1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 static long int nb_temporaries;
11
on_temporary_creation()12 inline void on_temporary_creation() {
13 // here's a great place to set a breakpoint when debugging failures in this test!
14 nb_temporaries++;
15 }
16
17 #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN { on_temporary_creation(); }
18
19 #include "sparse.h"
20
21 #define VERIFY_EVALUATION_COUNT(XPR,N) {\
22 nb_temporaries = 0; \
23 CALL_SUBTEST( XPR ); \
24 if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
25 VERIFY( (#XPR) && nb_temporaries==N ); \
26 }
27
28
29
sparse_product()30 template<typename SparseMatrixType> void sparse_product()
31 {
32 typedef typename SparseMatrixType::StorageIndex StorageIndex;
33 Index n = 100;
34 const Index rows = internal::random<Index>(1,n);
35 const Index cols = internal::random<Index>(1,n);
36 const Index depth = internal::random<Index>(1,n);
37 typedef typename SparseMatrixType::Scalar Scalar;
38 enum { Flags = SparseMatrixType::Flags };
39
40 double density = (std::max)(8./(rows*cols), 0.2);
41 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
42 typedef Matrix<Scalar,Dynamic,1> DenseVector;
43 typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
44 typedef SparseVector<Scalar,0,StorageIndex> ColSpVector;
45 typedef SparseVector<Scalar,RowMajor,StorageIndex> RowSpVector;
46
47 Scalar s1 = internal::random<Scalar>();
48 Scalar s2 = internal::random<Scalar>();
49
50 // test matrix-matrix product
51 {
52 DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth);
53 DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
54 DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols);
55 DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
56 DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols);
57 DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
58 DenseMatrix refMat5 = DenseMatrix::Random(depth, cols);
59 DenseMatrix refMat6 = DenseMatrix::Random(rows, rows);
60 DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
61 // DenseVector dv1 = DenseVector::Random(rows);
62 SparseMatrixType m2 (rows, depth);
63 SparseMatrixType m2t(depth, rows);
64 SparseMatrixType m3 (depth, cols);
65 SparseMatrixType m3t(cols, depth);
66 SparseMatrixType m4 (rows, cols);
67 SparseMatrixType m4t(cols, rows);
68 SparseMatrixType m6(rows, rows);
69 initSparse(density, refMat2, m2);
70 initSparse(density, refMat2t, m2t);
71 initSparse(density, refMat3, m3);
72 initSparse(density, refMat3t, m3t);
73 initSparse(density, refMat4, m4);
74 initSparse(density, refMat4t, m4t);
75 initSparse(density, refMat6, m6);
76
77 // int c = internal::random<int>(0,depth-1);
78
79 // sparse * sparse
80 VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
81 VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
82 VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
83 VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
84
85 VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
86 VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
87 VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
88 VERIFY_IS_APPROX(m4 = (m2+m2)*m3, refMat4 = (refMat2+refMat2)*refMat3);
89 VERIFY_IS_APPROX(m4 = m2*m3.leftCols(cols/2), refMat4 = refMat2*refMat3.leftCols(cols/2));
90 VERIFY_IS_APPROX(m4 = m2*(m3+m3).leftCols(cols/2), refMat4 = refMat2*(refMat3+refMat3).leftCols(cols/2));
91
92 VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
93 VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
94 VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
95 VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
96
97 // make sure the right product implementation is called:
98 if((!SparseMatrixType::IsRowMajor) && m2.rows()<=m3.cols())
99 {
100 VERIFY_EVALUATION_COUNT(m4 = m2*m3, 3); // 1 temp for the result + 2 for transposing and get a sorted result.
101 VERIFY_EVALUATION_COUNT(m4 = (m2*m3).pruned(0), 1);
102 VERIFY_EVALUATION_COUNT(m4 = (m2*m3).eval().pruned(0), 4);
103 }
104
105 // and that pruning is effective:
106 {
107 DenseMatrix Ad(2,2);
108 Ad << -1, 1, 1, 1;
109 SparseMatrixType As(Ad.sparseView()), B(2,2);
110 VERIFY_IS_EQUAL( (As*As.transpose()).eval().nonZeros(), 4);
111 VERIFY_IS_EQUAL( (Ad*Ad.transpose()).eval().sparseView().eval().nonZeros(), 2);
112 VERIFY_IS_EQUAL( (As*As.transpose()).pruned(1e-6).eval().nonZeros(), 2);
113 }
114
115 // dense ?= sparse * sparse
116 VERIFY_IS_APPROX(dm4 =m2*m3, refMat4 =refMat2*refMat3);
117 VERIFY_IS_APPROX(dm4+=m2*m3, refMat4+=refMat2*refMat3);
118 VERIFY_IS_APPROX(dm4-=m2*m3, refMat4-=refMat2*refMat3);
119 VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3, refMat4 =refMat2t.transpose()*refMat3);
120 VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3, refMat4+=refMat2t.transpose()*refMat3);
121 VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3, refMat4-=refMat2t.transpose()*refMat3);
122 VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3t.transpose(), refMat4 =refMat2t.transpose()*refMat3t.transpose());
123 VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3t.transpose(), refMat4+=refMat2t.transpose()*refMat3t.transpose());
124 VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3t.transpose(), refMat4-=refMat2t.transpose()*refMat3t.transpose());
125 VERIFY_IS_APPROX(dm4 =m2*m3t.transpose(), refMat4 =refMat2*refMat3t.transpose());
126 VERIFY_IS_APPROX(dm4+=m2*m3t.transpose(), refMat4+=refMat2*refMat3t.transpose());
127 VERIFY_IS_APPROX(dm4-=m2*m3t.transpose(), refMat4-=refMat2*refMat3t.transpose());
128 VERIFY_IS_APPROX(dm4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
129
130 // test aliasing
131 m4 = m2; refMat4 = refMat2;
132 VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
133
134 // sparse * dense matrix
135 VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
136 VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
137 VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
138 VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
139
140 VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
141 VERIFY_IS_APPROX(dm4=dm4+m2*refMat3, refMat4=refMat4+refMat2*refMat3);
142 VERIFY_IS_APPROX(dm4+=m2*refMat3, refMat4+=refMat2*refMat3);
143 VERIFY_IS_APPROX(dm4-=m2*refMat3, refMat4-=refMat2*refMat3);
144 VERIFY_IS_APPROX(dm4.noalias()+=m2*refMat3, refMat4+=refMat2*refMat3);
145 VERIFY_IS_APPROX(dm4.noalias()-=m2*refMat3, refMat4-=refMat2*refMat3);
146 VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
147 VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
148
149 // sparse * dense vector
150 VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0));
151 VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0));
152 VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3.col(0), refMat4.col(0)=refMat2t.transpose()*refMat3.col(0));
153 VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3t.transpose().col(0), refMat4.col(0)=refMat2t.transpose()*refMat3t.transpose().col(0));
154
155 // dense * sparse
156 VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
157 VERIFY_IS_APPROX(dm4=dm4+refMat2*m3, refMat4=refMat4+refMat2*refMat3);
158 VERIFY_IS_APPROX(dm4+=refMat2*m3, refMat4+=refMat2*refMat3);
159 VERIFY_IS_APPROX(dm4-=refMat2*m3, refMat4-=refMat2*refMat3);
160 VERIFY_IS_APPROX(dm4.noalias()+=refMat2*m3, refMat4+=refMat2*refMat3);
161 VERIFY_IS_APPROX(dm4.noalias()-=refMat2*m3, refMat4-=refMat2*refMat3);
162 VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
163 VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
164 VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
165
166 // sparse * dense and dense * sparse outer product
167 {
168 Index c = internal::random<Index>(0,depth-1);
169 Index r = internal::random<Index>(0,rows-1);
170 Index c1 = internal::random<Index>(0,cols-1);
171 Index r1 = internal::random<Index>(0,depth-1);
172 DenseMatrix dm5 = DenseMatrix::Random(depth, cols);
173
174 VERIFY_IS_APPROX( m4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
175 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
176 VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
177 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
178 VERIFY_IS_APPROX(dm4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
179
180 VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
181 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
182 VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.middleCols(c,1).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
183 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
184 VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
185
186 VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
187 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
188 VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
189
190 VERIFY_IS_APPROX( m4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
191 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
192 VERIFY_IS_APPROX( m4=m2.middleRows(r,1).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
193 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
194 VERIFY_IS_APPROX(dm4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
195
196 VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
197 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
198 VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.middleRows(r,1), refMat4=dm5.col(c1)*refMat2.row(r));
199 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
200 VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
201
202 VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
203 VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
204 VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
205 }
206
207 VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
208
209 // sparse matrix * sparse vector
210 ColSpVector cv0(cols), cv1;
211 DenseVector dcv0(cols), dcv1;
212 initSparse(2*density,dcv0, cv0);
213
214 RowSpVector rv0(depth), rv1;
215 RowDenseVector drv0(depth), drv1(rv1);
216 initSparse(2*density,drv0, rv0);
217
218 VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
219 VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
220 VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
221 VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
222 VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
223 }
224
225 // test matrix - diagonal product
226 {
227 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
228 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
229 DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
230 DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols));
231 DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows));
232 SparseMatrixType m2(rows, cols);
233 SparseMatrixType m3(rows, cols);
234 initSparse<Scalar>(density, refM2, m2);
235 initSparse<Scalar>(density, refM3, m3);
236 VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
237 VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
238 VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
239 VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
240
241 // also check with a SparseWrapper:
242 DenseVector v1 = DenseVector::Random(cols);
243 DenseVector v2 = DenseVector::Random(rows);
244 DenseVector v3 = DenseVector::Random(rows);
245 VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
246 VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
247 VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
248 VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
249
250 VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
251
252 VERIFY_IS_APPROX(v2=m2*v1.asDiagonal()*v1, refM2*v1.asDiagonal()*v1);
253 VERIFY_IS_APPROX(v3=v2.asDiagonal()*m2*v1, v2.asDiagonal()*refM2*v1);
254
255 // evaluate to a dense matrix to check the .row() and .col() iterator functions
256 VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
257 VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
258 VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2);
259 VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
260 }
261
262 // test self-adjoint and triangular-view products
263 {
264 DenseMatrix b = DenseMatrix::Random(rows, rows);
265 DenseMatrix x = DenseMatrix::Random(rows, rows);
266 DenseMatrix refX = DenseMatrix::Random(rows, rows);
267 DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
268 DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
269 DenseMatrix refS = DenseMatrix::Zero(rows, rows);
270 DenseMatrix refA = DenseMatrix::Zero(rows, rows);
271 SparseMatrixType mUp(rows, rows);
272 SparseMatrixType mLo(rows, rows);
273 SparseMatrixType mS(rows, rows);
274 SparseMatrixType mA(rows, rows);
275 initSparse<Scalar>(density, refA, mA);
276 do {
277 initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
278 } while (refUp.isZero());
279 refLo = refUp.adjoint();
280 mLo = mUp.adjoint();
281 refS = refUp + refLo;
282 refS.diagonal() *= 0.5;
283 mS = mUp + mLo;
284 // TODO be able to address the diagonal....
285 for (int k=0; k<mS.outerSize(); ++k)
286 for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
287 if (it.index() == k)
288 it.valueRef() *= Scalar(0.5);
289
290 VERIFY_IS_APPROX(refS.adjoint(), refS);
291 VERIFY_IS_APPROX(mS.adjoint(), mS);
292 VERIFY_IS_APPROX(mS, refS);
293 VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
294
295 // sparse selfadjointView with dense matrices
296 VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
297 VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
298 VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
299
300 VERIFY_IS_APPROX(x=b * mUp.template selfadjointView<Upper>(), refX=b*refS);
301 VERIFY_IS_APPROX(x=b * mLo.template selfadjointView<Lower>(), refX=b*refS);
302 VERIFY_IS_APPROX(x=b * mS.template selfadjointView<Upper|Lower>(), refX=b*refS);
303
304 VERIFY_IS_APPROX(x.noalias()+=mUp.template selfadjointView<Upper>()*b, refX+=refS*b);
305 VERIFY_IS_APPROX(x.noalias()-=mLo.template selfadjointView<Lower>()*b, refX-=refS*b);
306 VERIFY_IS_APPROX(x.noalias()+=mS.template selfadjointView<Upper|Lower>()*b, refX+=refS*b);
307
308 // sparse selfadjointView with sparse matrices
309 SparseMatrixType mSres(rows,rows);
310 VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
311 refX = refLo.template selfadjointView<Lower>()*refS);
312 VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
313 refX = refS * refLo.template selfadjointView<Lower>());
314
315 // sparse triangularView with dense matrices
316 VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b);
317 VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b);
318 VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>());
319 VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>());
320
321 // sparse triangularView with sparse matrices
322 VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS, refX = refA.template triangularView<Lower>()*refS);
323 VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>());
324 VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>()*mS, refX = refA.template triangularView<Upper>()*refS);
325 VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>());
326 }
327 }
328
329 // New test for Bug in SparseTimeDenseProduct
sparse_product_regression_test()330 template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test()
331 {
332 // This code does not compile with afflicted versions of the bug
333 SparseMatrixType sm1(3,2);
334 DenseMatrixType m2(2,2);
335 sm1.setZero();
336 m2.setZero();
337
338 DenseMatrixType m3 = sm1*m2;
339
340
341 // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
342 // bug
343
344 SparseMatrixType sm2(20000,2);
345 sm2.setZero();
346 DenseMatrixType m4(sm2*m2);
347
348 VERIFY_IS_APPROX( m4(0,0), 0.0 );
349 }
350
351 template<typename Scalar>
bug_942()352 void bug_942()
353 {
354 typedef Matrix<Scalar, Dynamic, 1> Vector;
355 typedef SparseMatrix<Scalar, ColMajor> ColSpMat;
356 typedef SparseMatrix<Scalar, RowMajor> RowSpMat;
357 ColSpMat cmA(1,1);
358 cmA.insert(0,0) = 1;
359
360 RowSpMat rmA(1,1);
361 rmA.insert(0,0) = 1;
362
363 Vector d(1);
364 d[0] = 2;
365
366 double res = 2;
367
368 VERIFY_IS_APPROX( ( cmA*d.asDiagonal() ).eval().coeff(0,0), res );
369 VERIFY_IS_APPROX( ( d.asDiagonal()*rmA ).eval().coeff(0,0), res );
370 VERIFY_IS_APPROX( ( rmA*d.asDiagonal() ).eval().coeff(0,0), res );
371 VERIFY_IS_APPROX( ( d.asDiagonal()*cmA ).eval().coeff(0,0), res );
372 }
373
test_sparse_product()374 void test_sparse_product()
375 {
376 for(int i = 0; i < g_repeat; i++) {
377 CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) );
378 CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
379 CALL_SUBTEST_1( (bug_942<double>()) );
380 CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
381 CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
382 CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
383 CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
384 }
385 }
386