
317 template <typename T, int Rows, int Cols>
Matrix(void)318 Matrix<T, Rows, Cols>::Matrix (void)
319 {
320 for (int row = 0; row < Rows; row++)
321 for (int col = 0; col < Cols; col++)
322 (*this)(row, col) = (row == col) ? T(1) : T(0);
323 }
324
325 // Initialize to diagonal matrix.
326 template <typename T, int Rows, int Cols>
Matrix(const T & src)327 Matrix<T, Rows, Cols>::Matrix (const T& src)
328 {
329 for (int row = 0; row < Rows; row++)
330 for (int col = 0; col < Cols; col++)
331 (*this)(row, col) = (row == col) ? src : T(0);
332 }
333
334 // Initialize from data array.
335 template <typename T, int Rows, int Cols>
Matrix(const T src[Rows * Cols])336 Matrix<T, Rows, Cols>::Matrix (const T src[Rows*Cols])
337 {
338 for (int row = 0; row < Rows; row++)
339 for (int col = 0; col < Cols; col++)
340 (*this)(row, col) = src[row*Cols + col];
341 }
342
343 // Initialize to diagonal matrix.
344 template <typename T, int Rows, int Cols>
Matrix(const Vector<T,Rows> & src)345 Matrix<T, Rows, Cols>::Matrix (const Vector<T, Rows>& src)
346 {
347 DE_STATIC_ASSERT(Rows == Cols);
348 for (int row = 0; row < Rows; row++)
349 for (int col = 0; col < Cols; col++)
350 (*this)(row, col) = (row == col) ? src.m_data[row] : T(0);
351 }
352
353 // Copy constructor.
354 template <typename T, int Rows, int Cols>
Matrix(const Matrix<T,Rows,Cols> & src)355 Matrix<T, Rows, Cols>::Matrix (const Matrix<T, Rows, Cols>& src)
356 {
357 *this = src;
358 }
359
360 // Destructor.
361 template <typename T, int Rows, int Cols>
~Matrix(void)362 Matrix<T, Rows, Cols>::~Matrix (void)
363 {
364 }
365
366 // Assignment operator.
367 template <typename T, int Rows, int Cols>
operator =(const Matrix<T,Rows,Cols> & src)368 Matrix<T, Rows, Cols>& Matrix<T, Rows, Cols>::operator= (const Matrix<T, Rows, Cols>& src)
369 {
370 for (int row = 0; row < Rows; row++)
371 for (int col = 0; col < Cols; col++)
372 (*this)(row, col) = src(row, col);
373 return *this;
374 }
375
376 // Multipy and assign op
377 template <typename T, int Rows, int Cols>
operator *=(const Matrix<T,Rows,Cols> & src)378 Matrix<T, Rows, Cols>& Matrix<T, Rows, Cols>::operator*= (const Matrix<T, Rows, Cols>& src)
379 {
380 *this = *this * src;
381 return *this;
382 }
383
384 template <typename T, int Rows, int Cols>
setRow(int rowNdx,const Vector<T,Cols> & vec)385 void Matrix<T, Rows, Cols>::setRow (int rowNdx, const Vector<T, Cols>& vec)
386 {
387 for (int col = 0; col < Cols; col++)
388 (*this)(rowNdx, col) = vec.m_data[col];
389 }
390
391 template <typename T, int Rows, int Cols>
setColumn(int colNdx,const Vector<T,Rows> & vec)392 void Matrix<T, Rows, Cols>::setColumn (int colNdx, const Vector<T, Rows>& vec)
393 {
394 m_data[colNdx] = vec;
395 }
396
397 template <typename T, int Rows, int Cols>
getRow(int rowNdx) const398 Vector<T, Cols> Matrix<T, Rows, Cols>::getRow (int rowNdx) const
399 {
400 Vector<T, Cols> res;
401 for (int col = 0; col < Cols; col++)
402 res[col] = (*this)(rowNdx, col);
403 return res;
404 }
405
406 template <typename T, int Rows, int Cols>
getColumn(int colNdx)407 Vector<T, Rows>& Matrix<T, Rows, Cols>::getColumn (int colNdx)
408 {
409 return m_data[colNdx];
410 }
411
412 template <typename T, int Rows, int Cols>
getColumn(int colNdx) const413 const Vector<T, Rows>& Matrix<T, Rows, Cols>::getColumn (int colNdx) const
414 {
415 return m_data[colNdx];
416 }
417
418 template <typename T, int Rows, int Cols>
getColumnMajorData(void) const419 Array<T, Rows*Cols> Matrix<T, Rows, Cols>::getColumnMajorData (void) const
420 {
421 Array<T, Rows*Cols> a;
422 T* dst = a.getPtr();
423 for (int col = 0; col < Cols; col++)
424 for (int row = 0; row < Rows; row++)
425 *dst++ = (*this)(row, col);
426 return a;
427 }
428
429 template <typename T, int Rows, int Cols>
getRowMajorData(void) const430 Array<T, Rows*Cols> Matrix<T, Rows, Cols>::getRowMajorData (void) const
431 {
432 Array<T, Rows*Cols> a;
433 T* dst = a.getPtr();
434 for (int row = 0; row < Rows; row++)
435 for (int col = 0; col < Cols; col++)
436 *dst++ = (*this)(row, col);
437 return a;
438 }
439
440 // Multiplication of two matrices.
441 template <typename T, int Rows0, int Cols0, int Rows1, int Cols1>
operator *(const Matrix<T,Rows0,Cols0> & a,const Matrix<T,Rows1,Cols1> & b)442 Matrix<T, Rows0, Cols1> operator* (const Matrix<T, Rows0, Cols0>& a, const Matrix<T, Rows1, Cols1>& b)
443 {
444 DE_STATIC_ASSERT(Cols0 == Rows1);
445 Matrix<T, Rows0, Cols1> res;
446 for (int row = 0; row < Rows0; row++)
447 {
448 for (int col = 0; col < Cols1; col++)
449 {
450 T v = T(0);
451 for (int ndx = 0; ndx < Cols0; ndx++)
452 v += a(row,ndx) * b(ndx,col);
453 res(row,col) = v;
454 }
455 }
456 return res;
457 }
458
459 // Multiply of matrix with column vector.
460 template <typename T, int Rows, int Cols>
operator *(const Matrix<T,Rows,Cols> & mtx,const Vector<T,Cols> & vec)461 Vector<T, Rows> operator* (const Matrix<T, Rows, Cols>& mtx, const Vector<T, Cols>& vec)
462 {
463 Vector<T, Rows> res;
464 for (int row = 0; row < Rows; row++)
465 {
466 T v = T(0);
467 for (int col = 0; col < Cols; col++)
468 v += mtx(row,col) * vec.m_data[col];
469 res.m_data[row] = v;
470 }
471 return res;
472 }
473
474 // Multiply of matrix with row vector.
475 template <typename T, int Rows, int Cols>
operator *(const Vector<T,Rows> & vec,const Matrix<T,Rows,Cols> & mtx)476 Vector<T, Cols> operator* (const Vector<T, Rows>& vec, const Matrix<T, Rows, Cols>& mtx)
477 {
478 Vector<T, Cols> res;
479 for (int col = 0; col < Cols; col++)
480 {
481 T v = T(0);
482 for (int row = 0; row < Rows; row++)
483 v += mtx(row,col) * vec.m_data[row];
484 res.m_data[col] = v;
485 }
486 return res;
487 }
488
489 // Common typedefs.
490 typedef Matrix<float, 2, 2> Matrix2f;
491 typedef Matrix<float, 3, 3> Matrix3f;
492 typedef Matrix<float, 4, 4> Matrix4f;
493 typedef Matrix<double, 2, 2> Matrix2d;
494 typedef Matrix<double, 3, 3> Matrix3d;
495 typedef Matrix<double, 4, 4> Matrix4d;
496
497 // GLSL-style naming \note CxR.
498 typedef Matrix2f Mat2;
499 typedef Matrix<float, 3, 2> Mat2x3;
500 typedef Matrix<float, 4, 2> Mat2x4;
501 typedef Matrix<float, 2, 3> Mat3x2;
502 typedef Matrix3f Mat3;
503 typedef Matrix<float, 4, 3> Mat3x4;
504 typedef Matrix<float, 2, 4> Mat4x2;
505 typedef Matrix<float, 3, 4> Mat4x3;
506 typedef Matrix4f Mat4;
507
508 //using tcu::Matrix;
509 // Common typedefs 16Bit.
510 typedef Matrix<deUint16, 2, 2> Matrix2f16b;
511 typedef Matrix<deUint16, 3, 3> Matrix3f16b;
512 typedef Matrix<deUint16, 4, 4> Matrix4f16b;
513
514 // GLSL-style naming \note CxR.
515 typedef Matrix2f16b Mat2_16b;
516 typedef Matrix<deUint16, 3, 2> Mat2x3_16b;
517 typedef Matrix<deUint16, 4, 2> Mat2x4_16b;
518 typedef Matrix<deUint16, 2, 3> Mat3x2_16b;
519 typedef Matrix3f16b Mat3_16b;
520 typedef Matrix<deUint16, 4, 3> Mat3x4_16b;
521 typedef Matrix<deUint16, 2, 4> Mat4x2_16b;
522 typedef Matrix<deUint16, 3, 4> Mat4x3_16b;
523 typedef Matrix4f16b Mat4_16b;
524
525 // Matrix-scalar operators.
526
527 template <typename T, int Rows, int Cols>
operator +(const Matrix<T,Rows,Cols> & mtx,T scalar)528 Matrix<T, Rows, Cols> operator+ (const Matrix<T, Rows, Cols>& mtx, T scalar)
529 {
530 Matrix<T, Rows, Cols> res;
531 for (int col = 0; col < Cols; col++)
532 for (int row = 0; row < Rows; row++)
533 res(row, col) = mtx(row, col) + scalar;
534 return res;
535 }
536
537 template <typename T, int Rows, int Cols>
operator -(const Matrix<T,Rows,Cols> & mtx,T scalar)538 Matrix<T, Rows, Cols> operator- (const Matrix<T, Rows, Cols>& mtx, T scalar)
539 {
540 Matrix<T, Rows, Cols> res;
541 for (int col = 0; col < Cols; col++)
542 for (int row = 0; row < Rows; row++)
543 res(row, col) = mtx(row, col) - scalar;
544 return res;
545 }
546
547 template <typename T, int Rows, int Cols>
operator *(const Matrix<T,Rows,Cols> & mtx,T scalar)548 Matrix<T, Rows, Cols> operator* (const Matrix<T, Rows, Cols>& mtx, T scalar)
549 {
550 Matrix<T, Rows, Cols> res;
551 for (int col = 0; col < Cols; col++)
552 for (int row = 0; row < Rows; row++)
553 res(row, col) = mtx(row, col) * scalar;
554 return res;
555 }
556
557 template <typename T, int Rows, int Cols>
operator /(const Matrix<T,Rows,Cols> & mtx,T scalar)558 Matrix<T, Rows, Cols> operator/ (const Matrix<T, Rows, Cols>& mtx, T scalar)
559 {
560 Matrix<T, Rows, Cols> res;
561 for (int col = 0; col < Cols; col++)
562 for (int row = 0; row < Rows; row++)
563 res(row, col) = mtx(row, col) / scalar;
564 return res;
565 }
566
567 // Matrix-matrix component-wise operators.
568
569 template <typename T, int Rows, int Cols>
operator +(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)570 Matrix<T, Rows, Cols> operator+ (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
571 {
572 Matrix<T, Rows, Cols> res;
573 for (int col = 0; col < Cols; col++)
574 for (int row = 0; row < Rows; row++)
575 res(row, col) = a(row, col) + b(row, col);
576 return res;
577 }
578
579 template <typename T, int Rows, int Cols>
operator -(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)580 Matrix<T, Rows, Cols> operator- (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
581 {
582 Matrix<T, Rows, Cols> res;
583 for (int col = 0; col < Cols; col++)
584 for (int row = 0; row < Rows; row++)
585 res(row, col) = a(row, col) - b(row, col);
586 return res;
587 }
588
589 template <typename T, int Rows, int Cols>
operator /(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)590 Matrix<T, Rows, Cols> operator/ (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
591 {
592 Matrix<T, Rows, Cols> res;
593 for (int col = 0; col < Cols; col++)
594 for (int row = 0; row < Rows; row++)
595 res(row, col) = a(row, col) / b(row, col);
596 return res;
597 }
598
599 template <typename T, int Rows, int Cols>
operator ==(const Matrix<T,Rows,Cols> & lhs,const Matrix<T,Rows,Cols> & rhs)600 bool operator== (const Matrix<T, Rows, Cols>& lhs, const Matrix<T, Rows, Cols>& rhs)
601 {
602 for (int row = 0; row < Rows; row++)
603 for (int col = 0; col < Cols; col++)
604 if (lhs(row, col) != rhs(row, col))
605 return false;
606 return true;
607 }
608
609 template <typename T, int Rows, int Cols>
operator !=(const Matrix<T,Rows,Cols> & lhs,const Matrix<T,Rows,Cols> & rhs)610 bool operator!= (const Matrix<T, Rows, Cols>& lhs, const Matrix<T, Rows, Cols>& rhs)
611 {
612 return !(lhs == rhs);
613 }
614
615 } // tcu
616
617 #endif // _TCUMATRIX_HPP
618