• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
16 
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <vector>
26 
27 namespace llvm {
28 
29 class AliasAnalysis;
30 class AllocaInst;
31 class BasicBlock;
32 class BitCastInst;
33 class BranchInst;
34 class CallInst;
35 class DbgValueInst;
36 class ExtractElementInst;
37 class ExtractValueInst;
38 class FCmpInst;
39 class FPExtInst;
40 class FPToSIInst;
41 class FPToUIInst;
42 class FPTruncInst;
43 class Function;
44 class FunctionLoweringInfo;
45 class GetElementPtrInst;
46 class GCFunctionInfo;
47 class ICmpInst;
48 class IntToPtrInst;
49 class IndirectBrInst;
50 class InvokeInst;
51 class InsertElementInst;
52 class InsertValueInst;
53 class Instruction;
54 class LoadInst;
55 class MachineBasicBlock;
56 class MachineInstr;
57 class MachineRegisterInfo;
58 class MDNode;
59 class PHINode;
60 class PtrToIntInst;
61 class ReturnInst;
62 class SDDbgValue;
63 class SExtInst;
64 class SelectInst;
65 class ShuffleVectorInst;
66 class SIToFPInst;
67 class StoreInst;
68 class SwitchInst;
69 class TargetData;
70 class TargetLowering;
71 class TruncInst;
72 class UIToFPInst;
73 class UnreachableInst;
74 class UnwindInst;
75 class VAArgInst;
76 class ZExtInst;
77 
78 //===----------------------------------------------------------------------===//
79 /// SelectionDAGBuilder - This is the common target-independent lowering
80 /// implementation that is parameterized by a TargetLowering object.
81 ///
82 class SelectionDAGBuilder {
83   /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
84   DebugLoc CurDebugLoc;
85 
86   DenseMap<const Value*, SDValue> NodeMap;
87 
88   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
89   /// to preserve debug information for incoming arguments.
90   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
91 
92   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
93   class DanglingDebugInfo {
94     const DbgValueInst* DI;
95     DebugLoc dl;
96     unsigned SDNodeOrder;
97   public:
DanglingDebugInfo()98     DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)99     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
100       DI(di), dl(DL), SDNodeOrder(SDNO) { }
getDI()101     const DbgValueInst* getDI() { return DI; }
getdl()102     DebugLoc getdl() { return dl; }
getSDNodeOrder()103     unsigned getSDNodeOrder() { return SDNodeOrder; }
104   };
105 
106   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
107   /// yet seen the referent.  We defer handling these until we do see it.
108   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
109 
110 public:
111   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
112   /// them up and then emit token factor nodes when possible.  This allows us to
113   /// get simple disambiguation between loads without worrying about alias
114   /// analysis.
115   SmallVector<SDValue, 8> PendingLoads;
116 private:
117 
118   /// PendingExports - CopyToReg nodes that copy values to virtual registers
119   /// for export to other blocks need to be emitted before any terminator
120   /// instruction, but they have no other ordering requirements. We bunch them
121   /// up and the emit a single tokenfactor for them just before terminator
122   /// instructions.
123   SmallVector<SDValue, 8> PendingExports;
124 
125   /// SDNodeOrder - A unique monotonically increasing number used to order the
126   /// SDNodes we create.
127   unsigned SDNodeOrder;
128 
129   /// Case - A struct to record the Value for a switch case, and the
130   /// case's target basic block.
131   struct Case {
132     Constant* Low;
133     Constant* High;
134     MachineBasicBlock* BB;
135     uint32_t ExtraWeight;
136 
CaseCase137     Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
CaseCase138     Case(Constant* low, Constant* high, MachineBasicBlock* bb,
139          uint32_t extraweight) : Low(low), High(high), BB(bb),
140          ExtraWeight(extraweight) { }
141 
sizeCase142     APInt size() const {
143       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
144       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
145       return (rHigh - rLow + 1ULL);
146     }
147   };
148 
149   struct CaseBits {
150     uint64_t Mask;
151     MachineBasicBlock* BB;
152     unsigned Bits;
153 
CaseBitsCaseBits154     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
155       Mask(mask), BB(bb), Bits(bits) { }
156   };
157 
158   typedef std::vector<Case>           CaseVector;
159   typedef std::vector<CaseBits>       CaseBitsVector;
160   typedef CaseVector::iterator        CaseItr;
161   typedef std::pair<CaseItr, CaseItr> CaseRange;
162 
163   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
164   /// of conditional branches.
165   struct CaseRec {
CaseRecCaseRec166     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
167             CaseRange r) :
168     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
169 
170     /// CaseBB - The MBB in which to emit the compare and branch
171     MachineBasicBlock *CaseBB;
172     /// LT, GE - If nonzero, we know the current case value must be less-than or
173     /// greater-than-or-equal-to these Constants.
174     const Constant *LT;
175     const Constant *GE;
176     /// Range - A pair of iterators representing the range of case values to be
177     /// processed at this point in the binary search tree.
178     CaseRange Range;
179   };
180 
181   typedef std::vector<CaseRec> CaseRecVector;
182 
183   /// The comparison function for sorting the switch case values in the vector.
184   /// WARNING: Case ranges should be disjoint!
185   struct CaseCmp {
operatorCaseCmp186     bool operator()(const Case &C1, const Case &C2) {
187       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
188       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
189       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
190       return CI1->getValue().slt(CI2->getValue());
191     }
192   };
193 
194   struct CaseBitsCmp {
operatorCaseBitsCmp195     bool operator()(const CaseBits &C1, const CaseBits &C2) {
196       return C1.Bits > C2.Bits;
197     }
198   };
199 
200   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
201 
202   /// CaseBlock - This structure is used to communicate between
203   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
204   /// blocks needed by multi-case switch statements.
205   struct CaseBlock {
206     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
207               const Value *cmpmiddle,
208               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
209               MachineBasicBlock *me,
210               uint32_t trueweight = 0, uint32_t falseweight = 0)
CCCaseBlock211       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
212         TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
213         TrueWeight(trueweight), FalseWeight(falseweight) { }
214 
215     // CC - the condition code to use for the case block's setcc node
216     ISD::CondCode CC;
217 
218     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
219     // Emit by default LHS op RHS. MHS is used for range comparisons:
220     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
221     const Value *CmpLHS, *CmpMHS, *CmpRHS;
222 
223     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
224     MachineBasicBlock *TrueBB, *FalseBB;
225 
226     // ThisBB - the block into which to emit the code for the setcc and branches
227     MachineBasicBlock *ThisBB;
228 
229     // TrueWeight/FalseWeight - branch weights.
230     uint32_t TrueWeight, FalseWeight;
231   };
232 
233   struct JumpTable {
JumpTableJumpTable234     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
235               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
236 
237     /// Reg - the virtual register containing the index of the jump table entry
238     //. to jump to.
239     unsigned Reg;
240     /// JTI - the JumpTableIndex for this jump table in the function.
241     unsigned JTI;
242     /// MBB - the MBB into which to emit the code for the indirect jump.
243     MachineBasicBlock *MBB;
244     /// Default - the MBB of the default bb, which is a successor of the range
245     /// check MBB.  This is when updating PHI nodes in successors.
246     MachineBasicBlock *Default;
247   };
248   struct JumpTableHeader {
249     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
250                     bool E = false):
FirstJumpTableHeader251       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
252     APInt First;
253     APInt Last;
254     const Value *SValue;
255     MachineBasicBlock *HeaderBB;
256     bool Emitted;
257   };
258   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
259 
260   struct BitTestCase {
BitTestCaseBitTestCase261     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
262       Mask(M), ThisBB(T), TargetBB(Tr) { }
263     uint64_t Mask;
264     MachineBasicBlock *ThisBB;
265     MachineBasicBlock *TargetBB;
266   };
267 
268   typedef SmallVector<BitTestCase, 3> BitTestInfo;
269 
270   struct BitTestBlock {
BitTestBlockBitTestBlock271     BitTestBlock(APInt F, APInt R, const Value* SV,
272                  unsigned Rg, EVT RgVT, bool E,
273                  MachineBasicBlock* P, MachineBasicBlock* D,
274                  const BitTestInfo& C):
275       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
276       Parent(P), Default(D), Cases(C) { }
277     APInt First;
278     APInt Range;
279     const Value *SValue;
280     unsigned Reg;
281     EVT RegVT;
282     bool Emitted;
283     MachineBasicBlock *Parent;
284     MachineBasicBlock *Default;
285     BitTestInfo Cases;
286   };
287 
288 public:
289   // TLI - This is information that describes the available target features we
290   // need for lowering.  This indicates when operations are unavailable,
291   // implemented with a libcall, etc.
292   const TargetMachine &TM;
293   const TargetLowering &TLI;
294   SelectionDAG &DAG;
295   const TargetData *TD;
296   AliasAnalysis *AA;
297 
298   /// SwitchCases - Vector of CaseBlock structures used to communicate
299   /// SwitchInst code generation information.
300   std::vector<CaseBlock> SwitchCases;
301   /// JTCases - Vector of JumpTable structures used to communicate
302   /// SwitchInst code generation information.
303   std::vector<JumpTableBlock> JTCases;
304   /// BitTestCases - Vector of BitTestBlock structures used to communicate
305   /// SwitchInst code generation information.
306   std::vector<BitTestBlock> BitTestCases;
307 
308   // Emit PHI-node-operand constants only once even if used by multiple
309   // PHI nodes.
310   DenseMap<const Constant *, unsigned> ConstantsOut;
311 
312   /// FuncInfo - Information about the function as a whole.
313   ///
314   FunctionLoweringInfo &FuncInfo;
315 
316   /// OptLevel - What optimization level we're generating code for.
317   ///
318   CodeGenOpt::Level OptLevel;
319 
320   /// GFI - Garbage collection metadata for the function.
321   GCFunctionInfo *GFI;
322 
323   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
324   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
325 
326   /// HasTailCall - This is set to true if a call in the current
327   /// block has been translated as a tail call. In this case,
328   /// no subsequent DAG nodes should be created.
329   ///
330   bool HasTailCall;
331 
332   LLVMContext *Context;
333 
SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)334   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
335                       CodeGenOpt::Level ol)
336     : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
337       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
338       HasTailCall(false), Context(dag.getContext()) {
339   }
340 
341   void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
342 
343   /// clear - Clear out the current SelectionDAG and the associated
344   /// state and prepare this SelectionDAGBuilder object to be used
345   /// for a new block. This doesn't clear out information about
346   /// additional blocks that are needed to complete switch lowering
347   /// or PHI node updating; that information is cleared out as it is
348   /// consumed.
349   void clear();
350 
351   /// clearDanglingDebugInfo - Clear the dangling debug information
352   /// map. This function is seperated from the clear so that debug
353   /// information that is dangling in a basic block can be properly
354   /// resolved in a different basic block. This allows the
355   /// SelectionDAG to resolve dangling debug information attached
356   /// to PHI nodes.
357   void clearDanglingDebugInfo();
358 
359   /// getRoot - Return the current virtual root of the Selection DAG,
360   /// flushing any PendingLoad items. This must be done before emitting
361   /// a store or any other node that may need to be ordered after any
362   /// prior load instructions.
363   ///
364   SDValue getRoot();
365 
366   /// getControlRoot - Similar to getRoot, but instead of flushing all the
367   /// PendingLoad items, flush all the PendingExports items. It is necessary
368   /// to do this before emitting a terminator instruction.
369   ///
370   SDValue getControlRoot();
371 
getCurDebugLoc()372   DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
373 
getSDNodeOrder()374   unsigned getSDNodeOrder() const { return SDNodeOrder; }
375 
376   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
377 
378   /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
379   /// from how the code appeared in the source. The ordering is used by the
380   /// scheduler to effectively turn off scheduling.
381   void AssignOrderingToNode(const SDNode *Node);
382 
383   void visit(const Instruction &I);
384 
385   void visit(unsigned Opcode, const User &I);
386 
387   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
388   // generate the debug data structures now that we've seen its definition.
389   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
390   SDValue getValue(const Value *V);
391   SDValue getNonRegisterValue(const Value *V);
392   SDValue getValueImpl(const Value *V);
393 
setValue(const Value * V,SDValue NewN)394   void setValue(const Value *V, SDValue NewN) {
395     SDValue &N = NodeMap[V];
396     assert(N.getNode() == 0 && "Already set a value for this node!");
397     N = NewN;
398   }
399 
setUnusedArgValue(const Value * V,SDValue NewN)400   void setUnusedArgValue(const Value *V, SDValue NewN) {
401     SDValue &N = UnusedArgNodeMap[V];
402     assert(N.getNode() == 0 && "Already set a value for this node!");
403     N = NewN;
404   }
405 
406   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
407                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
408                             MachineBasicBlock *SwitchBB, unsigned Opc);
409   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
410                                     MachineBasicBlock *FBB,
411                                     MachineBasicBlock *CurBB,
412                                     MachineBasicBlock *SwitchBB);
413   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
414   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
415   void CopyToExportRegsIfNeeded(const Value *V);
416   void ExportFromCurrentBlock(const Value *V);
417   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
418                    MachineBasicBlock *LandingPad = NULL);
419 
420   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
421   /// references that ned to refer to the last resulting block.
422   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
423 
424 private:
425   // Terminator instructions.
426   void visitRet(const ReturnInst &I);
427   void visitBr(const BranchInst &I);
428   void visitSwitch(const SwitchInst &I);
429   void visitIndirectBr(const IndirectBrInst &I);
visitUnreachable(const UnreachableInst & I)430   void visitUnreachable(const UnreachableInst &I) { /* noop */ }
431 
432   // Helpers for visitSwitch
433   bool handleSmallSwitchRange(CaseRec& CR,
434                               CaseRecVector& WorkList,
435                               const Value* SV,
436                               MachineBasicBlock* Default,
437                               MachineBasicBlock *SwitchBB);
438   bool handleJTSwitchCase(CaseRec& CR,
439                           CaseRecVector& WorkList,
440                           const Value* SV,
441                           MachineBasicBlock* Default,
442                           MachineBasicBlock *SwitchBB);
443   bool handleBTSplitSwitchCase(CaseRec& CR,
444                                CaseRecVector& WorkList,
445                                const Value* SV,
446                                MachineBasicBlock* Default,
447                                MachineBasicBlock *SwitchBB);
448   bool handleBitTestsSwitchCase(CaseRec& CR,
449                                 CaseRecVector& WorkList,
450                                 const Value* SV,
451                                 MachineBasicBlock* Default,
452                                 MachineBasicBlock *SwitchBB);
453 
454   uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
455   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
456                               uint32_t Weight = 0);
457 public:
458   void visitSwitchCase(CaseBlock &CB,
459                        MachineBasicBlock *SwitchBB);
460   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
461   void visitBitTestCase(BitTestBlock &BB,
462                         MachineBasicBlock* NextMBB,
463                         unsigned Reg,
464                         BitTestCase &B,
465                         MachineBasicBlock *SwitchBB);
466   void visitJumpTable(JumpTable &JT);
467   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
468                             MachineBasicBlock *SwitchBB);
469 
470 private:
471   // These all get lowered before this pass.
472   void visitInvoke(const InvokeInst &I);
473   void visitResume(const ResumeInst &I);
474   void visitUnwind(const UnwindInst &I);
475 
476   void visitBinary(const User &I, unsigned OpCode);
477   void visitShift(const User &I, unsigned Opcode);
visitAdd(const User & I)478   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
visitFAdd(const User & I)479   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
visitSub(const User & I)480   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
481   void visitFSub(const User &I);
visitMul(const User & I)482   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
visitFMul(const User & I)483   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
visitURem(const User & I)484   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
visitSRem(const User & I)485   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
visitFRem(const User & I)486   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
visitUDiv(const User & I)487   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
488   void visitSDiv(const User &I);
visitFDiv(const User & I)489   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
visitAnd(const User & I)490   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
visitOr(const User & I)491   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
visitXor(const User & I)492   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
visitShl(const User & I)493   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
visitLShr(const User & I)494   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
visitAShr(const User & I)495   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
496   void visitICmp(const User &I);
497   void visitFCmp(const User &I);
498   // Visit the conversion instructions
499   void visitTrunc(const User &I);
500   void visitZExt(const User &I);
501   void visitSExt(const User &I);
502   void visitFPTrunc(const User &I);
503   void visitFPExt(const User &I);
504   void visitFPToUI(const User &I);
505   void visitFPToSI(const User &I);
506   void visitUIToFP(const User &I);
507   void visitSIToFP(const User &I);
508   void visitPtrToInt(const User &I);
509   void visitIntToPtr(const User &I);
510   void visitBitCast(const User &I);
511 
512   void visitExtractElement(const User &I);
513   void visitInsertElement(const User &I);
514   void visitShuffleVector(const User &I);
515 
516   void visitExtractValue(const ExtractValueInst &I);
517   void visitInsertValue(const InsertValueInst &I);
518   void visitLandingPad(const LandingPadInst &I);
519 
520   void visitGetElementPtr(const User &I);
521   void visitSelect(const User &I);
522 
523   void visitAlloca(const AllocaInst &I);
524   void visitLoad(const LoadInst &I);
525   void visitStore(const StoreInst &I);
526   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
527   void visitAtomicRMW(const AtomicRMWInst &I);
528   void visitFence(const FenceInst &I);
529   void visitPHI(const PHINode &I);
530   void visitCall(const CallInst &I);
531   bool visitMemCmpCall(const CallInst &I);
532   void visitAtomicLoad(const LoadInst &I);
533   void visitAtomicStore(const StoreInst &I);
534 
535   void visitInlineAsm(ImmutableCallSite CS);
536   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
537   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
538 
539   void visitPow(const CallInst &I);
540   void visitExp2(const CallInst &I);
541   void visitExp(const CallInst &I);
542   void visitLog(const CallInst &I);
543   void visitLog2(const CallInst &I);
544   void visitLog10(const CallInst &I);
545 
546   void visitVAStart(const CallInst &I);
547   void visitVAArg(const VAArgInst &I);
548   void visitVAEnd(const CallInst &I);
549   void visitVACopy(const CallInst &I);
550 
visitUserOp1(const Instruction & I)551   void visitUserOp1(const Instruction &I) {
552     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
553   }
visitUserOp2(const Instruction & I)554   void visitUserOp2(const Instruction &I) {
555     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
556   }
557 
558   const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
559 
560   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
561 
562   /// EmitFuncArgumentDbgValue - If V is an function argument then create
563   /// corresponding DBG_VALUE machine instruction for it now. At the end of
564   /// instruction selection, they will be inserted to the entry BB.
565   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
566                                 int64_t Offset, const SDValue &N);
567 };
568 
569 } // end namespace llvm
570 
571 #endif
572