1
2 #include "main.h"
3
4 namespace Eigen {
5
6 template<typename Lhs,typename Rhs>
7 const Product<Lhs,Rhs>
prod(const Lhs & lhs,const Rhs & rhs)8 prod(const Lhs& lhs, const Rhs& rhs)
9 {
10 return Product<Lhs,Rhs>(lhs,rhs);
11 }
12
13 template<typename Lhs,typename Rhs>
14 const Product<Lhs,Rhs,LazyProduct>
lazyprod(const Lhs & lhs,const Rhs & rhs)15 lazyprod(const Lhs& lhs, const Rhs& rhs)
16 {
17 return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
18 }
19
20 template<typename DstXprType, typename SrcXprType>
21 EIGEN_STRONG_INLINE
copy_using_evaluator(const EigenBase<DstXprType> & dst,const SrcXprType & src)22 DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
23 {
24 call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
25 return dst.const_cast_derived();
26 }
27
28 template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
29 EIGEN_STRONG_INLINE
copy_using_evaluator(const NoAlias<DstXprType,StorageBase> & dst,const SrcXprType & src)30 const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
31 {
32 call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
33 return dst.expression();
34 }
35
36 template<typename DstXprType, typename SrcXprType>
37 EIGEN_STRONG_INLINE
copy_using_evaluator(const PlainObjectBase<DstXprType> & dst,const SrcXprType & src)38 DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
39 {
40 #ifdef EIGEN_NO_AUTOMATIC_RESIZING
41 eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
42 : (dst.rows() == src.rows() && dst.cols() == src.cols())))
43 && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
44 #else
45 dst.const_cast_derived().resizeLike(src.derived());
46 #endif
47
48 call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
49 return dst.const_cast_derived();
50 }
51
52 template<typename DstXprType, typename SrcXprType>
add_assign_using_evaluator(const DstXprType & dst,const SrcXprType & src)53 void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
54 {
55 typedef typename DstXprType::Scalar Scalar;
56 call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
57 }
58
59 template<typename DstXprType, typename SrcXprType>
subtract_assign_using_evaluator(const DstXprType & dst,const SrcXprType & src)60 void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
61 {
62 typedef typename DstXprType::Scalar Scalar;
63 call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
64 }
65
66 template<typename DstXprType, typename SrcXprType>
multiply_assign_using_evaluator(const DstXprType & dst,const SrcXprType & src)67 void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
68 {
69 typedef typename DstXprType::Scalar Scalar;
70 call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
71 }
72
73 template<typename DstXprType, typename SrcXprType>
divide_assign_using_evaluator(const DstXprType & dst,const SrcXprType & src)74 void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
75 {
76 typedef typename DstXprType::Scalar Scalar;
77 call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
78 }
79
80 template<typename DstXprType, typename SrcXprType>
swap_using_evaluator(const DstXprType & dst,const SrcXprType & src)81 void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
82 {
83 typedef typename DstXprType::Scalar Scalar;
84 call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
85 }
86
87 namespace internal {
88 template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
call_assignment(const NoAlias<Dst,StorageBase> & dst,const Src & src,const Func & func)89 EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
90 {
91 call_assignment_no_alias(dst.expression(), src, func);
92 }
93 }
94
95 }
96
get_cost(const XprType &)97 template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }
98
99 using namespace std;
100
101 #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
102 #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
103
test_evaluators()104 void test_evaluators()
105 {
106 // Testing Matrix evaluator and Transpose
107 Vector2d v = Vector2d::Random();
108 const Vector2d v_const(v);
109 Vector2d v2;
110 RowVector2d w;
111
112 VERIFY_IS_APPROX_EVALUATOR(v2, v);
113 VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
114
115 // Testing Transpose
116 VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
117 VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
118
119 copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
120 VERIFY_IS_APPROX(w,v.transpose().eval());
121
122 copy_using_evaluator(w.transpose(), v_const);
123 VERIFY_IS_APPROX(w,v_const.transpose().eval());
124
125 // Testing Array evaluator
126 {
127 ArrayXXf a(2,3);
128 ArrayXXf b(3,2);
129 a << 1,2,3, 4,5,6;
130 const ArrayXXf a_const(a);
131
132 VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
133
134 VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
135
136 // Testing CwiseNullaryOp evaluator
137 copy_using_evaluator(w, RowVector2d::Random());
138 VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
139
140 VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
141
142 VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
143
144 // mix CwiseNullaryOp and transpose
145 VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
146 }
147
148 {
149 // test product expressions
150 int s = internal::random<int>(1,100);
151 MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
152 a.setRandom();
153 b.setRandom();
154 c.setRandom();
155 d.setRandom();
156 VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
157 VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
158 VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
159 VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
160 VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
161 VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
162 VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
163 VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
164
165 // check that prod works even with aliasing present
166 c = a*a;
167 copy_using_evaluator(a, prod(a,a));
168 VERIFY_IS_APPROX(a,c);
169
170 // check compound assignment of products
171 d = c;
172 add_assign_using_evaluator(c.noalias(), prod(a,b));
173 d.noalias() += a*b;
174 VERIFY_IS_APPROX(c, d);
175
176 d = c;
177 subtract_assign_using_evaluator(c.noalias(), prod(a,b));
178 d.noalias() -= a*b;
179 VERIFY_IS_APPROX(c, d);
180 }
181
182 {
183 // test product with all possible sizes
184 int s = internal::random<int>(1,100);
185 Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
186 Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
187 Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
188 Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
189 Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
190 Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
191 Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
192 Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
193 Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
194
195 VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
196 VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
197 VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
198 VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
199 VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
200 VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
201 VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
202 VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
203 VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
204 VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
205 VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
206 VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
207 VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
208 VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
209 VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
210 VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
211 VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
212 VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
213 VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
214 VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
215 VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
216 VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
217 VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
218 VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
219 VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
220 VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
221 VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
222 }
223
224 {
225 ArrayXXf a(2,3);
226 ArrayXXf b(3,2);
227 a << 1,2,3, 4,5,6;
228 const ArrayXXf a_const(a);
229
230 // this does not work because Random is eval-before-nested:
231 // copy_using_evaluator(w, Vector2d::Random().transpose());
232
233 // test CwiseUnaryOp
234 VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
235 VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
236 VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
237 VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
238
239 // test CwiseBinaryOp
240 VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
241 VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
242
243 // dynamic matrices and arrays
244 MatrixXd mat1(6,6), mat2(6,6);
245 VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
246 VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
247 copy_using_evaluator(mat2.transpose(), mat1);
248 VERIFY_IS_APPROX(mat2.transpose(), mat1);
249
250 ArrayXXd arr1(6,6), arr2(6,6);
251 VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
252 VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
253
254 // test automatic resizing
255 mat2.resize(3,3);
256 VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
257 arr2.resize(9,9);
258 VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
259
260 // test direct traversal
261 Matrix3f m3;
262 Array33f a3;
263 VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
264 // TODO: find a way to test direct traversal with array
265 VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
266 VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
267 VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
268 VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
269
270 // test linear traversal
271 VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
272 VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
273 VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
274 VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
275 VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
276
277 // test inner vectorization
278 Matrix4f m4, m4src = Matrix4f::Random();
279 Array44f a4, a4src = Matrix4f::Random();
280 VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
281 VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
282 VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
283 // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
284 VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
285 VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
286
287 // test linear vectorization
288 MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
289 ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
290 VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
291 VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
292 VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
293 VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
294 VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
295 VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
296
297 // test blocks and slice vectorization
298 VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
299 VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
300
301 Matrix4f m4ref = m4;
302 copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
303 m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
304 VERIFY_IS_APPROX(m4, m4ref);
305
306 mX.setIdentity(20,20);
307 MatrixXf mXref = MatrixXf::Identity(20,20);
308 mXsrc = MatrixXf::Random(9,12);
309 copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
310 mXref.block(4, 4, 9, 12) = mXsrc;
311 VERIFY_IS_APPROX(mX, mXref);
312
313 // test Map
314 const float raw[3] = {1,2,3};
315 float buffer[3] = {0,0,0};
316 Vector3f v3;
317 Array3f a3f;
318 VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
319 VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
320 Vector3f::Map(buffer) = 2*v3;
321 VERIFY(buffer[0] == 2);
322 VERIFY(buffer[1] == 4);
323 VERIFY(buffer[2] == 6);
324
325 // test CwiseUnaryView
326 mat1.setRandom();
327 mat2.setIdentity();
328 MatrixXcd matXcd(6,6), matXcd_ref(6,6);
329 copy_using_evaluator(matXcd.real(), mat1);
330 copy_using_evaluator(matXcd.imag(), mat2);
331 matXcd_ref.real() = mat1;
332 matXcd_ref.imag() = mat2;
333 VERIFY_IS_APPROX(matXcd, matXcd_ref);
334
335 // test Select
336 VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
337
338 // test Replicate
339 mXsrc = MatrixXf::Random(6, 6);
340 VectorXf vX = VectorXf::Random(6);
341 mX.resize(6, 6);
342 VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
343 matXcd.resize(12, 12);
344 VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
345 VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
346
347 // test partial reductions
348 VectorXd vec1(6);
349 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
350 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
351
352 // test MatrixWrapper and ArrayWrapper
353 mat1.setRandom(6,6);
354 arr1.setRandom(6,6);
355 VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
356 VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
357 VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
358 VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
359 mat2.array() = arr1 * arr1;
360 VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
361 arr2.matrix() = MatrixXd::Identity(6,6);
362 VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
363
364 // test Reverse
365 VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
366 VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
367 VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
368 arr2.reverse() = arr1;
369 VERIFY_IS_APPROX(arr2, arr1.reverse());
370 mat2.array() = mat1.array().reverse();
371 VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
372
373 // test Diagonal
374 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
375 vec1.resize(5);
376 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
377 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
378 vec1.setRandom();
379
380 mat2 = mat1;
381 copy_using_evaluator(mat1.diagonal(1), vec1);
382 mat2.diagonal(1) = vec1;
383 VERIFY_IS_APPROX(mat1, mat2);
384
385 copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
386 mat2.diagonal<-1>() = mat2.diagonal(1);
387 VERIFY_IS_APPROX(mat1, mat2);
388 }
389
390 {
391 // test swapping
392 MatrixXd mat1, mat2, mat1ref, mat2ref;
393 mat1ref = mat1 = MatrixXd::Random(6, 6);
394 mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
395 swap_using_evaluator(mat1, mat2);
396 mat1ref.swap(mat2ref);
397 VERIFY_IS_APPROX(mat1, mat1ref);
398 VERIFY_IS_APPROX(mat2, mat2ref);
399
400 swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
401 mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
402 VERIFY_IS_APPROX(mat1, mat1ref);
403 VERIFY_IS_APPROX(mat2, mat2ref);
404
405 swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
406 mat1.row(2).swap(mat2.col(3).transpose());
407 VERIFY_IS_APPROX(mat1, mat1ref);
408 VERIFY_IS_APPROX(mat2, mat2ref);
409 }
410
411 {
412 // test compound assignment
413 const Matrix4d mat_const = Matrix4d::Random();
414 Matrix4d mat, mat_ref;
415 mat = mat_ref = Matrix4d::Identity();
416 add_assign_using_evaluator(mat, mat_const);
417 mat_ref += mat_const;
418 VERIFY_IS_APPROX(mat, mat_ref);
419
420 subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
421 mat_ref.row(1) -= 2*mat_ref.row(2);
422 VERIFY_IS_APPROX(mat, mat_ref);
423
424 const ArrayXXf arr_const = ArrayXXf::Random(5,3);
425 ArrayXXf arr, arr_ref;
426 arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
427 multiply_assign_using_evaluator(arr, arr_const);
428 arr_ref *= arr_const;
429 VERIFY_IS_APPROX(arr, arr_ref);
430
431 divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
432 arr_ref.row(1) /= (arr_ref.row(2) + 1);
433 VERIFY_IS_APPROX(arr, arr_ref);
434 }
435
436 {
437 // test triangular shapes
438 MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
439 A.setRandom();B.setRandom();
440 VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
441
442 A.setRandom();B.setRandom();
443 VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
444
445 A.setRandom();B.setRandom();
446 VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
447
448 A.setRandom();B.setRandom();
449 C = B; C.triangularView<Upper>() = A;
450 copy_using_evaluator(B.triangularView<Upper>(), A);
451 VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
452
453 A.setRandom();B.setRandom();
454 C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
455 copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
456 VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
457
458
459 A.setRandom();B.setRandom();
460 C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
461 copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
462 VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
463
464
465 A.setRandom();B.setRandom(); C = B; D = A;
466 C.triangularView<Upper>().swap(D.triangularView<Upper>());
467 swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
468 VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
469
470
471 VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
472
473 VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
474 }
475
476 {
477 // test diagonal shapes
478 VectorXd d = VectorXd::Random(6);
479 MatrixXd A = MatrixXd::Random(6,6), B(6,6);
480 A.setRandom();B.setRandom();
481
482 VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
483 VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
484 }
485
486 {
487 // test CoeffReadCost
488 Matrix4d a, b;
489 VERIFY_IS_EQUAL( get_cost(a), 1 );
490 VERIFY_IS_EQUAL( get_cost(a+b), 3);
491 VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
492 VERIFY_IS_EQUAL( get_cost(a*b), 1);
493 VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
494 VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
495 VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
496 VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
497 VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
498 }
499 }
500