• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Author : Stephen Smalley, <sds@tycho.nsa.gov>
4  */
5 /*
6  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7  *
8  *	Support for enhanced MLS infrastructure.
9  *
10  * Updated: Frank Mayer <mayerf@tresys.com>
11  *          and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16  *
17  *      Fine-grained netlink support
18  *      IPv6 support
19  *      Code cleanup
20  *
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  * Copyright (C) 2003 - 2004 Red Hat, Inc.
24  * Copyright (C) 2017 Mellanox Technologies Inc.
25  *
26  *  This library is free software; you can redistribute it and/or
27  *  modify it under the terms of the GNU Lesser General Public
28  *  License as published by the Free Software Foundation; either
29  *  version 2.1 of the License, or (at your option) any later version.
30  *
31  *  This library is distributed in the hope that it will be useful,
32  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  *  Lesser General Public License for more details.
35  *
36  *  You should have received a copy of the GNU Lesser General Public
37  *  License along with this library; if not, write to the Free Software
38  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
39  */
40 
41 /* FLASK */
42 
43 /*
44  * Implementation of the security services.
45  */
46 
47 /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
48 #define REASON_BUF_SIZE 2048
49 #define EXPR_BUF_SIZE 1024
50 #define STACK_LEN 32
51 
52 #include <stdlib.h>
53 #include <sys/types.h>
54 #include <sys/socket.h>
55 #include <netinet/in.h>
56 #include <arpa/inet.h>
57 
58 #include <sepol/policydb/policydb.h>
59 #include <sepol/policydb/sidtab.h>
60 #include <sepol/policydb/services.h>
61 #include <sepol/policydb/conditional.h>
62 #include <sepol/policydb/flask.h>
63 #include <sepol/policydb/util.h>
64 
65 #include "debug.h"
66 #include "private.h"
67 #include "context.h"
68 #include "av_permissions.h"
69 #include "dso.h"
70 #include "mls.h"
71 
72 #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73 #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
74 
75 static int selinux_enforcing = 1;
76 
77 static sidtab_t mysidtab, *sidtab = &mysidtab;
78 static policydb_t mypolicydb, *policydb = &mypolicydb;
79 
80 /* Used by sepol_compute_av_reason_buffer() to keep track of entries */
81 static int reason_buf_used;
82 static int reason_buf_len;
83 
84 /* Stack services for RPN to infix conversion. */
85 static char **stack;
86 static int stack_len;
87 static int next_stack_entry;
88 
push(char * expr_ptr)89 static void push(char *expr_ptr)
90 {
91 	if (next_stack_entry >= stack_len) {
92 		char **new_stack = stack;
93 		int new_stack_len;
94 
95 		if (stack_len == 0)
96 			new_stack_len = STACK_LEN;
97 		else
98 			new_stack_len = stack_len * 2;
99 
100 		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
101 		if (!new_stack) {
102 			ERR(NULL, "unable to allocate stack space");
103 			return;
104 		}
105 		stack_len = new_stack_len;
106 		stack = new_stack;
107 	}
108 	stack[next_stack_entry] = expr_ptr;
109 	next_stack_entry++;
110 }
111 
pop(void)112 static char *pop(void)
113 {
114 	next_stack_entry--;
115 	if (next_stack_entry < 0) {
116 		next_stack_entry = 0;
117 		ERR(NULL, "pop called with no stack entries");
118 		return NULL;
119 	}
120 	return stack[next_stack_entry];
121 }
122 /* End Stack services */
123 
sepol_set_sidtab(sidtab_t * s)124 int hidden sepol_set_sidtab(sidtab_t * s)
125 {
126 	sidtab = s;
127 	return 0;
128 }
129 
sepol_set_policydb(policydb_t * p)130 int hidden sepol_set_policydb(policydb_t * p)
131 {
132 	policydb = p;
133 	return 0;
134 }
135 
sepol_set_policydb_from_file(FILE * fp)136 int sepol_set_policydb_from_file(FILE * fp)
137 {
138 	struct policy_file pf;
139 
140 	policy_file_init(&pf);
141 	pf.fp = fp;
142 	pf.type = PF_USE_STDIO;
143 	if (mypolicydb.policy_type)
144 		policydb_destroy(&mypolicydb);
145 	if (policydb_init(&mypolicydb)) {
146 		ERR(NULL, "Out of memory!");
147 		return -1;
148 	}
149 	if (policydb_read(&mypolicydb, &pf, 0)) {
150 		policydb_destroy(&mypolicydb);
151 		ERR(NULL, "can't read binary policy: %s", strerror(errno));
152 		return -1;
153 	}
154 	policydb = &mypolicydb;
155 	return sepol_sidtab_init(sidtab);
156 }
157 
158 /*
159  * The largest sequence number that has been used when
160  * providing an access decision to the access vector cache.
161  * The sequence number only changes when a policy change
162  * occurs.
163  */
164 static uint32_t latest_granting = 0;
165 
166 /*
167  * cat_expr_buf adds a string to an expression buffer and handles
168  * realloc's if buffer is too small. The array of expression text
169  * buffer pointers and its counter are globally defined here as
170  * constraint_expr_eval_reason() sets them up and cat_expr_buf
171  * updates the e_buf pointer.
172  */
173 static int expr_counter;
174 static char **expr_list;
175 static int expr_buf_used;
176 static int expr_buf_len;
177 
cat_expr_buf(char * e_buf,const char * string)178 static void cat_expr_buf(char *e_buf, const char *string)
179 {
180 	int len, new_buf_len;
181 	char *p, *new_buf = e_buf;
182 
183 	while (1) {
184 		p = e_buf + expr_buf_used;
185 		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
186 		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
187 			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
188 			new_buf = realloc(e_buf, new_buf_len);
189 			if (!new_buf) {
190 				ERR(NULL, "failed to realloc expr buffer");
191 				return;
192 			}
193 			/* Update new ptr in expr list and locally + new len */
194 			expr_list[expr_counter] = new_buf;
195 			e_buf = new_buf;
196 			expr_buf_len = new_buf_len;
197 		} else {
198 			expr_buf_used += len;
199 			return;
200 		}
201 	}
202 }
203 
204 /*
205  * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
206  * then for 'types' only, read the types_names->types list as it will
207  * contain a list of types and attributes that were defined in the
208  * policy source.
209  * For user and role plus types (for policy vers <
210  * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
211  */
get_name_list(constraint_expr_t * e,int type,const char * src,const char * op,int failed)212 static void get_name_list(constraint_expr_t *e, int type,
213 							const char *src, const char *op, int failed)
214 {
215 	ebitmap_t *types;
216 	int rc = 0;
217 	unsigned int i;
218 	char tmp_buf[128];
219 	int counter = 0;
220 
221 	if (policydb->policy_type == POLICY_KERN &&
222 			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
223 			type == CEXPR_TYPE)
224 		types = &e->type_names->types;
225 	else
226 		types = &e->names;
227 
228 	/* Find out how many entries */
229 	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
230 		rc = ebitmap_get_bit(types, i);
231 		if (rc == 0)
232 			continue;
233 		else
234 			counter++;
235 	}
236 	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
237 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
238 
239 	if (counter == 0)
240 		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
241 	if (counter > 1)
242 		cat_expr_buf(expr_list[expr_counter], " {");
243 	if (counter >= 1) {
244 		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
245 			rc = ebitmap_get_bit(types, i);
246 			if (rc == 0)
247 				continue;
248 
249 			/* Collect entries */
250 			switch (type) {
251 			case CEXPR_USER:
252 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
253 							policydb->p_user_val_to_name[i]);
254 				break;
255 			case CEXPR_ROLE:
256 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
257 							policydb->p_role_val_to_name[i]);
258 				break;
259 			case CEXPR_TYPE:
260 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
261 							policydb->p_type_val_to_name[i]);
262 				break;
263 			}
264 			cat_expr_buf(expr_list[expr_counter], tmp_buf);
265 		}
266 	}
267 	if (counter > 1)
268 		cat_expr_buf(expr_list[expr_counter], " }");
269 	if (failed)
270 		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
271 	else
272 		cat_expr_buf(expr_list[expr_counter], ") ");
273 
274 	return;
275 }
276 
msgcat(const char * src,const char * tgt,const char * op,int failed)277 static void msgcat(const char *src, const char *tgt, const char *op, int failed)
278 {
279 	char tmp_buf[128];
280 	if (failed)
281 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
282 				src, op, tgt);
283 	else
284 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
285 				src, op, tgt);
286 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
287 }
288 
289 /* Returns a buffer with class, statement type and permissions */
get_class_info(sepol_security_class_t tclass,constraint_node_t * constraint,context_struct_t * xcontext)290 static char *get_class_info(sepol_security_class_t tclass,
291 							constraint_node_t *constraint,
292 							context_struct_t *xcontext)
293 {
294 	constraint_expr_t *e;
295 	int mls, state_num;
296 
297 	/* Find if MLS statement or not */
298 	mls = 0;
299 	for (e = constraint->expr; e; e = e->next) {
300 		if (e->attr >= CEXPR_L1L2) {
301 			mls = 1;
302 			break;
303 		}
304 	}
305 
306 	/* Determine statement type */
307 	const char *statements[] = {
308 		"constrain ",			/* 0 */
309 		"mlsconstrain ",		/* 1 */
310 		"validatetrans ",		/* 2 */
311 		"mlsvalidatetrans ",	/* 3 */
312 		0 };
313 
314 	if (xcontext == NULL)
315 		state_num = mls + 0;
316 	else
317 		state_num = mls + 2;
318 
319 	int class_buf_len = 0;
320 	int new_class_buf_len;
321 	int len, buf_used;
322 	char *class_buf = NULL, *p;
323 	char *new_class_buf = NULL;
324 
325 	while (1) {
326 		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
327 		new_class_buf = realloc(class_buf, new_class_buf_len);
328 			if (!new_class_buf)
329 				return NULL;
330 		class_buf_len = new_class_buf_len;
331 		class_buf = new_class_buf;
332 		buf_used = 0;
333 		p = class_buf;
334 
335 		/* Add statement type */
336 		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
337 		if (len < 0 || len >= class_buf_len - buf_used)
338 			continue;
339 
340 		/* Add class entry */
341 		p += len;
342 		buf_used += len;
343 		len = snprintf(p, class_buf_len - buf_used, "%s ",
344 				policydb->p_class_val_to_name[tclass - 1]);
345 		if (len < 0 || len >= class_buf_len - buf_used)
346 			continue;
347 
348 		/* Add permission entries (validatetrans does not have perms) */
349 		p += len;
350 		buf_used += len;
351 		if (state_num < 2) {
352 			len = snprintf(p, class_buf_len - buf_used, "{%s } (",
353 			sepol_av_to_string(policydb, tclass,
354 				constraint->permissions));
355 		} else {
356 			len = snprintf(p, class_buf_len - buf_used, "(");
357 		}
358 		if (len < 0 || len >= class_buf_len - buf_used)
359 			continue;
360 		break;
361 	}
362 	return class_buf;
363 }
364 
365 /*
366  * Modified version of constraint_expr_eval that will process each
367  * constraint as before but adds the information to text buffers that
368  * will hold various components. The expression will be in RPN format,
369  * therefore there is a stack based RPN to infix converter to produce
370  * the final readable constraint.
371  *
372  * Return the boolean value of a constraint expression
373  * when it is applied to the specified source and target
374  * security contexts.
375  *
376  * xcontext is a special beast...  It is used by the validatetrans rules
377  * only.  For these rules, scontext is the context before the transition,
378  * tcontext is the context after the transition, and xcontext is the
379  * context of the process performing the transition.  All other callers
380  * of constraint_expr_eval_reason should pass in NULL for xcontext.
381  *
382  * This function will also build a buffer as the constraint is processed
383  * for analysis. If this option is not required, then:
384  *      'tclass' should be '0' and r_buf MUST be NULL.
385  */
constraint_expr_eval_reason(context_struct_t * scontext,context_struct_t * tcontext,context_struct_t * xcontext,sepol_security_class_t tclass,constraint_node_t * constraint,char ** r_buf,unsigned int flags)386 static int constraint_expr_eval_reason(context_struct_t *scontext,
387 				context_struct_t *tcontext,
388 				context_struct_t *xcontext,
389 				sepol_security_class_t tclass,
390 				constraint_node_t *constraint,
391 				char **r_buf,
392 				unsigned int flags)
393 {
394 	uint32_t val1, val2;
395 	context_struct_t *c;
396 	role_datum_t *r1, *r2;
397 	mls_level_t *l1, *l2;
398 	constraint_expr_t *e;
399 	int s[CEXPR_MAXDEPTH];
400 	int sp = -1;
401 	char tmp_buf[128];
402 
403 /*
404  * Define the s_t_x_num values that make up r1, t2 etc. in text strings
405  * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
406  */
407 #define SOURCE  1
408 #define TARGET  2
409 #define XTARGET 3
410 
411 	int s_t_x_num = SOURCE;
412 
413 	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
414 	int u_r_t = 0;
415 
416 	char *src = NULL;
417 	char *tgt = NULL;
418 	int rc = 0, x;
419 	char *class_buf = NULL;
420 
421 	/*
422 	 * The array of expression answer buffer pointers and counter.
423 	 */
424 	char **answer_list = NULL;
425 	int answer_counter = 0;
426 
427 	class_buf = get_class_info(tclass, constraint, xcontext);
428 	if (!class_buf) {
429 		ERR(NULL, "failed to allocate class buffer");
430 		return -ENOMEM;
431 	}
432 
433 	/* Original function but with buffer support */
434 	int expr_list_len = 0;
435 	expr_counter = 0;
436 	expr_list = NULL;
437 	for (e = constraint->expr; e; e = e->next) {
438 		/* Allocate a stack to hold expression buffer entries */
439 		if (expr_counter >= expr_list_len) {
440 			char **new_expr_list = expr_list;
441 			int new_expr_list_len;
442 
443 			if (expr_list_len == 0)
444 				new_expr_list_len = STACK_LEN;
445 			else
446 				new_expr_list_len = expr_list_len * 2;
447 
448 			new_expr_list = realloc(expr_list,
449 					new_expr_list_len * sizeof(*expr_list));
450 			if (!new_expr_list) {
451 				ERR(NULL, "failed to allocate expr buffer stack");
452 				rc = -ENOMEM;
453 				goto out;
454 			}
455 			expr_list_len = new_expr_list_len;
456 			expr_list = new_expr_list;
457 		}
458 
459 		/*
460 		 * malloc a buffer to store each expression text component. If
461 		 * buffer is too small cat_expr_buf() will realloc extra space.
462 		 */
463 		expr_buf_len = EXPR_BUF_SIZE;
464 		expr_list[expr_counter] = malloc(expr_buf_len);
465 		if (!expr_list[expr_counter]) {
466 			ERR(NULL, "failed to allocate expr buffer");
467 			rc = -ENOMEM;
468 			goto out;
469 		}
470 		expr_buf_used = 0;
471 
472 		/* Now process each expression of the constraint */
473 		switch (e->expr_type) {
474 		case CEXPR_NOT:
475 			BUG_ON(sp < 0);
476 			s[sp] = !s[sp];
477 			cat_expr_buf(expr_list[expr_counter], "not");
478 			break;
479 		case CEXPR_AND:
480 			BUG_ON(sp < 1);
481 			sp--;
482 			s[sp] &= s[sp + 1];
483 			cat_expr_buf(expr_list[expr_counter], "and");
484 			break;
485 		case CEXPR_OR:
486 			BUG_ON(sp < 1);
487 			sp--;
488 			s[sp] |= s[sp + 1];
489 			cat_expr_buf(expr_list[expr_counter], "or");
490 			break;
491 		case CEXPR_ATTR:
492 			if (sp == (CEXPR_MAXDEPTH - 1))
493 				goto out;
494 
495 			switch (e->attr) {
496 			case CEXPR_USER:
497 				val1 = scontext->user;
498 				val2 = tcontext->user;
499 				free(src); src = strdup("u1");
500 				free(tgt); tgt = strdup("u2");
501 				break;
502 			case CEXPR_TYPE:
503 				val1 = scontext->type;
504 				val2 = tcontext->type;
505 				free(src); src = strdup("t1");
506 				free(tgt); tgt = strdup("t2");
507 				break;
508 			case CEXPR_ROLE:
509 				val1 = scontext->role;
510 				val2 = tcontext->role;
511 				r1 = policydb->role_val_to_struct[val1 - 1];
512 				r2 = policydb->role_val_to_struct[val2 - 1];
513 				free(src); src = strdup("r1");
514 				free(tgt); tgt = strdup("r2");
515 
516 				switch (e->op) {
517 				case CEXPR_DOM:
518 					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
519 					msgcat(src, tgt, "dom", s[sp] == 0);
520 					expr_counter++;
521 					continue;
522 				case CEXPR_DOMBY:
523 					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
524 					msgcat(src, tgt, "domby", s[sp] == 0);
525 					expr_counter++;
526 					continue;
527 				case CEXPR_INCOMP:
528 					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
529 						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
530 					msgcat(src, tgt, "incomp", s[sp] == 0);
531 					expr_counter++;
532 					continue;
533 				default:
534 					break;
535 				}
536 				break;
537 			case CEXPR_L1L2:
538 				l1 = &(scontext->range.level[0]);
539 				l2 = &(tcontext->range.level[0]);
540 				free(src); src = strdup("l1");
541 				free(tgt); tgt = strdup("l2");
542 				goto mls_ops;
543 			case CEXPR_L1H2:
544 				l1 = &(scontext->range.level[0]);
545 				l2 = &(tcontext->range.level[1]);
546 				free(src); src = strdup("l1");
547 				free(tgt); tgt = strdup("h2");
548 				goto mls_ops;
549 			case CEXPR_H1L2:
550 				l1 = &(scontext->range.level[1]);
551 				l2 = &(tcontext->range.level[0]);
552 				free(src); src = strdup("h1");
553 				free(tgt); tgt = strdup("l2");
554 				goto mls_ops;
555 			case CEXPR_H1H2:
556 				l1 = &(scontext->range.level[1]);
557 				l2 = &(tcontext->range.level[1]);
558 				free(src); src = strdup("h1");
559 				free(tgt); tgt = strdup("h2");
560 				goto mls_ops;
561 			case CEXPR_L1H1:
562 				l1 = &(scontext->range.level[0]);
563 				l2 = &(scontext->range.level[1]);
564 				free(src); src = strdup("l1");
565 				free(tgt); tgt = strdup("h1");
566 				goto mls_ops;
567 			case CEXPR_L2H2:
568 				l1 = &(tcontext->range.level[0]);
569 				l2 = &(tcontext->range.level[1]);
570 				free(src); src = strdup("l2");
571 				free(tgt); tgt = strdup("h2");
572 mls_ops:
573 				switch (e->op) {
574 				case CEXPR_EQ:
575 					s[++sp] = mls_level_eq(l1, l2);
576 					msgcat(src, tgt, "eq", s[sp] == 0);
577 					expr_counter++;
578 					continue;
579 				case CEXPR_NEQ:
580 					s[++sp] = !mls_level_eq(l1, l2);
581 					msgcat(src, tgt, "!=", s[sp] == 0);
582 					expr_counter++;
583 					continue;
584 				case CEXPR_DOM:
585 					s[++sp] = mls_level_dom(l1, l2);
586 					msgcat(src, tgt, "dom", s[sp] == 0);
587 					expr_counter++;
588 					continue;
589 				case CEXPR_DOMBY:
590 					s[++sp] = mls_level_dom(l2, l1);
591 					msgcat(src, tgt, "domby", s[sp] == 0);
592 					expr_counter++;
593 					continue;
594 				case CEXPR_INCOMP:
595 					s[++sp] = mls_level_incomp(l2, l1);
596 					msgcat(src, tgt, "incomp", s[sp] == 0);
597 					expr_counter++;
598 					continue;
599 				default:
600 					BUG();
601 					goto out;
602 				}
603 				break;
604 			default:
605 				BUG();
606 				goto out;
607 			}
608 
609 			switch (e->op) {
610 			case CEXPR_EQ:
611 				s[++sp] = (val1 == val2);
612 				msgcat(src, tgt, "==", s[sp] == 0);
613 				break;
614 			case CEXPR_NEQ:
615 				s[++sp] = (val1 != val2);
616 				msgcat(src, tgt, "!=", s[sp] == 0);
617 				break;
618 			default:
619 				BUG();
620 				goto out;
621 			}
622 			break;
623 		case CEXPR_NAMES:
624 			if (sp == (CEXPR_MAXDEPTH - 1))
625 				goto out;
626 			s_t_x_num = SOURCE;
627 			c = scontext;
628 			if (e->attr & CEXPR_TARGET) {
629 				s_t_x_num = TARGET;
630 				c = tcontext;
631 			} else if (e->attr & CEXPR_XTARGET) {
632 				s_t_x_num = XTARGET;
633 				c = xcontext;
634 			}
635 			if (!c) {
636 				BUG();
637 				goto out;
638 			}
639 			if (e->attr & CEXPR_USER) {
640 				u_r_t = CEXPR_USER;
641 				val1 = c->user;
642 				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
643 				free(src); src = strdup(tmp_buf);
644 			} else if (e->attr & CEXPR_ROLE) {
645 				u_r_t = CEXPR_ROLE;
646 				val1 = c->role;
647 				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
648 				free(src); src = strdup(tmp_buf);
649 			} else if (e->attr & CEXPR_TYPE) {
650 				u_r_t = CEXPR_TYPE;
651 				val1 = c->type;
652 				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
653 				free(src); src = strdup(tmp_buf);
654 			} else {
655 				BUG();
656 				goto out;
657 			}
658 
659 			switch (e->op) {
660 			case CEXPR_EQ:
661 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
662 				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
663 				break;
664 
665 			case CEXPR_NEQ:
666 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
667 				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
668 				break;
669 			default:
670 				BUG();
671 				goto out;
672 			}
673 			break;
674 		default:
675 			BUG();
676 			goto out;
677 		}
678 		expr_counter++;
679 	}
680 
681 	/*
682 	 * At this point each expression of the constraint is in
683 	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
684 	 */
685 
686 	/*
687 	 * Save expr count but zero expr_counter to detect if
688 	 * 'BUG(); goto out;' was called as we need to release any used
689 	 * expr_list malloc's. Normally they are released by the RPN to
690 	 * infix code.
691 	 */
692 	int expr_count = expr_counter;
693 	expr_counter = 0;
694 
695 	/*
696 	 * Generate the same number of answer buffer entries as expression
697 	 * buffers (as there will never be more).
698 	 */
699 	answer_list = malloc(expr_count * sizeof(*answer_list));
700 	if (!answer_list) {
701 		ERR(NULL, "failed to allocate answer stack");
702 		rc = -ENOMEM;
703 		goto out;
704 	}
705 
706 	/* The pop operands */
707 	char *a;
708 	char *b;
709 	int a_len, b_len;
710 
711 	/* Convert constraint from RPN to infix notation. */
712 	for (x = 0; x != expr_count; x++) {
713 		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
714 					"or", 2) == 0) {
715 			b = pop();
716 			b_len = strlen(b);
717 			a = pop();
718 			a_len = strlen(a);
719 
720 			/* get a buffer to hold the answer */
721 			answer_list[answer_counter] = malloc(a_len + b_len + 8);
722 			if (!answer_list[answer_counter]) {
723 				ERR(NULL, "failed to allocate answer buffer");
724 				rc = -ENOMEM;
725 				goto out;
726 			}
727 			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
728 
729 			sprintf(answer_list[answer_counter], "%s %s %s", a,
730 					expr_list[x], b);
731 			push(answer_list[answer_counter++]);
732 			free(a);
733 			free(b);
734 			free(expr_list[x]);
735 		} else if (strncmp(expr_list[x], "not", 3) == 0) {
736 			b = pop();
737 			b_len = strlen(b);
738 
739 			answer_list[answer_counter] = malloc(b_len + 8);
740 			if (!answer_list[answer_counter]) {
741 				ERR(NULL, "failed to allocate answer buffer");
742 				rc = -ENOMEM;
743 				goto out;
744 			}
745 			memset(answer_list[answer_counter], '\0', b_len + 8);
746 
747 			if (strncmp(b, "not", 3) == 0)
748 				sprintf(answer_list[answer_counter], "%s (%s)",
749 						expr_list[x], b);
750 			else
751 				sprintf(answer_list[answer_counter], "%s%s",
752 						expr_list[x], b);
753 			push(answer_list[answer_counter++]);
754 			free(b);
755 			free(expr_list[x]);
756 		} else {
757 			push(expr_list[x]);
758 		}
759 	}
760 	/* Get the final answer from tos and build constraint text */
761 	a = pop();
762 
763 	/* validatetrans / constraint calculation:
764 				rc = 0 is denied, rc = 1 is granted */
765 	sprintf(tmp_buf, "%s %s\n",
766 			xcontext ? "Validatetrans" : "Constraint",
767 			s[0] ? "GRANTED" : "DENIED");
768 
769 	int len, new_buf_len;
770 	char *p, **new_buf = r_buf;
771 	/*
772 	 * These contain the constraint components that are added to the
773 	 * callers reason buffer.
774 	 */
775 	const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
776 
777 	/*
778 	 * This will add the constraints to the callers reason buffer (who is
779 	 * responsible for freeing the memory). It will handle any realloc's
780 	 * should the buffer be too short.
781 	 * The reason_buf_used and reason_buf_len counters are defined
782 	 * globally as multiple constraints can be in the buffer.
783 	 */
784 
785 	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
786 				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
787 		for (x = 0; buffers[x] != NULL; x++) {
788 			while (1) {
789 				p = *r_buf + reason_buf_used;
790 				len = snprintf(p, reason_buf_len - reason_buf_used,
791 						"%s", buffers[x]);
792 				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
793 					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
794 					*new_buf = realloc(*r_buf, new_buf_len);
795 					if (!new_buf) {
796 						ERR(NULL, "failed to realloc reason buffer");
797 						goto out1;
798 					}
799 					**r_buf = **new_buf;
800 					reason_buf_len = new_buf_len;
801 					continue;
802 				} else {
803 					reason_buf_used += len;
804 					break;
805 				}
806 			}
807 		}
808 	}
809 
810 out1:
811 	rc = s[0];
812 	free(a);
813 
814 out:
815 	free(class_buf);
816 	free(src);
817 	free(tgt);
818 
819 	if (expr_counter) {
820 		for (x = 0; expr_list[x] != NULL; x++)
821 			free(expr_list[x]);
822 	}
823 	free(answer_list);
824 	free(expr_list);
825 	return rc;
826 }
827 
828 /* Forward declaration */
829 static int context_struct_compute_av(context_struct_t * scontext,
830 				     context_struct_t * tcontext,
831 				     sepol_security_class_t tclass,
832 				     sepol_access_vector_t requested,
833 				     struct sepol_av_decision *avd,
834 				     unsigned int *reason,
835 				     char **r_buf,
836 				     unsigned int flags);
837 
type_attribute_bounds_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)838 static void type_attribute_bounds_av(context_struct_t *scontext,
839 				     context_struct_t *tcontext,
840 				     sepol_security_class_t tclass,
841 				     sepol_access_vector_t requested,
842 				     struct sepol_av_decision *avd,
843 				     unsigned int *reason)
844 {
845 	context_struct_t lo_scontext;
846 	context_struct_t lo_tcontext, *tcontextp = tcontext;
847 	struct sepol_av_decision lo_avd;
848 	type_datum_t *source;
849 	type_datum_t *target;
850 	sepol_access_vector_t masked = 0;
851 
852 	source = policydb->type_val_to_struct[scontext->type - 1];
853 	if (!source->bounds)
854 		return;
855 
856 	target = policydb->type_val_to_struct[tcontext->type - 1];
857 
858 	memset(&lo_avd, 0, sizeof(lo_avd));
859 
860 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
861 	lo_scontext.type = source->bounds;
862 
863 	if (target->bounds) {
864 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
865 		lo_tcontext.type = target->bounds;
866 		tcontextp = &lo_tcontext;
867 	}
868 
869 	context_struct_compute_av(&lo_scontext,
870 				  tcontextp,
871 				  tclass,
872 				  requested,
873 				  &lo_avd,
874 				  NULL, /* reason intentionally omitted */
875 				  NULL,
876 				  0);
877 
878 	masked = ~lo_avd.allowed & avd->allowed;
879 
880 	if (!masked)
881 		return;		/* no masked permission */
882 
883 	/* mask violated permissions */
884 	avd->allowed &= ~masked;
885 
886 	*reason |= SEPOL_COMPUTEAV_BOUNDS;
887 }
888 
889 /*
890  * Compute access vectors based on a context structure pair for
891  * the permissions in a particular class.
892  */
context_struct_compute_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** r_buf,unsigned int flags)893 static int context_struct_compute_av(context_struct_t * scontext,
894 				     context_struct_t * tcontext,
895 				     sepol_security_class_t tclass,
896 				     sepol_access_vector_t requested,
897 				     struct sepol_av_decision *avd,
898 				     unsigned int *reason,
899 				     char **r_buf,
900 				     unsigned int flags)
901 {
902 	constraint_node_t *constraint;
903 	struct role_allow *ra;
904 	avtab_key_t avkey;
905 	class_datum_t *tclass_datum;
906 	avtab_ptr_t node;
907 	ebitmap_t *sattr, *tattr;
908 	ebitmap_node_t *snode, *tnode;
909 	unsigned int i, j;
910 
911 	if (!tclass || tclass > policydb->p_classes.nprim) {
912 		ERR(NULL, "unrecognized class %d", tclass);
913 		return -EINVAL;
914 	}
915 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
916 
917 	/*
918 	 * Initialize the access vectors to the default values.
919 	 */
920 	avd->allowed = 0;
921 	avd->decided = 0xffffffff;
922 	avd->auditallow = 0;
923 	avd->auditdeny = 0xffffffff;
924 	avd->seqno = latest_granting;
925 	if (reason)
926 		*reason = 0;
927 
928 	/*
929 	 * If a specific type enforcement rule was defined for
930 	 * this permission check, then use it.
931 	 */
932 	avkey.target_class = tclass;
933 	avkey.specified = AVTAB_AV;
934 	sattr = &policydb->type_attr_map[scontext->type - 1];
935 	tattr = &policydb->type_attr_map[tcontext->type - 1];
936 	ebitmap_for_each_bit(sattr, snode, i) {
937 		if (!ebitmap_node_get_bit(snode, i))
938 			continue;
939 		ebitmap_for_each_bit(tattr, tnode, j) {
940 			if (!ebitmap_node_get_bit(tnode, j))
941 				continue;
942 			avkey.source_type = i + 1;
943 			avkey.target_type = j + 1;
944 			for (node =
945 			     avtab_search_node(&policydb->te_avtab, &avkey);
946 			     node != NULL;
947 			     node =
948 			     avtab_search_node_next(node, avkey.specified)) {
949 				if (node->key.specified == AVTAB_ALLOWED)
950 					avd->allowed |= node->datum.data;
951 				else if (node->key.specified ==
952 					 AVTAB_AUDITALLOW)
953 					avd->auditallow |= node->datum.data;
954 				else if (node->key.specified == AVTAB_AUDITDENY)
955 					avd->auditdeny &= node->datum.data;
956 			}
957 
958 			/* Check conditional av table for additional permissions */
959 			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
960 
961 		}
962 	}
963 
964 	if (requested & ~avd->allowed) {
965 		if (reason)
966 			*reason |= SEPOL_COMPUTEAV_TE;
967 		requested &= avd->allowed;
968 	}
969 
970 	/*
971 	 * Remove any permissions prohibited by a constraint (this includes
972 	 * the MLS policy).
973 	 */
974 	constraint = tclass_datum->constraints;
975 	while (constraint) {
976 		if ((constraint->permissions & (avd->allowed)) &&
977 		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
978 					  tclass, constraint, r_buf, flags)) {
979 			avd->allowed =
980 			    (avd->allowed) & ~(constraint->permissions);
981 		}
982 		constraint = constraint->next;
983 	}
984 
985 	if (requested & ~avd->allowed) {
986 		if (reason)
987 			*reason |= SEPOL_COMPUTEAV_CONS;
988 		requested &= avd->allowed;
989 	}
990 
991 	/*
992 	 * If checking process transition permission and the
993 	 * role is changing, then check the (current_role, new_role)
994 	 * pair.
995 	 */
996 	if (tclass == SECCLASS_PROCESS &&
997 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
998 	    scontext->role != tcontext->role) {
999 		for (ra = policydb->role_allow; ra; ra = ra->next) {
1000 			if (scontext->role == ra->role &&
1001 			    tcontext->role == ra->new_role)
1002 				break;
1003 		}
1004 		if (!ra)
1005 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
1006 							  PROCESS__DYNTRANSITION);
1007 	}
1008 
1009 	if (requested & ~avd->allowed) {
1010 		if (reason)
1011 			*reason |= SEPOL_COMPUTEAV_RBAC;
1012 		requested &= avd->allowed;
1013 	}
1014 
1015 	type_attribute_bounds_av(scontext, tcontext, tclass, requested, avd,
1016 				 reason);
1017 	return 0;
1018 }
1019 
sepol_validate_transition(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass)1020 int hidden sepol_validate_transition(sepol_security_id_t oldsid,
1021 				     sepol_security_id_t newsid,
1022 				     sepol_security_id_t tasksid,
1023 				     sepol_security_class_t tclass)
1024 {
1025 	context_struct_t *ocontext;
1026 	context_struct_t *ncontext;
1027 	context_struct_t *tcontext;
1028 	class_datum_t *tclass_datum;
1029 	constraint_node_t *constraint;
1030 
1031 	if (!tclass || tclass > policydb->p_classes.nprim) {
1032 		ERR(NULL, "unrecognized class %d", tclass);
1033 		return -EINVAL;
1034 	}
1035 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1036 
1037 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1038 	if (!ocontext) {
1039 		ERR(NULL, "unrecognized SID %d", oldsid);
1040 		return -EINVAL;
1041 	}
1042 
1043 	ncontext = sepol_sidtab_search(sidtab, newsid);
1044 	if (!ncontext) {
1045 		ERR(NULL, "unrecognized SID %d", newsid);
1046 		return -EINVAL;
1047 	}
1048 
1049 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1050 	if (!tcontext) {
1051 		ERR(NULL, "unrecognized SID %d", tasksid);
1052 		return -EINVAL;
1053 	}
1054 
1055 	constraint = tclass_datum->validatetrans;
1056 	while (constraint) {
1057 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1058 					  0, constraint, NULL, 0)) {
1059 			return -EPERM;
1060 		}
1061 		constraint = constraint->next;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd
1069  * in the constraint_expr_eval_reason() function.
1070  */
sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass,char ** reason_buf,unsigned int flags)1071 int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,
1072 				     sepol_security_id_t newsid,
1073 				     sepol_security_id_t tasksid,
1074 				     sepol_security_class_t tclass,
1075 				     char **reason_buf,
1076 				     unsigned int flags)
1077 {
1078 	context_struct_t *ocontext;
1079 	context_struct_t *ncontext;
1080 	context_struct_t *tcontext;
1081 	class_datum_t *tclass_datum;
1082 	constraint_node_t *constraint;
1083 
1084 	if (!tclass || tclass > policydb->p_classes.nprim) {
1085 		ERR(NULL, "unrecognized class %d", tclass);
1086 		return -EINVAL;
1087 	}
1088 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1089 
1090 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1091 	if (!ocontext) {
1092 		ERR(NULL, "unrecognized SID %d", oldsid);
1093 		return -EINVAL;
1094 	}
1095 
1096 	ncontext = sepol_sidtab_search(sidtab, newsid);
1097 	if (!ncontext) {
1098 		ERR(NULL, "unrecognized SID %d", newsid);
1099 		return -EINVAL;
1100 	}
1101 
1102 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1103 	if (!tcontext) {
1104 		ERR(NULL, "unrecognized SID %d", tasksid);
1105 		return -EINVAL;
1106 	}
1107 
1108 	/*
1109 	 * Set the buffer to NULL as mls/validatetrans may not be processed.
1110 	 * If a buffer is required, then the routines in
1111 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1112 	 * chunks (as it gets called for each mls/validatetrans processed).
1113 	 * We just make sure these start from zero.
1114 	 */
1115 	*reason_buf = NULL;
1116 	reason_buf_used = 0;
1117 	reason_buf_len = 0;
1118 	constraint = tclass_datum->validatetrans;
1119 	while (constraint) {
1120 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1121 				tclass, constraint, reason_buf, flags)) {
1122 			return -EPERM;
1123 		}
1124 		constraint = constraint->next;
1125 	}
1126 	return 0;
1127 }
1128 
sepol_compute_av_reason(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)1129 int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
1130 				   sepol_security_id_t tsid,
1131 				   sepol_security_class_t tclass,
1132 				   sepol_access_vector_t requested,
1133 				   struct sepol_av_decision *avd,
1134 				   unsigned int *reason)
1135 {
1136 	context_struct_t *scontext = 0, *tcontext = 0;
1137 	int rc = 0;
1138 
1139 	scontext = sepol_sidtab_search(sidtab, ssid);
1140 	if (!scontext) {
1141 		ERR(NULL, "unrecognized SID %d", ssid);
1142 		rc = -EINVAL;
1143 		goto out;
1144 	}
1145 	tcontext = sepol_sidtab_search(sidtab, tsid);
1146 	if (!tcontext) {
1147 		ERR(NULL, "unrecognized SID %d", tsid);
1148 		rc = -EINVAL;
1149 		goto out;
1150 	}
1151 
1152 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1153 					requested, avd, reason, NULL, 0);
1154       out:
1155 	return rc;
1156 }
1157 
1158 /*
1159  * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1160  * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1161  * in the constraint_expr_eval_reason() function.
1162  */
sepol_compute_av_reason_buffer(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** reason_buf,unsigned int flags)1163 int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1164 				   sepol_security_id_t tsid,
1165 				   sepol_security_class_t tclass,
1166 				   sepol_access_vector_t requested,
1167 				   struct sepol_av_decision *avd,
1168 				   unsigned int *reason,
1169 				   char **reason_buf,
1170 				   unsigned int flags)
1171 {
1172 	context_struct_t *scontext = 0, *tcontext = 0;
1173 	int rc = 0;
1174 
1175 	scontext = sepol_sidtab_search(sidtab, ssid);
1176 	if (!scontext) {
1177 		ERR(NULL, "unrecognized SID %d", ssid);
1178 		rc = -EINVAL;
1179 		goto out;
1180 	}
1181 	tcontext = sepol_sidtab_search(sidtab, tsid);
1182 	if (!tcontext) {
1183 		ERR(NULL, "unrecognized SID %d", tsid);
1184 		rc = -EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	/*
1189 	 * Set the buffer to NULL as constraints may not be processed.
1190 	 * If a buffer is required, then the routines in
1191 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1192 	 * chunks (as it gets called for each constraint processed).
1193 	 * We just make sure these start from zero.
1194 	 */
1195 	*reason_buf = NULL;
1196 	reason_buf_used = 0;
1197 	reason_buf_len = 0;
1198 
1199 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1200 					   requested, avd, reason, reason_buf, flags);
1201 out:
1202 	return rc;
1203 }
1204 
sepol_compute_av(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd)1205 int hidden sepol_compute_av(sepol_security_id_t ssid,
1206 			    sepol_security_id_t tsid,
1207 			    sepol_security_class_t tclass,
1208 			    sepol_access_vector_t requested,
1209 			    struct sepol_av_decision *avd)
1210 {
1211 	unsigned int reason = 0;
1212 	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1213 				       &reason);
1214 }
1215 
1216 /*
1217  * Return a class ID associated with the class string specified by
1218  * class_name.
1219  */
sepol_string_to_security_class(const char * class_name,sepol_security_class_t * tclass)1220 int hidden sepol_string_to_security_class(const char *class_name,
1221 			sepol_security_class_t *tclass)
1222 {
1223 	class_datum_t *tclass_datum;
1224 
1225 	tclass_datum = hashtab_search(policydb->p_classes.table,
1226 				      (hashtab_key_t) class_name);
1227 	if (!tclass_datum) {
1228 		ERR(NULL, "unrecognized class %s", class_name);
1229 		return STATUS_ERR;
1230 	}
1231 	*tclass = tclass_datum->s.value;
1232 	return STATUS_SUCCESS;
1233 }
1234 
1235 /*
1236  * Return access vector bit associated with the class ID and permission
1237  * string.
1238  */
sepol_string_to_av_perm(sepol_security_class_t tclass,const char * perm_name,sepol_access_vector_t * av)1239 int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1240 					const char *perm_name,
1241 					sepol_access_vector_t *av)
1242 {
1243 	class_datum_t *tclass_datum;
1244 	perm_datum_t *perm_datum;
1245 
1246 	if (!tclass || tclass > policydb->p_classes.nprim) {
1247 		ERR(NULL, "unrecognized class %d", tclass);
1248 		return -EINVAL;
1249 	}
1250 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1251 
1252 	/* Check for unique perms then the common ones (if any) */
1253 	perm_datum = (perm_datum_t *)
1254 			hashtab_search(tclass_datum->permissions.table,
1255 			(hashtab_key_t)perm_name);
1256 	if (perm_datum != NULL) {
1257 		*av = 0x1 << (perm_datum->s.value - 1);
1258 		return STATUS_SUCCESS;
1259 	}
1260 
1261 	if (tclass_datum->comdatum == NULL)
1262 		goto out;
1263 
1264 	perm_datum = (perm_datum_t *)
1265 			hashtab_search(tclass_datum->comdatum->permissions.table,
1266 			(hashtab_key_t)perm_name);
1267 
1268 	if (perm_datum != NULL) {
1269 		*av = 0x1 << (perm_datum->s.value - 1);
1270 		return STATUS_SUCCESS;
1271 	}
1272 out:
1273 	ERR(NULL, "could not convert %s to av bit", perm_name);
1274 	return STATUS_ERR;
1275 }
1276 
1277 /*
1278  * Write the security context string representation of
1279  * the context associated with `sid' into a dynamically
1280  * allocated string of the correct size.  Set `*scontext'
1281  * to point to this string and set `*scontext_len' to
1282  * the length of the string.
1283  */
sepol_sid_to_context(sepol_security_id_t sid,sepol_security_context_t * scontext,size_t * scontext_len)1284 int hidden sepol_sid_to_context(sepol_security_id_t sid,
1285 				sepol_security_context_t * scontext,
1286 				size_t * scontext_len)
1287 {
1288 	context_struct_t *context;
1289 	int rc = 0;
1290 
1291 	context = sepol_sidtab_search(sidtab, sid);
1292 	if (!context) {
1293 		ERR(NULL, "unrecognized SID %d", sid);
1294 		rc = -EINVAL;
1295 		goto out;
1296 	}
1297 	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1298       out:
1299 	return rc;
1300 
1301 }
1302 
1303 /*
1304  * Return a SID associated with the security context that
1305  * has the string representation specified by `scontext'.
1306  */
sepol_context_to_sid(const sepol_security_context_t scontext,size_t scontext_len,sepol_security_id_t * sid)1307 int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1308 				size_t scontext_len, sepol_security_id_t * sid)
1309 {
1310 
1311 	context_struct_t *context = NULL;
1312 
1313 	/* First, create the context */
1314 	if (context_from_string(NULL, policydb, &context,
1315 				scontext, scontext_len) < 0)
1316 		goto err;
1317 
1318 	/* Obtain the new sid */
1319 	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1320 		goto err;
1321 
1322 	context_destroy(context);
1323 	free(context);
1324 	return STATUS_SUCCESS;
1325 
1326       err:
1327 	if (context) {
1328 		context_destroy(context);
1329 		free(context);
1330 	}
1331 	ERR(NULL, "could not convert %s to sid", scontext);
1332 	return STATUS_ERR;
1333 }
1334 
compute_sid_handle_invalid_context(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,context_struct_t * newcontext)1335 static inline int compute_sid_handle_invalid_context(context_struct_t *
1336 						     scontext,
1337 						     context_struct_t *
1338 						     tcontext,
1339 						     sepol_security_class_t
1340 						     tclass,
1341 						     context_struct_t *
1342 						     newcontext)
1343 {
1344 	if (selinux_enforcing) {
1345 		return -EACCES;
1346 	} else {
1347 		sepol_security_context_t s, t, n;
1348 		size_t slen, tlen, nlen;
1349 
1350 		context_to_string(NULL, policydb, scontext, &s, &slen);
1351 		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1352 		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1353 		ERR(NULL, "invalid context %s for "
1354 		    "scontext=%s tcontext=%s tclass=%s",
1355 		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1356 		free(s);
1357 		free(t);
1358 		free(n);
1359 		return 0;
1360 	}
1361 }
1362 
sepol_compute_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,uint32_t specified,sepol_security_id_t * out_sid)1363 static int sepol_compute_sid(sepol_security_id_t ssid,
1364 			     sepol_security_id_t tsid,
1365 			     sepol_security_class_t tclass,
1366 			     uint32_t specified, sepol_security_id_t * out_sid)
1367 {
1368 	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1369 	struct role_trans *roletr = 0;
1370 	avtab_key_t avkey;
1371 	avtab_datum_t *avdatum;
1372 	avtab_ptr_t node;
1373 	int rc = 0;
1374 
1375 	scontext = sepol_sidtab_search(sidtab, ssid);
1376 	if (!scontext) {
1377 		ERR(NULL, "unrecognized SID %d", ssid);
1378 		rc = -EINVAL;
1379 		goto out;
1380 	}
1381 	tcontext = sepol_sidtab_search(sidtab, tsid);
1382 	if (!tcontext) {
1383 		ERR(NULL, "unrecognized SID %d", tsid);
1384 		rc = -EINVAL;
1385 		goto out;
1386 	}
1387 
1388 	context_init(&newcontext);
1389 
1390 	/* Set the user identity. */
1391 	switch (specified) {
1392 	case AVTAB_TRANSITION:
1393 	case AVTAB_CHANGE:
1394 		/* Use the process user identity. */
1395 		newcontext.user = scontext->user;
1396 		break;
1397 	case AVTAB_MEMBER:
1398 		/* Use the related object owner. */
1399 		newcontext.user = tcontext->user;
1400 		break;
1401 	}
1402 
1403 	/* Set the role and type to default values. */
1404 	switch (tclass) {
1405 	case SECCLASS_PROCESS:
1406 		/* Use the current role and type of process. */
1407 		newcontext.role = scontext->role;
1408 		newcontext.type = scontext->type;
1409 		break;
1410 	default:
1411 		/* Use the well-defined object role. */
1412 		newcontext.role = OBJECT_R_VAL;
1413 		/* Use the type of the related object. */
1414 		newcontext.type = tcontext->type;
1415 	}
1416 
1417 	/* Look for a type transition/member/change rule. */
1418 	avkey.source_type = scontext->type;
1419 	avkey.target_type = tcontext->type;
1420 	avkey.target_class = tclass;
1421 	avkey.specified = specified;
1422 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1423 
1424 	/* If no permanent rule, also check for enabled conditional rules */
1425 	if (!avdatum) {
1426 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1427 		for (; node != NULL;
1428 		     node = avtab_search_node_next(node, specified)) {
1429 			if (node->key.specified & AVTAB_ENABLED) {
1430 				avdatum = &node->datum;
1431 				break;
1432 			}
1433 		}
1434 	}
1435 
1436 	if (avdatum) {
1437 		/* Use the type from the type transition/member/change rule. */
1438 		newcontext.type = avdatum->data;
1439 	}
1440 
1441 	/* Check for class-specific changes. */
1442 	switch (tclass) {
1443 	case SECCLASS_PROCESS:
1444 		if (specified & AVTAB_TRANSITION) {
1445 			/* Look for a role transition rule. */
1446 			for (roletr = policydb->role_tr; roletr;
1447 			     roletr = roletr->next) {
1448 				if (roletr->role == scontext->role &&
1449 				    roletr->type == tcontext->type) {
1450 					/* Use the role transition rule. */
1451 					newcontext.role = roletr->new_role;
1452 					break;
1453 				}
1454 			}
1455 		}
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	/* Set the MLS attributes.
1462 	   This is done last because it may allocate memory. */
1463 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1464 			     &newcontext);
1465 	if (rc)
1466 		goto out;
1467 
1468 	/* Check the validity of the context. */
1469 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1470 		rc = compute_sid_handle_invalid_context(scontext,
1471 							tcontext,
1472 							tclass, &newcontext);
1473 		if (rc)
1474 			goto out;
1475 	}
1476 	/* Obtain the sid for the context. */
1477 	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1478       out:
1479 	context_destroy(&newcontext);
1480 	return rc;
1481 }
1482 
1483 /*
1484  * Compute a SID to use for labeling a new object in the
1485  * class `tclass' based on a SID pair.
1486  */
sepol_transition_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1487 int hidden sepol_transition_sid(sepol_security_id_t ssid,
1488 				sepol_security_id_t tsid,
1489 				sepol_security_class_t tclass,
1490 				sepol_security_id_t * out_sid)
1491 {
1492 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1493 }
1494 
1495 /*
1496  * Compute a SID to use when selecting a member of a
1497  * polyinstantiated object of class `tclass' based on
1498  * a SID pair.
1499  */
sepol_member_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1500 int hidden sepol_member_sid(sepol_security_id_t ssid,
1501 			    sepol_security_id_t tsid,
1502 			    sepol_security_class_t tclass,
1503 			    sepol_security_id_t * out_sid)
1504 {
1505 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1506 }
1507 
1508 /*
1509  * Compute a SID to use for relabeling an object in the
1510  * class `tclass' based on a SID pair.
1511  */
sepol_change_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1512 int hidden sepol_change_sid(sepol_security_id_t ssid,
1513 			    sepol_security_id_t tsid,
1514 			    sepol_security_class_t tclass,
1515 			    sepol_security_id_t * out_sid)
1516 {
1517 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1518 }
1519 
1520 /*
1521  * Verify that each permission that is defined under the
1522  * existing policy is still defined with the same value
1523  * in the new policy.
1524  */
validate_perm(hashtab_key_t key,hashtab_datum_t datum,void * p)1525 static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1526 {
1527 	hashtab_t h;
1528 	perm_datum_t *perdatum, *perdatum2;
1529 
1530 	h = (hashtab_t) p;
1531 	perdatum = (perm_datum_t *) datum;
1532 
1533 	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1534 	if (!perdatum2) {
1535 		ERR(NULL, "permission %s disappeared", key);
1536 		return -1;
1537 	}
1538 	if (perdatum->s.value != perdatum2->s.value) {
1539 		ERR(NULL, "the value of permissions %s changed", key);
1540 		return -1;
1541 	}
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Verify that each class that is defined under the
1547  * existing policy is still defined with the same
1548  * attributes in the new policy.
1549  */
validate_class(hashtab_key_t key,hashtab_datum_t datum,void * p)1550 static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1551 {
1552 	policydb_t *newp;
1553 	class_datum_t *cladatum, *cladatum2;
1554 
1555 	newp = (policydb_t *) p;
1556 	cladatum = (class_datum_t *) datum;
1557 
1558 	cladatum2 =
1559 	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1560 	if (!cladatum2) {
1561 		ERR(NULL, "class %s disappeared", key);
1562 		return -1;
1563 	}
1564 	if (cladatum->s.value != cladatum2->s.value) {
1565 		ERR(NULL, "the value of class %s changed", key);
1566 		return -1;
1567 	}
1568 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1569 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1570 		ERR(NULL, "the inherits clause for the access "
1571 		    "vector definition for class %s changed", key);
1572 		return -1;
1573 	}
1574 	if (cladatum->comdatum) {
1575 		if (hashtab_map
1576 		    (cladatum->comdatum->permissions.table, validate_perm,
1577 		     cladatum2->comdatum->permissions.table)) {
1578 			ERR(NULL,
1579 			    " in the access vector definition "
1580 			    "for class %s\n", key);
1581 			return -1;
1582 		}
1583 	}
1584 	if (hashtab_map(cladatum->permissions.table, validate_perm,
1585 			cladatum2->permissions.table)) {
1586 		ERR(NULL, " in access vector definition for class %s", key);
1587 		return -1;
1588 	}
1589 	return 0;
1590 }
1591 
1592 /* Clone the SID into the new SID table. */
clone_sid(sepol_security_id_t sid,context_struct_t * context,void * arg)1593 static int clone_sid(sepol_security_id_t sid,
1594 		     context_struct_t * context, void *arg)
1595 {
1596 	sidtab_t *s = arg;
1597 
1598 	return sepol_sidtab_insert(s, sid, context);
1599 }
1600 
convert_context_handle_invalid_context(context_struct_t * context)1601 static inline int convert_context_handle_invalid_context(context_struct_t *
1602 							 context)
1603 {
1604 	if (selinux_enforcing) {
1605 		return -EINVAL;
1606 	} else {
1607 		sepol_security_context_t s;
1608 		size_t len;
1609 
1610 		context_to_string(NULL, policydb, context, &s, &len);
1611 		ERR(NULL, "context %s is invalid", s);
1612 		free(s);
1613 		return 0;
1614 	}
1615 }
1616 
1617 typedef struct {
1618 	policydb_t *oldp;
1619 	policydb_t *newp;
1620 } convert_context_args_t;
1621 
1622 /*
1623  * Convert the values in the security context
1624  * structure `c' from the values specified
1625  * in the policy `p->oldp' to the values specified
1626  * in the policy `p->newp'.  Verify that the
1627  * context is valid under the new policy.
1628  */
convert_context(sepol_security_id_t key,context_struct_t * c,void * p)1629 static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1630 			   context_struct_t * c, void *p)
1631 {
1632 	convert_context_args_t *args;
1633 	context_struct_t oldc;
1634 	role_datum_t *role;
1635 	type_datum_t *typdatum;
1636 	user_datum_t *usrdatum;
1637 	sepol_security_context_t s;
1638 	size_t len;
1639 	int rc = -EINVAL;
1640 
1641 	args = (convert_context_args_t *) p;
1642 
1643 	if (context_cpy(&oldc, c))
1644 		return -ENOMEM;
1645 
1646 	/* Convert the user. */
1647 	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1648 						   args->oldp->
1649 						   p_user_val_to_name[c->user -
1650 								      1]);
1651 
1652 	if (!usrdatum) {
1653 		goto bad;
1654 	}
1655 	c->user = usrdatum->s.value;
1656 
1657 	/* Convert the role. */
1658 	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1659 					       args->oldp->
1660 					       p_role_val_to_name[c->role - 1]);
1661 	if (!role) {
1662 		goto bad;
1663 	}
1664 	c->role = role->s.value;
1665 
1666 	/* Convert the type. */
1667 	typdatum = (type_datum_t *)
1668 	    hashtab_search(args->newp->p_types.table,
1669 			   args->oldp->p_type_val_to_name[c->type - 1]);
1670 	if (!typdatum) {
1671 		goto bad;
1672 	}
1673 	c->type = typdatum->s.value;
1674 
1675 	rc = mls_convert_context(args->oldp, args->newp, c);
1676 	if (rc)
1677 		goto bad;
1678 
1679 	/* Check the validity of the new context. */
1680 	if (!policydb_context_isvalid(args->newp, c)) {
1681 		rc = convert_context_handle_invalid_context(&oldc);
1682 		if (rc)
1683 			goto bad;
1684 	}
1685 
1686 	context_destroy(&oldc);
1687 	return 0;
1688 
1689       bad:
1690 	context_to_string(NULL, policydb, &oldc, &s, &len);
1691 	context_destroy(&oldc);
1692 	ERR(NULL, "invalidating context %s", s);
1693 	free(s);
1694 	return rc;
1695 }
1696 
1697 /* Reading from a policy "file". */
next_entry(void * buf,struct policy_file * fp,size_t bytes)1698 int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1699 {
1700 	size_t nread;
1701 
1702 	switch (fp->type) {
1703 	case PF_USE_STDIO:
1704 		nread = fread(buf, bytes, 1, fp->fp);
1705 
1706 		if (nread != 1)
1707 			return -1;
1708 		break;
1709 	case PF_USE_MEMORY:
1710 		if (bytes > fp->len) {
1711 			errno = EOVERFLOW;
1712 			return -1;
1713 		}
1714 		memcpy(buf, fp->data, bytes);
1715 		fp->data += bytes;
1716 		fp->len -= bytes;
1717 		break;
1718 	default:
1719 		errno = EINVAL;
1720 		return -1;
1721 	}
1722 	return 0;
1723 }
1724 
put_entry(const void * ptr,size_t size,size_t n,struct policy_file * fp)1725 size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1726 			struct policy_file *fp)
1727 {
1728 	size_t bytes = size * n;
1729 
1730 	switch (fp->type) {
1731 	case PF_USE_STDIO:
1732 		return fwrite(ptr, size, n, fp->fp);
1733 	case PF_USE_MEMORY:
1734 		if (bytes > fp->len) {
1735 			errno = ENOSPC;
1736 			return 0;
1737 		}
1738 
1739 		memcpy(fp->data, ptr, bytes);
1740 		fp->data += bytes;
1741 		fp->len -= bytes;
1742 		return n;
1743 	case PF_LEN:
1744 		fp->len += bytes;
1745 		return n;
1746 	default:
1747 		return 0;
1748 	}
1749 	return 0;
1750 }
1751 
1752 /*
1753  * Reads a string and null terminates it from the policy file.
1754  * This is a port of str_read from the SE Linux kernel code.
1755  *
1756  * It returns:
1757  *   0 - Success
1758  *  -1 - Failure with errno set
1759  */
str_read(char ** strp,struct policy_file * fp,size_t len)1760 int hidden str_read(char **strp, struct policy_file *fp, size_t len)
1761 {
1762 	int rc;
1763 	char *str;
1764 
1765 	if (zero_or_saturated(len)) {
1766 		errno = EINVAL;
1767 		return -1;
1768 	}
1769 
1770 	str = malloc(len + 1);
1771 	if (!str)
1772 		return -1;
1773 
1774 	/* it's expected the caller should free the str */
1775 	*strp = str;
1776 
1777 	/* next_entry sets errno */
1778 	rc = next_entry(str, fp, len);
1779 	if (rc)
1780 		return rc;
1781 
1782 	str[len] = '\0';
1783 	return 0;
1784 }
1785 
1786 /*
1787  * Read a new set of configuration data from
1788  * a policy database binary representation file.
1789  *
1790  * Verify that each class that is defined under the
1791  * existing policy is still defined with the same
1792  * attributes in the new policy.
1793  *
1794  * Convert the context structures in the SID table to the
1795  * new representation and verify that all entries
1796  * in the SID table are valid under the new policy.
1797  *
1798  * Change the active policy database to use the new
1799  * configuration data.
1800  *
1801  * Reset the access vector cache.
1802  */
sepol_load_policy(void * data,size_t len)1803 int hidden sepol_load_policy(void *data, size_t len)
1804 {
1805 	policydb_t oldpolicydb, newpolicydb;
1806 	sidtab_t oldsidtab, newsidtab;
1807 	convert_context_args_t args;
1808 	int rc = 0;
1809 	struct policy_file file, *fp;
1810 
1811 	policy_file_init(&file);
1812 	file.type = PF_USE_MEMORY;
1813 	file.data = data;
1814 	file.len = len;
1815 	fp = &file;
1816 
1817 	if (policydb_init(&newpolicydb))
1818 		return -ENOMEM;
1819 
1820 	if (policydb_read(&newpolicydb, fp, 1)) {
1821 		policydb_destroy(&mypolicydb);
1822 		return -EINVAL;
1823 	}
1824 
1825 	sepol_sidtab_init(&newsidtab);
1826 
1827 	/* Verify that the existing classes did not change. */
1828 	if (hashtab_map
1829 	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1830 		ERR(NULL, "the definition of an existing class changed");
1831 		rc = -EINVAL;
1832 		goto err;
1833 	}
1834 
1835 	/* Clone the SID table. */
1836 	sepol_sidtab_shutdown(sidtab);
1837 	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1838 		rc = -ENOMEM;
1839 		goto err;
1840 	}
1841 
1842 	/* Convert the internal representations of contexts
1843 	   in the new SID table and remove invalid SIDs. */
1844 	args.oldp = policydb;
1845 	args.newp = &newpolicydb;
1846 	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1847 
1848 	/* Save the old policydb and SID table to free later. */
1849 	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1850 	sepol_sidtab_set(&oldsidtab, sidtab);
1851 
1852 	/* Install the new policydb and SID table. */
1853 	memcpy(policydb, &newpolicydb, sizeof *policydb);
1854 	sepol_sidtab_set(sidtab, &newsidtab);
1855 
1856 	/* Free the old policydb and SID table. */
1857 	policydb_destroy(&oldpolicydb);
1858 	sepol_sidtab_destroy(&oldsidtab);
1859 
1860 	return 0;
1861 
1862       err:
1863 	sepol_sidtab_destroy(&newsidtab);
1864 	policydb_destroy(&newpolicydb);
1865 	return rc;
1866 
1867 }
1868 
1869 /*
1870  * Return the SIDs to use for an unlabeled file system
1871  * that is being mounted from the device with the
1872  * the kdevname `name'.  The `fs_sid' SID is returned for
1873  * the file system and the `file_sid' SID is returned
1874  * for all files within that file system.
1875  */
sepol_fs_sid(char * name,sepol_security_id_t * fs_sid,sepol_security_id_t * file_sid)1876 int hidden sepol_fs_sid(char *name,
1877 			sepol_security_id_t * fs_sid,
1878 			sepol_security_id_t * file_sid)
1879 {
1880 	int rc = 0;
1881 	ocontext_t *c;
1882 
1883 	c = policydb->ocontexts[OCON_FS];
1884 	while (c) {
1885 		if (strcmp(c->u.name, name) == 0)
1886 			break;
1887 		c = c->next;
1888 	}
1889 
1890 	if (c) {
1891 		if (!c->sid[0] || !c->sid[1]) {
1892 			rc = sepol_sidtab_context_to_sid(sidtab,
1893 							 &c->context[0],
1894 							 &c->sid[0]);
1895 			if (rc)
1896 				goto out;
1897 			rc = sepol_sidtab_context_to_sid(sidtab,
1898 							 &c->context[1],
1899 							 &c->sid[1]);
1900 			if (rc)
1901 				goto out;
1902 		}
1903 		*fs_sid = c->sid[0];
1904 		*file_sid = c->sid[1];
1905 	} else {
1906 		*fs_sid = SECINITSID_FS;
1907 		*file_sid = SECINITSID_FILE;
1908 	}
1909 
1910       out:
1911 	return rc;
1912 }
1913 
1914 /*
1915  * Return the SID of the ibpkey specified by
1916  * `subnet prefix', and `pkey number'.
1917  */
sepol_ibpkey_sid(uint64_t subnet_prefix,uint16_t pkey,sepol_security_id_t * out_sid)1918 int hidden sepol_ibpkey_sid(uint64_t subnet_prefix,
1919 			    uint16_t pkey, sepol_security_id_t *out_sid)
1920 {
1921 	ocontext_t *c;
1922 	int rc = 0;
1923 
1924 	c = policydb->ocontexts[OCON_IBPKEY];
1925 	while (c) {
1926 		if (c->u.ibpkey.low_pkey <= pkey &&
1927 		    c->u.ibpkey.high_pkey >= pkey &&
1928 		    subnet_prefix == c->u.ibpkey.subnet_prefix)
1929 			break;
1930 		c = c->next;
1931 	}
1932 
1933 	if (c) {
1934 		if (!c->sid[0]) {
1935 			rc = sepol_sidtab_context_to_sid(sidtab,
1936 							 &c->context[0],
1937 							 &c->sid[0]);
1938 			if (rc)
1939 				goto out;
1940 		}
1941 		*out_sid = c->sid[0];
1942 	} else {
1943 		*out_sid = SECINITSID_UNLABELED;
1944 	}
1945 
1946 out:
1947 	return rc;
1948 }
1949 
1950 /*
1951  * Return the SID of the subnet management interface specified by
1952  * `device name', and `port'.
1953  */
sepol_ibendport_sid(char * dev_name,uint8_t port,sepol_security_id_t * out_sid)1954 int hidden sepol_ibendport_sid(char *dev_name,
1955 			       uint8_t port,
1956 			       sepol_security_id_t *out_sid)
1957 {
1958 	ocontext_t *c;
1959 	int rc = 0;
1960 
1961 	c = policydb->ocontexts[OCON_IBENDPORT];
1962 	while (c) {
1963 		if (c->u.ibendport.port == port &&
1964 		    !strcmp(dev_name, c->u.ibendport.dev_name))
1965 			break;
1966 		c = c->next;
1967 	}
1968 
1969 	if (c) {
1970 		if (!c->sid[0]) {
1971 			rc = sepol_sidtab_context_to_sid(sidtab,
1972 							 &c->context[0],
1973 							 &c->sid[0]);
1974 			if (rc)
1975 				goto out;
1976 		}
1977 		*out_sid = c->sid[0];
1978 	} else {
1979 		*out_sid = SECINITSID_UNLABELED;
1980 	}
1981 
1982 out:
1983 	return rc;
1984 }
1985 
1986 
1987 /*
1988  * Return the SID of the port specified by
1989  * `domain', `type', `protocol', and `port'.
1990  */
sepol_port_sid(uint16_t domain,uint16_t type,uint8_t protocol,uint16_t port,sepol_security_id_t * out_sid)1991 int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1992 			  uint16_t type __attribute__ ((unused)),
1993 			  uint8_t protocol,
1994 			  uint16_t port, sepol_security_id_t * out_sid)
1995 {
1996 	ocontext_t *c;
1997 	int rc = 0;
1998 
1999 	c = policydb->ocontexts[OCON_PORT];
2000 	while (c) {
2001 		if (c->u.port.protocol == protocol &&
2002 		    c->u.port.low_port <= port && c->u.port.high_port >= port)
2003 			break;
2004 		c = c->next;
2005 	}
2006 
2007 	if (c) {
2008 		if (!c->sid[0]) {
2009 			rc = sepol_sidtab_context_to_sid(sidtab,
2010 							 &c->context[0],
2011 							 &c->sid[0]);
2012 			if (rc)
2013 				goto out;
2014 		}
2015 		*out_sid = c->sid[0];
2016 	} else {
2017 		*out_sid = SECINITSID_PORT;
2018 	}
2019 
2020       out:
2021 	return rc;
2022 }
2023 
2024 /*
2025  * Return the SIDs to use for a network interface
2026  * with the name `name'.  The `if_sid' SID is returned for
2027  * the interface and the `msg_sid' SID is returned as
2028  * the default SID for messages received on the
2029  * interface.
2030  */
sepol_netif_sid(char * name,sepol_security_id_t * if_sid,sepol_security_id_t * msg_sid)2031 int hidden sepol_netif_sid(char *name,
2032 			   sepol_security_id_t * if_sid,
2033 			   sepol_security_id_t * msg_sid)
2034 {
2035 	int rc = 0;
2036 	ocontext_t *c;
2037 
2038 	c = policydb->ocontexts[OCON_NETIF];
2039 	while (c) {
2040 		if (strcmp(name, c->u.name) == 0)
2041 			break;
2042 		c = c->next;
2043 	}
2044 
2045 	if (c) {
2046 		if (!c->sid[0] || !c->sid[1]) {
2047 			rc = sepol_sidtab_context_to_sid(sidtab,
2048 							 &c->context[0],
2049 							 &c->sid[0]);
2050 			if (rc)
2051 				goto out;
2052 			rc = sepol_sidtab_context_to_sid(sidtab,
2053 							 &c->context[1],
2054 							 &c->sid[1]);
2055 			if (rc)
2056 				goto out;
2057 		}
2058 		*if_sid = c->sid[0];
2059 		*msg_sid = c->sid[1];
2060 	} else {
2061 		*if_sid = SECINITSID_NETIF;
2062 		*msg_sid = SECINITSID_NETMSG;
2063 	}
2064 
2065       out:
2066 	return rc;
2067 }
2068 
match_ipv6_addrmask(uint32_t * input,uint32_t * addr,uint32_t * mask)2069 static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
2070 			       uint32_t * mask)
2071 {
2072 	int i, fail = 0;
2073 
2074 	for (i = 0; i < 4; i++)
2075 		if (addr[i] != (input[i] & mask[i])) {
2076 			fail = 1;
2077 			break;
2078 		}
2079 
2080 	return !fail;
2081 }
2082 
2083 /*
2084  * Return the SID of the node specified by the address
2085  * `addrp' where `addrlen' is the length of the address
2086  * in bytes and `domain' is the communications domain or
2087  * address family in which the address should be interpreted.
2088  */
sepol_node_sid(uint16_t domain,void * addrp,size_t addrlen,sepol_security_id_t * out_sid)2089 int hidden sepol_node_sid(uint16_t domain,
2090 			  void *addrp,
2091 			  size_t addrlen, sepol_security_id_t * out_sid)
2092 {
2093 	int rc = 0;
2094 	ocontext_t *c;
2095 
2096 	switch (domain) {
2097 	case AF_INET:{
2098 			uint32_t addr;
2099 
2100 			if (addrlen != sizeof(uint32_t)) {
2101 				rc = -EINVAL;
2102 				goto out;
2103 			}
2104 
2105 			addr = *((uint32_t *) addrp);
2106 
2107 			c = policydb->ocontexts[OCON_NODE];
2108 			while (c) {
2109 				if (c->u.node.addr == (addr & c->u.node.mask))
2110 					break;
2111 				c = c->next;
2112 			}
2113 			break;
2114 		}
2115 
2116 	case AF_INET6:
2117 		if (addrlen != sizeof(uint64_t) * 2) {
2118 			rc = -EINVAL;
2119 			goto out;
2120 		}
2121 
2122 		c = policydb->ocontexts[OCON_NODE6];
2123 		while (c) {
2124 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2125 						c->u.node6.mask))
2126 				break;
2127 			c = c->next;
2128 		}
2129 		break;
2130 
2131 	default:
2132 		*out_sid = SECINITSID_NODE;
2133 		goto out;
2134 	}
2135 
2136 	if (c) {
2137 		if (!c->sid[0]) {
2138 			rc = sepol_sidtab_context_to_sid(sidtab,
2139 							 &c->context[0],
2140 							 &c->sid[0]);
2141 			if (rc)
2142 				goto out;
2143 		}
2144 		*out_sid = c->sid[0];
2145 	} else {
2146 		*out_sid = SECINITSID_NODE;
2147 	}
2148 
2149       out:
2150 	return rc;
2151 }
2152 
2153 /*
2154  * Generate the set of SIDs for legal security contexts
2155  * for a given user that can be reached by `fromsid'.
2156  * Set `*sids' to point to a dynamically allocated
2157  * array containing the set of SIDs.  Set `*nel' to the
2158  * number of elements in the array.
2159  */
2160 #define SIDS_NEL 25
2161 
sepol_get_user_sids(sepol_security_id_t fromsid,char * username,sepol_security_id_t ** sids,uint32_t * nel)2162 int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
2163 			       char *username,
2164 			       sepol_security_id_t ** sids, uint32_t * nel)
2165 {
2166 	context_struct_t *fromcon, usercon;
2167 	sepol_security_id_t *mysids, *mysids2, sid;
2168 	uint32_t mynel = 0, maxnel = SIDS_NEL;
2169 	user_datum_t *user;
2170 	role_datum_t *role;
2171 	struct sepol_av_decision avd;
2172 	int rc = 0;
2173 	unsigned int i, j, reason;
2174 	ebitmap_node_t *rnode, *tnode;
2175 
2176 	fromcon = sepol_sidtab_search(sidtab, fromsid);
2177 	if (!fromcon) {
2178 		rc = -EINVAL;
2179 		goto out;
2180 	}
2181 
2182 	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
2183 					       username);
2184 	if (!user) {
2185 		rc = -EINVAL;
2186 		goto out;
2187 	}
2188 	usercon.user = user->s.value;
2189 
2190 	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
2191 	if (!mysids) {
2192 		rc = -ENOMEM;
2193 		goto out;
2194 	}
2195 	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
2196 
2197 	ebitmap_for_each_bit(&user->roles.roles, rnode, i) {
2198 		if (!ebitmap_node_get_bit(rnode, i))
2199 			continue;
2200 		role = policydb->role_val_to_struct[i];
2201 		usercon.role = i + 1;
2202 		ebitmap_for_each_bit(&role->types.types, tnode, j) {
2203 			if (!ebitmap_node_get_bit(tnode, j))
2204 				continue;
2205 			usercon.type = j + 1;
2206 			if (usercon.type == fromcon->type)
2207 				continue;
2208 
2209 			if (mls_setup_user_range
2210 			    (fromcon, user, &usercon, policydb->mls))
2211 				continue;
2212 
2213 			rc = context_struct_compute_av(fromcon, &usercon,
2214 						       SECCLASS_PROCESS,
2215 						       PROCESS__TRANSITION,
2216 						       &avd, &reason, NULL, 0);
2217 			if (rc || !(avd.allowed & PROCESS__TRANSITION))
2218 				continue;
2219 			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
2220 							 &sid);
2221 			if (rc) {
2222 				free(mysids);
2223 				goto out;
2224 			}
2225 			if (mynel < maxnel) {
2226 				mysids[mynel++] = sid;
2227 			} else {
2228 				maxnel += SIDS_NEL;
2229 				mysids2 =
2230 				    malloc(maxnel *
2231 					   sizeof(sepol_security_id_t));
2232 
2233 				if (!mysids2) {
2234 					rc = -ENOMEM;
2235 					free(mysids);
2236 					goto out;
2237 				}
2238 				memset(mysids2, 0,
2239 				       maxnel * sizeof(sepol_security_id_t));
2240 				memcpy(mysids2, mysids,
2241 				       mynel * sizeof(sepol_security_id_t));
2242 				free(mysids);
2243 				mysids = mysids2;
2244 				mysids[mynel++] = sid;
2245 			}
2246 		}
2247 	}
2248 
2249 	*sids = mysids;
2250 	*nel = mynel;
2251 
2252       out:
2253 	return rc;
2254 }
2255 
2256 /*
2257  * Return the SID to use for a file in a filesystem
2258  * that cannot support a persistent label mapping or use another
2259  * fixed labeling behavior like transition SIDs or task SIDs.
2260  */
sepol_genfs_sid(const char * fstype,const char * path,sepol_security_class_t sclass,sepol_security_id_t * sid)2261 int hidden sepol_genfs_sid(const char *fstype,
2262 			   const char *path,
2263 			   sepol_security_class_t sclass,
2264 			   sepol_security_id_t * sid)
2265 {
2266 	size_t len;
2267 	genfs_t *genfs;
2268 	ocontext_t *c;
2269 	int rc = 0, cmp = 0;
2270 
2271 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2272 		cmp = strcmp(fstype, genfs->fstype);
2273 		if (cmp <= 0)
2274 			break;
2275 	}
2276 
2277 	if (!genfs || cmp) {
2278 		*sid = SECINITSID_UNLABELED;
2279 		rc = -ENOENT;
2280 		goto out;
2281 	}
2282 
2283 	for (c = genfs->head; c; c = c->next) {
2284 		len = strlen(c->u.name);
2285 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2286 		    (strncmp(c->u.name, path, len) == 0))
2287 			break;
2288 	}
2289 
2290 	if (!c) {
2291 		*sid = SECINITSID_UNLABELED;
2292 		rc = -ENOENT;
2293 		goto out;
2294 	}
2295 
2296 	if (!c->sid[0]) {
2297 		rc = sepol_sidtab_context_to_sid(sidtab,
2298 						 &c->context[0], &c->sid[0]);
2299 		if (rc)
2300 			goto out;
2301 	}
2302 
2303 	*sid = c->sid[0];
2304       out:
2305 	return rc;
2306 }
2307 
sepol_fs_use(const char * fstype,unsigned int * behavior,sepol_security_id_t * sid)2308 int hidden sepol_fs_use(const char *fstype,
2309 			unsigned int *behavior, sepol_security_id_t * sid)
2310 {
2311 	int rc = 0;
2312 	ocontext_t *c;
2313 
2314 	c = policydb->ocontexts[OCON_FSUSE];
2315 	while (c) {
2316 		if (strcmp(fstype, c->u.name) == 0)
2317 			break;
2318 		c = c->next;
2319 	}
2320 
2321 	if (c) {
2322 		*behavior = c->v.behavior;
2323 		if (!c->sid[0]) {
2324 			rc = sepol_sidtab_context_to_sid(sidtab,
2325 							 &c->context[0],
2326 							 &c->sid[0]);
2327 			if (rc)
2328 				goto out;
2329 		}
2330 		*sid = c->sid[0];
2331 	} else {
2332 		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2333 		if (rc) {
2334 			*behavior = SECURITY_FS_USE_NONE;
2335 			rc = 0;
2336 		} else {
2337 			*behavior = SECURITY_FS_USE_GENFS;
2338 		}
2339 	}
2340 
2341       out:
2342 	return rc;
2343 }
2344 
2345 /* FLASK */
2346