• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "vterm_internal.h"
2 
3 // ### The following from http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
4 // With modifications:
5 //   made functions static
6 //   moved 'combining' table to file scope, so other functions can see it
7 // ###################################################################
8 
9 /*
10  * This is an implementation of wcwidth() and wcswidth() (defined in
11  * IEEE Std 1002.1-2001) for Unicode.
12  *
13  * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
14  * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
15  *
16  * In fixed-width output devices, Latin characters all occupy a single
17  * "cell" position of equal width, whereas ideographic CJK characters
18  * occupy two such cells. Interoperability between terminal-line
19  * applications and (teletype-style) character terminals using the
20  * UTF-8 encoding requires agreement on which character should advance
21  * the cursor by how many cell positions. No established formal
22  * standards exist at present on which Unicode character shall occupy
23  * how many cell positions on character terminals. These routines are
24  * a first attempt of defining such behavior based on simple rules
25  * applied to data provided by the Unicode Consortium.
26  *
27  * For some graphical characters, the Unicode standard explicitly
28  * defines a character-cell width via the definition of the East Asian
29  * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
30  * In all these cases, there is no ambiguity about which width a
31  * terminal shall use. For characters in the East Asian Ambiguous (A)
32  * class, the width choice depends purely on a preference of backward
33  * compatibility with either historic CJK or Western practice.
34  * Choosing single-width for these characters is easy to justify as
35  * the appropriate long-term solution, as the CJK practice of
36  * displaying these characters as double-width comes from historic
37  * implementation simplicity (8-bit encoded characters were displayed
38  * single-width and 16-bit ones double-width, even for Greek,
39  * Cyrillic, etc.) and not any typographic considerations.
40  *
41  * Much less clear is the choice of width for the Not East Asian
42  * (Neutral) class. Existing practice does not dictate a width for any
43  * of these characters. It would nevertheless make sense
44  * typographically to allocate two character cells to characters such
45  * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
46  * represented adequately with a single-width glyph. The following
47  * routines at present merely assign a single-cell width to all
48  * neutral characters, in the interest of simplicity. This is not
49  * entirely satisfactory and should be reconsidered before
50  * establishing a formal standard in this area. At the moment, the
51  * decision which Not East Asian (Neutral) characters should be
52  * represented by double-width glyphs cannot yet be answered by
53  * applying a simple rule from the Unicode database content. Setting
54  * up a proper standard for the behavior of UTF-8 character terminals
55  * will require a careful analysis not only of each Unicode character,
56  * but also of each presentation form, something the author of these
57  * routines has avoided to do so far.
58  *
59  * http://www.unicode.org/unicode/reports/tr11/
60  *
61  * Markus Kuhn -- 2007-05-26 (Unicode 5.0)
62  *
63  * Permission to use, copy, modify, and distribute this software
64  * for any purpose and without fee is hereby granted. The author
65  * disclaims all warranties with regard to this software.
66  *
67  * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
68  */
69 
70 struct interval {
71   int first;
72   int last;
73 };
74 
75 /* sorted list of non-overlapping intervals of non-spacing characters */
76 /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
77 static const struct interval combining[] = {
78   { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
79   { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
80   { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
81   { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
82   { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
83   { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
84   { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
85   { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
86   { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
87   { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
88   { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
89   { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
90   { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
91   { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
92   { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
93   { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
94   { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
95   { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
96   { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
97   { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
98   { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
99   { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
100   { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
101   { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
102   { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
103   { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
104   { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
105   { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
106   { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
107   { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
108   { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
109   { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
110   { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
111   { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
112   { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
113   { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
114   { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
115   { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
116   { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
117   { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
118   { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
119   { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
120   { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
121   { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
122   { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
123   { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
124   { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
125   { 0xE0100, 0xE01EF }
126 };
127 
128 
129 /* auxiliary function for binary search in interval table */
bisearch(uint32_t ucs,const struct interval * table,int max)130 static int bisearch(uint32_t ucs, const struct interval *table, int max) {
131   int min = 0;
132   int mid;
133 
134   if (ucs < table[0].first || ucs > table[max].last)
135     return 0;
136   while (max >= min) {
137     mid = (min + max) / 2;
138     if (ucs > table[mid].last)
139       min = mid + 1;
140     else if (ucs < table[mid].first)
141       max = mid - 1;
142     else
143       return 1;
144   }
145 
146   return 0;
147 }
148 
149 
150 /* The following two functions define the column width of an ISO 10646
151  * character as follows:
152  *
153  *    - The null character (U+0000) has a column width of 0.
154  *
155  *    - Other C0/C1 control characters and DEL will lead to a return
156  *      value of -1.
157  *
158  *    - Non-spacing and enclosing combining characters (general
159  *      category code Mn or Me in the Unicode database) have a
160  *      column width of 0.
161  *
162  *    - SOFT HYPHEN (U+00AD) has a column width of 1.
163  *
164  *    - Other format characters (general category code Cf in the Unicode
165  *      database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
166  *
167  *    - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
168  *      have a column width of 0.
169  *
170  *    - Spacing characters in the East Asian Wide (W) or East Asian
171  *      Full-width (F) category as defined in Unicode Technical
172  *      Report #11 have a column width of 2.
173  *
174  *    - All remaining characters (including all printable
175  *      ISO 8859-1 and WGL4 characters, Unicode control characters,
176  *      etc.) have a column width of 1.
177  *
178  * This implementation assumes that uint32_t characters are encoded
179  * in ISO 10646.
180  */
181 
182 
mk_wcwidth(uint32_t ucs)183 static int mk_wcwidth(uint32_t ucs)
184 {
185   /* test for 8-bit control characters */
186   if (ucs == 0)
187     return 0;
188   if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
189     return -1;
190 
191   /* binary search in table of non-spacing characters */
192   if (bisearch(ucs, combining,
193                sizeof(combining) / sizeof(struct interval) - 1))
194     return 0;
195 
196   /* if we arrive here, ucs is not a combining or C0/C1 control character */
197 
198   return 1 +
199     (ucs >= 0x1100 &&
200      (ucs <= 0x115f ||                    /* Hangul Jamo init. consonants */
201       ucs == 0x2329 || ucs == 0x232a ||
202       (ucs >= 0x2e80 && ucs <= 0xa4cf &&
203        ucs != 0x303f) ||                  /* CJK ... Yi */
204       (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
205       (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
206       (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
207       (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
208       (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
209       (ucs >= 0xffe0 && ucs <= 0xffe6) ||
210       (ucs >= 0x20000 && ucs <= 0x2fffd) ||
211       (ucs >= 0x30000 && ucs <= 0x3fffd)));
212 }
213 
214 
mk_wcswidth(const uint32_t * pwcs,size_t n)215 static int mk_wcswidth(const uint32_t *pwcs, size_t n)
216 {
217   int w, width = 0;
218 
219   for (;*pwcs && n-- > 0; pwcs++)
220     if ((w = mk_wcwidth(*pwcs)) < 0)
221       return -1;
222     else
223       width += w;
224 
225   return width;
226 }
227 
228 
229 /*
230  * The following functions are the same as mk_wcwidth() and
231  * mk_wcswidth(), except that spacing characters in the East Asian
232  * Ambiguous (A) category as defined in Unicode Technical Report #11
233  * have a column width of 2. This variant might be useful for users of
234  * CJK legacy encodings who want to migrate to UCS without changing
235  * the traditional terminal character-width behaviour. It is not
236  * otherwise recommended for general use.
237  */
mk_wcwidth_cjk(uint32_t ucs)238 static int mk_wcwidth_cjk(uint32_t ucs)
239 {
240   /* sorted list of non-overlapping intervals of East Asian Ambiguous
241    * characters, generated by "uniset +WIDTH-A -cat=Me -cat=Mn -cat=Cf c" */
242   static const struct interval ambiguous[] = {
243     { 0x00A1, 0x00A1 }, { 0x00A4, 0x00A4 }, { 0x00A7, 0x00A8 },
244     { 0x00AA, 0x00AA }, { 0x00AE, 0x00AE }, { 0x00B0, 0x00B4 },
245     { 0x00B6, 0x00BA }, { 0x00BC, 0x00BF }, { 0x00C6, 0x00C6 },
246     { 0x00D0, 0x00D0 }, { 0x00D7, 0x00D8 }, { 0x00DE, 0x00E1 },
247     { 0x00E6, 0x00E6 }, { 0x00E8, 0x00EA }, { 0x00EC, 0x00ED },
248     { 0x00F0, 0x00F0 }, { 0x00F2, 0x00F3 }, { 0x00F7, 0x00FA },
249     { 0x00FC, 0x00FC }, { 0x00FE, 0x00FE }, { 0x0101, 0x0101 },
250     { 0x0111, 0x0111 }, { 0x0113, 0x0113 }, { 0x011B, 0x011B },
251     { 0x0126, 0x0127 }, { 0x012B, 0x012B }, { 0x0131, 0x0133 },
252     { 0x0138, 0x0138 }, { 0x013F, 0x0142 }, { 0x0144, 0x0144 },
253     { 0x0148, 0x014B }, { 0x014D, 0x014D }, { 0x0152, 0x0153 },
254     { 0x0166, 0x0167 }, { 0x016B, 0x016B }, { 0x01CE, 0x01CE },
255     { 0x01D0, 0x01D0 }, { 0x01D2, 0x01D2 }, { 0x01D4, 0x01D4 },
256     { 0x01D6, 0x01D6 }, { 0x01D8, 0x01D8 }, { 0x01DA, 0x01DA },
257     { 0x01DC, 0x01DC }, { 0x0251, 0x0251 }, { 0x0261, 0x0261 },
258     { 0x02C4, 0x02C4 }, { 0x02C7, 0x02C7 }, { 0x02C9, 0x02CB },
259     { 0x02CD, 0x02CD }, { 0x02D0, 0x02D0 }, { 0x02D8, 0x02DB },
260     { 0x02DD, 0x02DD }, { 0x02DF, 0x02DF }, { 0x0391, 0x03A1 },
261     { 0x03A3, 0x03A9 }, { 0x03B1, 0x03C1 }, { 0x03C3, 0x03C9 },
262     { 0x0401, 0x0401 }, { 0x0410, 0x044F }, { 0x0451, 0x0451 },
263     { 0x2010, 0x2010 }, { 0x2013, 0x2016 }, { 0x2018, 0x2019 },
264     { 0x201C, 0x201D }, { 0x2020, 0x2022 }, { 0x2024, 0x2027 },
265     { 0x2030, 0x2030 }, { 0x2032, 0x2033 }, { 0x2035, 0x2035 },
266     { 0x203B, 0x203B }, { 0x203E, 0x203E }, { 0x2074, 0x2074 },
267     { 0x207F, 0x207F }, { 0x2081, 0x2084 }, { 0x20AC, 0x20AC },
268     { 0x2103, 0x2103 }, { 0x2105, 0x2105 }, { 0x2109, 0x2109 },
269     { 0x2113, 0x2113 }, { 0x2116, 0x2116 }, { 0x2121, 0x2122 },
270     { 0x2126, 0x2126 }, { 0x212B, 0x212B }, { 0x2153, 0x2154 },
271     { 0x215B, 0x215E }, { 0x2160, 0x216B }, { 0x2170, 0x2179 },
272     { 0x2190, 0x2199 }, { 0x21B8, 0x21B9 }, { 0x21D2, 0x21D2 },
273     { 0x21D4, 0x21D4 }, { 0x21E7, 0x21E7 }, { 0x2200, 0x2200 },
274     { 0x2202, 0x2203 }, { 0x2207, 0x2208 }, { 0x220B, 0x220B },
275     { 0x220F, 0x220F }, { 0x2211, 0x2211 }, { 0x2215, 0x2215 },
276     { 0x221A, 0x221A }, { 0x221D, 0x2220 }, { 0x2223, 0x2223 },
277     { 0x2225, 0x2225 }, { 0x2227, 0x222C }, { 0x222E, 0x222E },
278     { 0x2234, 0x2237 }, { 0x223C, 0x223D }, { 0x2248, 0x2248 },
279     { 0x224C, 0x224C }, { 0x2252, 0x2252 }, { 0x2260, 0x2261 },
280     { 0x2264, 0x2267 }, { 0x226A, 0x226B }, { 0x226E, 0x226F },
281     { 0x2282, 0x2283 }, { 0x2286, 0x2287 }, { 0x2295, 0x2295 },
282     { 0x2299, 0x2299 }, { 0x22A5, 0x22A5 }, { 0x22BF, 0x22BF },
283     { 0x2312, 0x2312 }, { 0x2460, 0x24E9 }, { 0x24EB, 0x254B },
284     { 0x2550, 0x2573 }, { 0x2580, 0x258F }, { 0x2592, 0x2595 },
285     { 0x25A0, 0x25A1 }, { 0x25A3, 0x25A9 }, { 0x25B2, 0x25B3 },
286     { 0x25B6, 0x25B7 }, { 0x25BC, 0x25BD }, { 0x25C0, 0x25C1 },
287     { 0x25C6, 0x25C8 }, { 0x25CB, 0x25CB }, { 0x25CE, 0x25D1 },
288     { 0x25E2, 0x25E5 }, { 0x25EF, 0x25EF }, { 0x2605, 0x2606 },
289     { 0x2609, 0x2609 }, { 0x260E, 0x260F }, { 0x2614, 0x2615 },
290     { 0x261C, 0x261C }, { 0x261E, 0x261E }, { 0x2640, 0x2640 },
291     { 0x2642, 0x2642 }, { 0x2660, 0x2661 }, { 0x2663, 0x2665 },
292     { 0x2667, 0x266A }, { 0x266C, 0x266D }, { 0x266F, 0x266F },
293     { 0x273D, 0x273D }, { 0x2776, 0x277F }, { 0xE000, 0xF8FF },
294     { 0xFFFD, 0xFFFD }, { 0xF0000, 0xFFFFD }, { 0x100000, 0x10FFFD }
295   };
296 
297   /* binary search in table of non-spacing characters */
298   if (bisearch(ucs, ambiguous,
299                sizeof(ambiguous) / sizeof(struct interval) - 1))
300     return 2;
301 
302   return mk_wcwidth(ucs);
303 }
304 
305 
mk_wcswidth_cjk(const uint32_t * pwcs,size_t n)306 static int mk_wcswidth_cjk(const uint32_t *pwcs, size_t n)
307 {
308   int w, width = 0;
309 
310   for (;*pwcs && n-- > 0; pwcs++)
311     if ((w = mk_wcwidth_cjk(*pwcs)) < 0)
312       return -1;
313     else
314       width += w;
315 
316   return width;
317 }
318 
319 // ################################
320 // ### The rest added by Paul Evans
321 
322 static const struct interval fullwidth[] = {
323 #include "fullwidth.inc"
324 };
325 
vterm_unicode_width(uint32_t codepoint)326 INTERNAL int vterm_unicode_width(uint32_t codepoint)
327 {
328   if(bisearch(codepoint, fullwidth, sizeof(fullwidth) / sizeof(fullwidth[0]) - 1))
329     return 2;
330 
331   return mk_wcwidth(codepoint);
332 }
333 
vterm_unicode_is_combining(uint32_t codepoint)334 INTERNAL int vterm_unicode_is_combining(uint32_t codepoint)
335 {
336   return bisearch(codepoint, combining, sizeof(combining) / sizeof(struct interval) - 1);
337 }
338