1 // -*- C++ -*-
2 //===------------------------- fuzzing.cpp -------------------------------===//
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is dual licensed under the MIT and the University of Illinois Open
7 // Source Licenses. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10
11 // A set of routines to use when fuzzing the algorithms in libc++
12 // Each one tests a single algorithm.
13 //
14 // They all have the form of:
15 // int `algorithm`(const uint8_t *data, size_t size);
16 //
17 // They perform the operation, and then check to see if the results are correct.
18 // If so, they return zero, and non-zero otherwise.
19 //
20 // For example, sort calls std::sort, then checks two things:
21 // (1) The resulting vector is sorted
22 // (2) The resulting vector contains the same elements as the original data.
23
24
25
26 #include "fuzzing.h"
27 #include <vector>
28 #include <algorithm>
29 #include <functional>
30 #include <regex>
31 #include <cassert>
32
33 #include <iostream>
34
35 // If we had C++14, we could use the four iterator version of is_permutation and equal
36
37 namespace fuzzing {
38
39 // This is a struct we can use to test the stable_XXX algorithms.
40 // perform the operation on the key, then check the order of the payload.
41
42 struct stable_test {
43 uint8_t key;
44 size_t payload;
45
stable_testfuzzing::stable_test46 stable_test(uint8_t k) : key(k), payload(0) {}
stable_testfuzzing::stable_test47 stable_test(uint8_t k, size_t p) : key(k), payload(p) {}
48 };
49
swap(stable_test & lhs,stable_test & rhs)50 void swap(stable_test &lhs, stable_test &rhs)
51 {
52 using std::swap;
53 swap(lhs.key, rhs.key);
54 swap(lhs.payload, rhs.payload);
55 }
56
57 struct key_less
58 {
operator ()fuzzing::key_less59 bool operator () (const stable_test &lhs, const stable_test &rhs) const
60 {
61 return lhs.key < rhs.key;
62 }
63 };
64
65 struct payload_less
66 {
operator ()fuzzing::payload_less67 bool operator () (const stable_test &lhs, const stable_test &rhs) const
68 {
69 return lhs.payload < rhs.payload;
70 }
71 };
72
73 struct total_less
74 {
operator ()fuzzing::total_less75 bool operator () (const stable_test &lhs, const stable_test &rhs) const
76 {
77 return lhs.key == rhs.key ? lhs.payload < rhs.payload : lhs.key < rhs.key;
78 }
79 };
80
operator ==(const stable_test & lhs,const stable_test & rhs)81 bool operator==(const stable_test &lhs, const stable_test &rhs)
82 {
83 return lhs.key == rhs.key && lhs.payload == rhs.payload;
84 }
85
86
87 template<typename T>
88 struct is_even
89 {
operator ()fuzzing::is_even90 bool operator () (const T &t) const
91 {
92 return t % 2 == 0;
93 }
94 };
95
96
97 template<>
98 struct is_even<stable_test>
99 {
operator ()fuzzing::is_even100 bool operator () (const stable_test &t) const
101 {
102 return t.key % 2 == 0;
103 }
104 };
105
106 typedef std::vector<uint8_t> Vec;
107 typedef std::vector<stable_test> StableVec;
108 typedef StableVec::const_iterator SVIter;
109
110 // Cheap version of is_permutation
111 // Builds a set of buckets for each of the key values.
112 // Sums all the payloads.
113 // Not 100% perfect, but _way_ faster
is_permutation(SVIter first1,SVIter last1,SVIter first2)114 bool is_permutation(SVIter first1, SVIter last1, SVIter first2)
115 {
116 size_t xBuckets[256] = {0};
117 size_t xPayloads[256] = {0};
118 size_t yBuckets[256] = {0};
119 size_t yPayloads[256] = {0};
120
121 for (; first1 != last1; ++first1, ++first2)
122 {
123 xBuckets [first1->key]++;
124 xPayloads[first1->key] += first1->payload;
125
126 yBuckets [first2->key]++;
127 yPayloads[first2->key] += first2->payload;
128 }
129
130 for (size_t i = 0; i < 256; ++i)
131 {
132 if (xBuckets[i] != yBuckets[i])
133 return false;
134 if (xPayloads[i] != yPayloads[i])
135 return false;
136 }
137
138 return true;
139 }
140
141 template <typename Iter1, typename Iter2>
is_permutation(Iter1 first1,Iter1 last1,Iter2 first2)142 bool is_permutation(Iter1 first1, Iter1 last1, Iter2 first2)
143 {
144 static_assert((std::is_same<typename std::iterator_traits<Iter1>::value_type, uint8_t>::value), "");
145 static_assert((std::is_same<typename std::iterator_traits<Iter2>::value_type, uint8_t>::value), "");
146
147 size_t xBuckets[256] = {0};
148 size_t yBuckets[256] = {0};
149
150 for (; first1 != last1; ++first1, ++first2)
151 {
152 xBuckets [*first1]++;
153 yBuckets [*first2]++;
154 }
155
156 for (size_t i = 0; i < 256; ++i)
157 if (xBuckets[i] != yBuckets[i])
158 return false;
159
160 return true;
161 }
162
163 // == sort ==
sort(const uint8_t * data,size_t size)164 int sort(const uint8_t *data, size_t size)
165 {
166 Vec working(data, data + size);
167 std::sort(working.begin(), working.end());
168
169 if (!std::is_sorted(working.begin(), working.end())) return 1;
170 if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
171 return 0;
172 }
173
174
175 // == stable_sort ==
stable_sort(const uint8_t * data,size_t size)176 int stable_sort(const uint8_t *data, size_t size)
177 {
178 StableVec input;
179 for (size_t i = 0; i < size; ++i)
180 input.push_back(stable_test(data[i], i));
181 StableVec working = input;
182 std::stable_sort(working.begin(), working.end(), key_less());
183
184 if (!std::is_sorted(working.begin(), working.end(), key_less())) return 1;
185 auto iter = working.begin();
186 while (iter != working.end())
187 {
188 auto range = std::equal_range(iter, working.end(), *iter, key_less());
189 if (!std::is_sorted(range.first, range.second, total_less())) return 2;
190 iter = range.second;
191 }
192 if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99;
193 return 0;
194 }
195
196 // == partition ==
partition(const uint8_t * data,size_t size)197 int partition(const uint8_t *data, size_t size)
198 {
199 Vec working(data, data + size);
200 auto iter = std::partition(working.begin(), working.end(), is_even<uint8_t>());
201
202 if (!std::all_of (working.begin(), iter, is_even<uint8_t>())) return 1;
203 if (!std::none_of(iter, working.end(), is_even<uint8_t>())) return 2;
204 if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
205 return 0;
206 }
207
208
209 // == partition_copy ==
partition_copy(const uint8_t * data,size_t size)210 int partition_copy(const uint8_t *data, size_t size)
211 {
212 Vec v1, v2;
213 auto iter = std::partition_copy(data, data + size,
214 std::back_inserter<Vec>(v1), std::back_inserter<Vec>(v2),
215 is_even<uint8_t>());
216
217 // The two vectors should add up to the original size
218 if (v1.size() + v2.size() != size) return 1;
219
220 // All of the even values should be in the first vector, and none in the second
221 if (!std::all_of (v1.begin(), v1.end(), is_even<uint8_t>())) return 2;
222 if (!std::none_of(v2.begin(), v2.end(), is_even<uint8_t>())) return 3;
223
224 // Every value in both vectors has to be in the original
225
226 // Make a copy of the input, and sort it
227 Vec v0{data, data + size};
228 std::sort(v0.begin(), v0.end());
229
230 // Sort each vector and ensure that all of the elements appear in the original input
231 std::sort(v1.begin(), v1.end());
232 if (!std::includes(v0.begin(), v0.end(), v1.begin(), v1.end())) return 4;
233
234 std::sort(v2.begin(), v2.end());
235 if (!std::includes(v0.begin(), v0.end(), v2.begin(), v2.end())) return 5;
236
237 // This, while simple, is really slow - 20 seconds on a 500K element input.
238 // for (auto v: v1)
239 // if (std::find(data, data + size, v) == data + size) return 4;
240 //
241 // for (auto v: v2)
242 // if (std::find(data, data + size, v) == data + size) return 5;
243
244 return 0;
245 }
246
247 // == stable_partition ==
stable_partition(const uint8_t * data,size_t size)248 int stable_partition (const uint8_t *data, size_t size)
249 {
250 StableVec input;
251 for (size_t i = 0; i < size; ++i)
252 input.push_back(stable_test(data[i], i));
253 StableVec working = input;
254 auto iter = std::stable_partition(working.begin(), working.end(), is_even<stable_test>());
255
256 if (!std::all_of (working.begin(), iter, is_even<stable_test>())) return 1;
257 if (!std::none_of(iter, working.end(), is_even<stable_test>())) return 2;
258 if (!std::is_sorted(working.begin(), iter, payload_less())) return 3;
259 if (!std::is_sorted(iter, working.end(), payload_less())) return 4;
260 if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99;
261 return 0;
262 }
263
264 // == nth_element ==
265 // use the first element as a position into the data
nth_element(const uint8_t * data,size_t size)266 int nth_element (const uint8_t *data, size_t size)
267 {
268 if (size <= 1) return 0;
269 const size_t partition_point = data[0] % size;
270 Vec working(data + 1, data + size);
271 const auto partition_iter = working.begin() + partition_point;
272 std::nth_element(working.begin(), partition_iter, working.end());
273
274 // nth may be the end iterator, in this case nth_element has no effect.
275 if (partition_iter == working.end())
276 {
277 if (!std::equal(data + 1, data + size, working.begin())) return 98;
278 }
279 else
280 {
281 const uint8_t nth = *partition_iter;
282 if (!std::all_of(working.begin(), partition_iter, [=](uint8_t v) { return v <= nth; }))
283 return 1;
284 if (!std::all_of(partition_iter, working.end(), [=](uint8_t v) { return v >= nth; }))
285 return 2;
286 if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99;
287 }
288
289 return 0;
290 }
291
292 // == partial_sort ==
293 // use the first element as a position into the data
partial_sort(const uint8_t * data,size_t size)294 int partial_sort (const uint8_t *data, size_t size)
295 {
296 if (size <= 1) return 0;
297 const size_t sort_point = data[0] % size;
298 Vec working(data + 1, data + size);
299 const auto sort_iter = working.begin() + sort_point;
300 std::partial_sort(working.begin(), sort_iter, working.end());
301
302 if (sort_iter != working.end())
303 {
304 const uint8_t nth = *std::min_element(sort_iter, working.end());
305 if (!std::all_of(working.begin(), sort_iter, [=](uint8_t v) { return v <= nth; }))
306 return 1;
307 if (!std::all_of(sort_iter, working.end(), [=](uint8_t v) { return v >= nth; }))
308 return 2;
309 }
310 if (!std::is_sorted(working.begin(), sort_iter)) return 3;
311 if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99;
312
313 return 0;
314 }
315
316
317 // == partial_sort_copy ==
318 // use the first element as a count
partial_sort_copy(const uint8_t * data,size_t size)319 int partial_sort_copy (const uint8_t *data, size_t size)
320 {
321 if (size <= 1) return 0;
322 const size_t num_results = data[0] % size;
323 Vec results(num_results);
324 (void) std::partial_sort_copy(data + 1, data + size, results.begin(), results.end());
325
326 // The results have to be sorted
327 if (!std::is_sorted(results.begin(), results.end())) return 1;
328 // All the values in results have to be in the original data
329 for (auto v: results)
330 if (std::find(data + 1, data + size, v) == data + size) return 2;
331
332 // The things in results have to be the smallest N in the original data
333 Vec sorted(data + 1, data + size);
334 std::sort(sorted.begin(), sorted.end());
335 if (!std::equal(results.begin(), results.end(), sorted.begin())) return 3;
336 return 0;
337 }
338
339 // The second sequence has been "uniqued"
340 template <typename Iter1, typename Iter2>
compare_unique(Iter1 first1,Iter1 last1,Iter2 first2,Iter2 last2)341 static bool compare_unique(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2)
342 {
343 assert(first1 != last1 && first2 != last2);
344 if (*first1 != *first2) return false;
345
346 uint8_t last_value = *first1;
347 ++first1; ++first2;
348 while(first1 != last1 && first2 != last2)
349 {
350 // Skip over dups in the first sequence
351 while (*first1 == last_value)
352 if (++first1 == last1) return false;
353 if (*first1 != *first2) return false;
354 last_value = *first1;
355 ++first1; ++first2;
356 }
357
358 // Still stuff left in the 'uniqued' sequence - oops
359 if (first1 == last1 && first2 != last2) return false;
360
361 // Still stuff left in the original sequence - better be all the same
362 while (first1 != last1)
363 {
364 if (*first1 != last_value) return false;
365 ++first1;
366 }
367 return true;
368 }
369
370 // == unique ==
unique(const uint8_t * data,size_t size)371 int unique (const uint8_t *data, size_t size)
372 {
373 Vec working(data, data + size);
374 std::sort(working.begin(), working.end());
375 Vec results = working;
376 Vec::iterator new_end = std::unique(results.begin(), results.end());
377 Vec::iterator it; // scratch iterator
378
379 // Check the size of the unique'd sequence.
380 // it should only be zero if the input sequence was empty.
381 if (results.begin() == new_end)
382 return working.size() == 0 ? 0 : 1;
383
384 // 'results' is sorted
385 if (!std::is_sorted(results.begin(), new_end)) return 2;
386
387 // All the elements in 'results' must be different
388 it = results.begin();
389 uint8_t prev_value = *it++;
390 for (; it != new_end; ++it)
391 {
392 if (*it == prev_value) return 3;
393 prev_value = *it;
394 }
395
396 // Every element in 'results' must be in 'working'
397 for (it = results.begin(); it != new_end; ++it)
398 if (std::find(working.begin(), working.end(), *it) == working.end())
399 return 4;
400
401 // Every element in 'working' must be in 'results'
402 for (auto v : working)
403 if (std::find(results.begin(), new_end, v) == new_end)
404 return 5;
405
406 return 0;
407 }
408
409 // == unique_copy ==
unique_copy(const uint8_t * data,size_t size)410 int unique_copy (const uint8_t *data, size_t size)
411 {
412 Vec working(data, data + size);
413 std::sort(working.begin(), working.end());
414 Vec results;
415 (void) std::unique_copy(working.begin(), working.end(),
416 std::back_inserter<Vec>(results));
417 Vec::iterator it; // scratch iterator
418
419 // Check the size of the unique'd sequence.
420 // it should only be zero if the input sequence was empty.
421 if (results.size() == 0)
422 return working.size() == 0 ? 0 : 1;
423
424 // 'results' is sorted
425 if (!std::is_sorted(results.begin(), results.end())) return 2;
426
427 // All the elements in 'results' must be different
428 it = results.begin();
429 uint8_t prev_value = *it++;
430 for (; it != results.end(); ++it)
431 {
432 if (*it == prev_value) return 3;
433 prev_value = *it;
434 }
435
436 // Every element in 'results' must be in 'working'
437 for (auto v : results)
438 if (std::find(working.begin(), working.end(), v) == working.end())
439 return 4;
440
441 // Every element in 'working' must be in 'results'
442 for (auto v : working)
443 if (std::find(results.begin(), results.end(), v) == results.end())
444 return 5;
445
446 return 0;
447 }
448
449
450 // -- regex fuzzers
regex_helper(const uint8_t * data,size_t size,std::regex::flag_type flag)451 static int regex_helper(const uint8_t *data, size_t size, std::regex::flag_type flag)
452 {
453 if (size > 0)
454 {
455 try
456 {
457 std::string s((const char *)data, size);
458 std::regex re(s, flag);
459 return std::regex_match(s, re) ? 1 : 0;
460 }
461 catch (std::regex_error &ex) {}
462 }
463 return 0;
464 }
465
466
regex_ECMAScript(const uint8_t * data,size_t size)467 int regex_ECMAScript (const uint8_t *data, size_t size)
468 {
469 (void) regex_helper(data, size, std::regex_constants::ECMAScript);
470 return 0;
471 }
472
regex_POSIX(const uint8_t * data,size_t size)473 int regex_POSIX (const uint8_t *data, size_t size)
474 {
475 (void) regex_helper(data, size, std::regex_constants::basic);
476 return 0;
477 }
478
regex_extended(const uint8_t * data,size_t size)479 int regex_extended (const uint8_t *data, size_t size)
480 {
481 (void) regex_helper(data, size, std::regex_constants::extended);
482 return 0;
483 }
484
regex_awk(const uint8_t * data,size_t size)485 int regex_awk (const uint8_t *data, size_t size)
486 {
487 (void) regex_helper(data, size, std::regex_constants::awk);
488 return 0;
489 }
490
regex_grep(const uint8_t * data,size_t size)491 int regex_grep (const uint8_t *data, size_t size)
492 {
493 (void) regex_helper(data, size, std::regex_constants::grep);
494 return 0;
495 }
496
regex_egrep(const uint8_t * data,size_t size)497 int regex_egrep (const uint8_t *data, size_t size)
498 {
499 (void) regex_helper(data, size, std::regex_constants::egrep);
500 return 0;
501 }
502
503 // -- heap fuzzers
make_heap(const uint8_t * data,size_t size)504 int make_heap (const uint8_t *data, size_t size)
505 {
506 Vec working(data, data + size);
507 std::make_heap(working.begin(), working.end());
508
509 if (!std::is_heap(working.begin(), working.end())) return 1;
510 if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
511 return 0;
512 }
513
push_heap(const uint8_t * data,size_t size)514 int push_heap (const uint8_t *data, size_t size)
515 {
516 if (size < 2) return 0;
517
518 // Make a heap from the first half of the data
519 Vec working(data, data + size);
520 auto iter = working.begin() + (size / 2);
521 std::make_heap(working.begin(), iter);
522 if (!std::is_heap(working.begin(), iter)) return 1;
523
524 // Now push the rest onto the heap, one at a time
525 ++iter;
526 for (; iter != working.end(); ++iter) {
527 std::push_heap(working.begin(), iter);
528 if (!std::is_heap(working.begin(), iter)) return 2;
529 }
530
531 if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
532 return 0;
533 }
534
pop_heap(const uint8_t * data,size_t size)535 int pop_heap (const uint8_t *data, size_t size)
536 {
537 if (size < 2) return 0;
538 Vec working(data, data + size);
539 std::make_heap(working.begin(), working.end());
540
541 // Pop things off, one at a time
542 auto iter = --working.end();
543 while (iter != working.begin()) {
544 std::pop_heap(working.begin(), iter);
545 if (!std::is_heap(working.begin(), --iter)) return 2;
546 }
547
548 return 0;
549 }
550
551
552 // -- search fuzzers
search(const uint8_t * data,size_t size)553 int search (const uint8_t *data, size_t size)
554 {
555 if (size < 2) return 0;
556
557 const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
558 assert(pat_size <= size - 1);
559 const uint8_t *pat_begin = data + 1;
560 const uint8_t *pat_end = pat_begin + pat_size;
561 const uint8_t *data_end = data + size;
562 assert(pat_end <= data_end);
563 // std::cerr << "data[0] = " << size_t(data[0]) << " ";
564 // std::cerr << "Pattern size = " << pat_size << "; corpus is " << size - 1 << std::endl;
565 auto it = std::search(pat_end, data_end, pat_begin, pat_end);
566 if (it != data_end) // not found
567 if (!std::equal(pat_begin, pat_end, it))
568 return 1;
569 return 0;
570 }
571
572 template <typename S>
search_helper(const uint8_t * data,size_t size)573 static int search_helper (const uint8_t *data, size_t size)
574 {
575 if (size < 2) return 0;
576
577 const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
578 const uint8_t *pat_begin = data + 1;
579 const uint8_t *pat_end = pat_begin + pat_size;
580 const uint8_t *data_end = data + size;
581
582 auto it = std::search(pat_end, data_end, S(pat_begin, pat_end));
583 if (it != data_end) // not found
584 if (!std::equal(pat_begin, pat_end, it))
585 return 1;
586 return 0;
587 }
588
589 // These are still in std::experimental
590 // int search_boyer_moore (const uint8_t *data, size_t size)
591 // {
592 // return search_helper<std::boyer_moore_searcher<const uint8_t *>>(data, size);
593 // }
594 //
595 // int search_boyer_moore_horspool (const uint8_t *data, size_t size)
596 // {
597 // return search_helper<std::boyer_moore_horspool_searcher<const uint8_t *>>(data, size);
598 // }
599
600
601 // -- set operation fuzzers
602 template <typename S>
set_helper(const uint8_t * data,size_t size,Vec & v1,Vec & v2)603 static void set_helper (const uint8_t *data, size_t size, Vec &v1, Vec &v2)
604 {
605 assert(size > 1);
606
607 const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
608 const uint8_t *pat_begin = data + 1;
609 const uint8_t *pat_end = pat_begin + pat_size;
610 const uint8_t *data_end = data + size;
611 v1.assign(pat_begin, pat_end);
612 v2.assign(pat_end, data_end);
613
614 std::sort(v1.begin(), v1.end());
615 std::sort(v2.begin(), v2.end());
616 }
617
618 } // namespace fuzzing
619