1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified. This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation. Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Pass.h"
29 #include "llvm/BasicBlock.h"
30 #include "llvm/Function.h"
31 #include "llvm/IntrinsicInst.h"
32 #include "llvm/Instructions.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Type.h"
35 #include "llvm/Target/TargetData.h"
36 using namespace llvm;
37
38 // Register the AliasAnalysis interface, providing a nice name to refer to.
39 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
40 char AliasAnalysis::ID = 0;
41
42 //===----------------------------------------------------------------------===//
43 // Default chaining methods
44 //===----------------------------------------------------------------------===//
45
46 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)47 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
48 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
49 return AA->alias(LocA, LocB);
50 }
51
pointsToConstantMemory(const Location & Loc,bool OrLocal)52 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
53 bool OrLocal) {
54 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
55 return AA->pointsToConstantMemory(Loc, OrLocal);
56 }
57
deleteValue(Value * V)58 void AliasAnalysis::deleteValue(Value *V) {
59 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60 AA->deleteValue(V);
61 }
62
copyValue(Value * From,Value * To)63 void AliasAnalysis::copyValue(Value *From, Value *To) {
64 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
65 AA->copyValue(From, To);
66 }
67
addEscapingUse(Use & U)68 void AliasAnalysis::addEscapingUse(Use &U) {
69 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
70 AA->addEscapingUse(U);
71 }
72
73
74 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)75 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
76 const Location &Loc) {
77 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
78
79 ModRefBehavior MRB = getModRefBehavior(CS);
80 if (MRB == DoesNotAccessMemory)
81 return NoModRef;
82
83 ModRefResult Mask = ModRef;
84 if (onlyReadsMemory(MRB))
85 Mask = Ref;
86
87 if (onlyAccessesArgPointees(MRB)) {
88 bool doesAlias = false;
89 if (doesAccessArgPointees(MRB)) {
90 MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
91 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
92 AI != AE; ++AI) {
93 const Value *Arg = *AI;
94 if (!Arg->getType()->isPointerTy())
95 continue;
96 Location CSLoc(Arg, UnknownSize, CSTag);
97 if (!isNoAlias(CSLoc, Loc)) {
98 doesAlias = true;
99 break;
100 }
101 }
102 }
103 if (!doesAlias)
104 return NoModRef;
105 }
106
107 // If Loc is a constant memory location, the call definitely could not
108 // modify the memory location.
109 if ((Mask & Mod) && pointsToConstantMemory(Loc))
110 Mask = ModRefResult(Mask & ~Mod);
111
112 // If this is the end of the chain, don't forward.
113 if (!AA) return Mask;
114
115 // Otherwise, fall back to the next AA in the chain. But we can merge
116 // in any mask we've managed to compute.
117 return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
118 }
119
120 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)121 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
122 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
123
124 // If CS1 or CS2 are readnone, they don't interact.
125 ModRefBehavior CS1B = getModRefBehavior(CS1);
126 if (CS1B == DoesNotAccessMemory) return NoModRef;
127
128 ModRefBehavior CS2B = getModRefBehavior(CS2);
129 if (CS2B == DoesNotAccessMemory) return NoModRef;
130
131 // If they both only read from memory, there is no dependence.
132 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
133 return NoModRef;
134
135 AliasAnalysis::ModRefResult Mask = ModRef;
136
137 // If CS1 only reads memory, the only dependence on CS2 can be
138 // from CS1 reading memory written by CS2.
139 if (onlyReadsMemory(CS1B))
140 Mask = ModRefResult(Mask & Ref);
141
142 // If CS2 only access memory through arguments, accumulate the mod/ref
143 // information from CS1's references to the memory referenced by
144 // CS2's arguments.
145 if (onlyAccessesArgPointees(CS2B)) {
146 AliasAnalysis::ModRefResult R = NoModRef;
147 if (doesAccessArgPointees(CS2B)) {
148 MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
149 for (ImmutableCallSite::arg_iterator
150 I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
151 const Value *Arg = *I;
152 if (!Arg->getType()->isPointerTy())
153 continue;
154 Location CS2Loc(Arg, UnknownSize, CS2Tag);
155 R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
156 if (R == Mask)
157 break;
158 }
159 }
160 return R;
161 }
162
163 // If CS1 only accesses memory through arguments, check if CS2 references
164 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
165 if (onlyAccessesArgPointees(CS1B)) {
166 AliasAnalysis::ModRefResult R = NoModRef;
167 if (doesAccessArgPointees(CS1B)) {
168 MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
169 for (ImmutableCallSite::arg_iterator
170 I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
171 const Value *Arg = *I;
172 if (!Arg->getType()->isPointerTy())
173 continue;
174 Location CS1Loc(Arg, UnknownSize, CS1Tag);
175 if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
176 R = Mask;
177 break;
178 }
179 }
180 }
181 if (R == NoModRef)
182 return R;
183 }
184
185 // If this is the end of the chain, don't forward.
186 if (!AA) return Mask;
187
188 // Otherwise, fall back to the next AA in the chain. But we can merge
189 // in any mask we've managed to compute.
190 return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
191 }
192
193 AliasAnalysis::ModRefBehavior
getModRefBehavior(ImmutableCallSite CS)194 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
195 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
196
197 ModRefBehavior Min = UnknownModRefBehavior;
198
199 // Call back into the alias analysis with the other form of getModRefBehavior
200 // to see if it can give a better response.
201 if (const Function *F = CS.getCalledFunction())
202 Min = getModRefBehavior(F);
203
204 // If this is the end of the chain, don't forward.
205 if (!AA) return Min;
206
207 // Otherwise, fall back to the next AA in the chain. But we can merge
208 // in any result we've managed to compute.
209 return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
210 }
211
212 AliasAnalysis::ModRefBehavior
getModRefBehavior(const Function * F)213 AliasAnalysis::getModRefBehavior(const Function *F) {
214 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
215 return AA->getModRefBehavior(F);
216 }
217
218 //===----------------------------------------------------------------------===//
219 // AliasAnalysis non-virtual helper method implementation
220 //===----------------------------------------------------------------------===//
221
getLocation(const LoadInst * LI)222 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
223 return Location(LI->getPointerOperand(),
224 getTypeStoreSize(LI->getType()),
225 LI->getMetadata(LLVMContext::MD_tbaa));
226 }
227
getLocation(const StoreInst * SI)228 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
229 return Location(SI->getPointerOperand(),
230 getTypeStoreSize(SI->getValueOperand()->getType()),
231 SI->getMetadata(LLVMContext::MD_tbaa));
232 }
233
getLocation(const VAArgInst * VI)234 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
235 return Location(VI->getPointerOperand(),
236 UnknownSize,
237 VI->getMetadata(LLVMContext::MD_tbaa));
238 }
239
240 AliasAnalysis::Location
getLocation(const AtomicCmpXchgInst * CXI)241 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
242 return Location(CXI->getPointerOperand(),
243 getTypeStoreSize(CXI->getCompareOperand()->getType()),
244 CXI->getMetadata(LLVMContext::MD_tbaa));
245 }
246
247 AliasAnalysis::Location
getLocation(const AtomicRMWInst * RMWI)248 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
249 return Location(RMWI->getPointerOperand(),
250 getTypeStoreSize(RMWI->getValOperand()->getType()),
251 RMWI->getMetadata(LLVMContext::MD_tbaa));
252 }
253
254 AliasAnalysis::Location
getLocationForSource(const MemTransferInst * MTI)255 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
256 uint64_t Size = UnknownSize;
257 if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
258 Size = C->getValue().getZExtValue();
259
260 // memcpy/memmove can have TBAA tags. For memcpy, they apply
261 // to both the source and the destination.
262 MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
263
264 return Location(MTI->getRawSource(), Size, TBAATag);
265 }
266
267 AliasAnalysis::Location
getLocationForDest(const MemIntrinsic * MTI)268 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
269 uint64_t Size = UnknownSize;
270 if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
271 Size = C->getValue().getZExtValue();
272
273 // memcpy/memmove can have TBAA tags. For memcpy, they apply
274 // to both the source and the destination.
275 MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
276
277 return Location(MTI->getRawDest(), Size, TBAATag);
278 }
279
280
281
282 AliasAnalysis::ModRefResult
getModRefInfo(const LoadInst * L,const Location & Loc)283 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
284 // Be conservative in the face of volatile/atomic.
285 if (!L->isUnordered())
286 return ModRef;
287
288 // If the load address doesn't alias the given address, it doesn't read
289 // or write the specified memory.
290 if (!alias(getLocation(L), Loc))
291 return NoModRef;
292
293 // Otherwise, a load just reads.
294 return Ref;
295 }
296
297 AliasAnalysis::ModRefResult
getModRefInfo(const StoreInst * S,const Location & Loc)298 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
299 // Be conservative in the face of volatile/atomic.
300 if (!S->isUnordered())
301 return ModRef;
302
303 // If the store address cannot alias the pointer in question, then the
304 // specified memory cannot be modified by the store.
305 if (!alias(getLocation(S), Loc))
306 return NoModRef;
307
308 // If the pointer is a pointer to constant memory, then it could not have been
309 // modified by this store.
310 if (pointsToConstantMemory(Loc))
311 return NoModRef;
312
313 // Otherwise, a store just writes.
314 return Mod;
315 }
316
317 AliasAnalysis::ModRefResult
getModRefInfo(const VAArgInst * V,const Location & Loc)318 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
319 // If the va_arg address cannot alias the pointer in question, then the
320 // specified memory cannot be accessed by the va_arg.
321 if (!alias(getLocation(V), Loc))
322 return NoModRef;
323
324 // If the pointer is a pointer to constant memory, then it could not have been
325 // modified by this va_arg.
326 if (pointsToConstantMemory(Loc))
327 return NoModRef;
328
329 // Otherwise, a va_arg reads and writes.
330 return ModRef;
331 }
332
333 AliasAnalysis::ModRefResult
getModRefInfo(const AtomicCmpXchgInst * CX,const Location & Loc)334 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
335 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
336 if (CX->getOrdering() > Monotonic)
337 return ModRef;
338
339 // If the cmpxchg address does not alias the location, it does not access it.
340 if (!alias(getLocation(CX), Loc))
341 return NoModRef;
342
343 return ModRef;
344 }
345
346 AliasAnalysis::ModRefResult
getModRefInfo(const AtomicRMWInst * RMW,const Location & Loc)347 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
348 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
349 if (RMW->getOrdering() > Monotonic)
350 return ModRef;
351
352 // If the atomicrmw address does not alias the location, it does not access it.
353 if (!alias(getLocation(RMW), Loc))
354 return NoModRef;
355
356 return ModRef;
357 }
358
359
360 // AliasAnalysis destructor: DO NOT move this to the header file for
361 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
362 // the AliasAnalysis.o file in the current .a file, causing alias analysis
363 // support to not be included in the tool correctly!
364 //
~AliasAnalysis()365 AliasAnalysis::~AliasAnalysis() {}
366
367 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
368 /// AliasAnalysis interface before any other methods are called.
369 ///
InitializeAliasAnalysis(Pass * P)370 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
371 TD = P->getAnalysisIfAvailable<TargetData>();
372 AA = &P->getAnalysis<AliasAnalysis>();
373 }
374
375 // getAnalysisUsage - All alias analysis implementations should invoke this
376 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
getAnalysisUsage(AnalysisUsage & AU) const377 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
378 AU.addRequired<AliasAnalysis>(); // All AA's chain
379 }
380
381 /// getTypeStoreSize - Return the TargetData store size for the given type,
382 /// if known, or a conservative value otherwise.
383 ///
getTypeStoreSize(Type * Ty)384 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
385 return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
386 }
387
388 /// canBasicBlockModify - Return true if it is possible for execution of the
389 /// specified basic block to modify the value pointed to by Ptr.
390 ///
canBasicBlockModify(const BasicBlock & BB,const Location & Loc)391 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
392 const Location &Loc) {
393 return canInstructionRangeModify(BB.front(), BB.back(), Loc);
394 }
395
396 /// canInstructionRangeModify - Return true if it is possible for the execution
397 /// of the specified instructions to modify the value pointed to by Ptr. The
398 /// instructions to consider are all of the instructions in the range of [I1,I2]
399 /// INCLUSIVE. I1 and I2 must be in the same basic block.
400 ///
canInstructionRangeModify(const Instruction & I1,const Instruction & I2,const Location & Loc)401 bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
402 const Instruction &I2,
403 const Location &Loc) {
404 assert(I1.getParent() == I2.getParent() &&
405 "Instructions not in same basic block!");
406 BasicBlock::const_iterator I = &I1;
407 BasicBlock::const_iterator E = &I2;
408 ++E; // Convert from inclusive to exclusive range.
409
410 for (; I != E; ++I) // Check every instruction in range
411 if (getModRefInfo(I, Loc) & Mod)
412 return true;
413 return false;
414 }
415
416 /// isNoAliasCall - Return true if this pointer is returned by a noalias
417 /// function.
isNoAliasCall(const Value * V)418 bool llvm::isNoAliasCall(const Value *V) {
419 if (isa<CallInst>(V) || isa<InvokeInst>(V))
420 return ImmutableCallSite(cast<Instruction>(V))
421 .paramHasAttr(0, Attribute::NoAlias);
422 return false;
423 }
424
425 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
426 /// identifiable object. This returns true for:
427 /// Global Variables and Functions (but not Global Aliases)
428 /// Allocas and Mallocs
429 /// ByVal and NoAlias Arguments
430 /// NoAlias returns
431 ///
isIdentifiedObject(const Value * V)432 bool llvm::isIdentifiedObject(const Value *V) {
433 if (isa<AllocaInst>(V))
434 return true;
435 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
436 return true;
437 if (isNoAliasCall(V))
438 return true;
439 if (const Argument *A = dyn_cast<Argument>(V))
440 return A->hasNoAliasAttr() || A->hasByValAttr();
441 return false;
442 }
443