1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <cctype>
33 using namespace llvm;
34
35 /// We are in the process of implementing a new TypeLegalization action
36 /// - the promotion of vector elements. This feature is disabled by default
37 /// and only enabled using this flag.
38 static cl::opt<bool>
39 AllowPromoteIntElem("promote-elements", cl::Hidden,
40 cl::desc("Allow promotion of integer vector element types"));
41
42 namespace llvm {
getTLSModel(const GlobalValue * GV,Reloc::Model reloc)43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44 bool isLocal = GV->hasLocalLinkage();
45 bool isDeclaration = GV->isDeclaration();
46 // FIXME: what should we do for protected and internal visibility?
47 // For variables, is internal different from hidden?
48 bool isHidden = GV->hasHiddenVisibility();
49
50 if (reloc == Reloc::PIC_) {
51 if (isLocal || isHidden)
52 return TLSModel::LocalDynamic;
53 else
54 return TLSModel::GeneralDynamic;
55 } else {
56 if (!isDeclaration || isHidden)
57 return TLSModel::LocalExec;
58 else
59 return TLSModel::InitialExec;
60 }
61 }
62 }
63
64 /// InitLibcallNames - Set default libcall names.
65 ///
InitLibcallNames(const char ** Names)66 static void InitLibcallNames(const char **Names) {
67 Names[RTLIB::SHL_I16] = "__ashlhi3";
68 Names[RTLIB::SHL_I32] = "__ashlsi3";
69 Names[RTLIB::SHL_I64] = "__ashldi3";
70 Names[RTLIB::SHL_I128] = "__ashlti3";
71 Names[RTLIB::SRL_I16] = "__lshrhi3";
72 Names[RTLIB::SRL_I32] = "__lshrsi3";
73 Names[RTLIB::SRL_I64] = "__lshrdi3";
74 Names[RTLIB::SRL_I128] = "__lshrti3";
75 Names[RTLIB::SRA_I16] = "__ashrhi3";
76 Names[RTLIB::SRA_I32] = "__ashrsi3";
77 Names[RTLIB::SRA_I64] = "__ashrdi3";
78 Names[RTLIB::SRA_I128] = "__ashrti3";
79 Names[RTLIB::MUL_I8] = "__mulqi3";
80 Names[RTLIB::MUL_I16] = "__mulhi3";
81 Names[RTLIB::MUL_I32] = "__mulsi3";
82 Names[RTLIB::MUL_I64] = "__muldi3";
83 Names[RTLIB::MUL_I128] = "__multi3";
84 Names[RTLIB::MULO_I32] = "__mulosi4";
85 Names[RTLIB::MULO_I64] = "__mulodi4";
86 Names[RTLIB::MULO_I128] = "__muloti4";
87 Names[RTLIB::SDIV_I8] = "__divqi3";
88 Names[RTLIB::SDIV_I16] = "__divhi3";
89 Names[RTLIB::SDIV_I32] = "__divsi3";
90 Names[RTLIB::SDIV_I64] = "__divdi3";
91 Names[RTLIB::SDIV_I128] = "__divti3";
92 Names[RTLIB::UDIV_I8] = "__udivqi3";
93 Names[RTLIB::UDIV_I16] = "__udivhi3";
94 Names[RTLIB::UDIV_I32] = "__udivsi3";
95 Names[RTLIB::UDIV_I64] = "__udivdi3";
96 Names[RTLIB::UDIV_I128] = "__udivti3";
97 Names[RTLIB::SREM_I8] = "__modqi3";
98 Names[RTLIB::SREM_I16] = "__modhi3";
99 Names[RTLIB::SREM_I32] = "__modsi3";
100 Names[RTLIB::SREM_I64] = "__moddi3";
101 Names[RTLIB::SREM_I128] = "__modti3";
102 Names[RTLIB::UREM_I8] = "__umodqi3";
103 Names[RTLIB::UREM_I16] = "__umodhi3";
104 Names[RTLIB::UREM_I32] = "__umodsi3";
105 Names[RTLIB::UREM_I64] = "__umoddi3";
106 Names[RTLIB::UREM_I128] = "__umodti3";
107
108 // These are generally not available.
109 Names[RTLIB::SDIVREM_I8] = 0;
110 Names[RTLIB::SDIVREM_I16] = 0;
111 Names[RTLIB::SDIVREM_I32] = 0;
112 Names[RTLIB::SDIVREM_I64] = 0;
113 Names[RTLIB::SDIVREM_I128] = 0;
114 Names[RTLIB::UDIVREM_I8] = 0;
115 Names[RTLIB::UDIVREM_I16] = 0;
116 Names[RTLIB::UDIVREM_I32] = 0;
117 Names[RTLIB::UDIVREM_I64] = 0;
118 Names[RTLIB::UDIVREM_I128] = 0;
119
120 Names[RTLIB::NEG_I32] = "__negsi2";
121 Names[RTLIB::NEG_I64] = "__negdi2";
122 Names[RTLIB::ADD_F32] = "__addsf3";
123 Names[RTLIB::ADD_F64] = "__adddf3";
124 Names[RTLIB::ADD_F80] = "__addxf3";
125 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
126 Names[RTLIB::SUB_F32] = "__subsf3";
127 Names[RTLIB::SUB_F64] = "__subdf3";
128 Names[RTLIB::SUB_F80] = "__subxf3";
129 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
130 Names[RTLIB::MUL_F32] = "__mulsf3";
131 Names[RTLIB::MUL_F64] = "__muldf3";
132 Names[RTLIB::MUL_F80] = "__mulxf3";
133 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
134 Names[RTLIB::DIV_F32] = "__divsf3";
135 Names[RTLIB::DIV_F64] = "__divdf3";
136 Names[RTLIB::DIV_F80] = "__divxf3";
137 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
138 Names[RTLIB::REM_F32] = "fmodf";
139 Names[RTLIB::REM_F64] = "fmod";
140 Names[RTLIB::REM_F80] = "fmodl";
141 Names[RTLIB::REM_PPCF128] = "fmodl";
142 Names[RTLIB::FMA_F32] = "fmaf";
143 Names[RTLIB::FMA_F64] = "fma";
144 Names[RTLIB::FMA_F80] = "fmal";
145 Names[RTLIB::FMA_PPCF128] = "fmal";
146 Names[RTLIB::POWI_F32] = "__powisf2";
147 Names[RTLIB::POWI_F64] = "__powidf2";
148 Names[RTLIB::POWI_F80] = "__powixf2";
149 Names[RTLIB::POWI_PPCF128] = "__powitf2";
150 Names[RTLIB::SQRT_F32] = "sqrtf";
151 Names[RTLIB::SQRT_F64] = "sqrt";
152 Names[RTLIB::SQRT_F80] = "sqrtl";
153 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
154 Names[RTLIB::LOG_F32] = "logf";
155 Names[RTLIB::LOG_F64] = "log";
156 Names[RTLIB::LOG_F80] = "logl";
157 Names[RTLIB::LOG_PPCF128] = "logl";
158 Names[RTLIB::LOG2_F32] = "log2f";
159 Names[RTLIB::LOG2_F64] = "log2";
160 Names[RTLIB::LOG2_F80] = "log2l";
161 Names[RTLIB::LOG2_PPCF128] = "log2l";
162 Names[RTLIB::LOG10_F32] = "log10f";
163 Names[RTLIB::LOG10_F64] = "log10";
164 Names[RTLIB::LOG10_F80] = "log10l";
165 Names[RTLIB::LOG10_PPCF128] = "log10l";
166 Names[RTLIB::EXP_F32] = "expf";
167 Names[RTLIB::EXP_F64] = "exp";
168 Names[RTLIB::EXP_F80] = "expl";
169 Names[RTLIB::EXP_PPCF128] = "expl";
170 Names[RTLIB::EXP2_F32] = "exp2f";
171 Names[RTLIB::EXP2_F64] = "exp2";
172 Names[RTLIB::EXP2_F80] = "exp2l";
173 Names[RTLIB::EXP2_PPCF128] = "exp2l";
174 Names[RTLIB::SIN_F32] = "sinf";
175 Names[RTLIB::SIN_F64] = "sin";
176 Names[RTLIB::SIN_F80] = "sinl";
177 Names[RTLIB::SIN_PPCF128] = "sinl";
178 Names[RTLIB::COS_F32] = "cosf";
179 Names[RTLIB::COS_F64] = "cos";
180 Names[RTLIB::COS_F80] = "cosl";
181 Names[RTLIB::COS_PPCF128] = "cosl";
182 Names[RTLIB::POW_F32] = "powf";
183 Names[RTLIB::POW_F64] = "pow";
184 Names[RTLIB::POW_F80] = "powl";
185 Names[RTLIB::POW_PPCF128] = "powl";
186 Names[RTLIB::CEIL_F32] = "ceilf";
187 Names[RTLIB::CEIL_F64] = "ceil";
188 Names[RTLIB::CEIL_F80] = "ceill";
189 Names[RTLIB::CEIL_PPCF128] = "ceill";
190 Names[RTLIB::TRUNC_F32] = "truncf";
191 Names[RTLIB::TRUNC_F64] = "trunc";
192 Names[RTLIB::TRUNC_F80] = "truncl";
193 Names[RTLIB::TRUNC_PPCF128] = "truncl";
194 Names[RTLIB::RINT_F32] = "rintf";
195 Names[RTLIB::RINT_F64] = "rint";
196 Names[RTLIB::RINT_F80] = "rintl";
197 Names[RTLIB::RINT_PPCF128] = "rintl";
198 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
199 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
200 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
201 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
202 Names[RTLIB::FLOOR_F32] = "floorf";
203 Names[RTLIB::FLOOR_F64] = "floor";
204 Names[RTLIB::FLOOR_F80] = "floorl";
205 Names[RTLIB::FLOOR_PPCF128] = "floorl";
206 Names[RTLIB::COPYSIGN_F32] = "copysignf";
207 Names[RTLIB::COPYSIGN_F64] = "copysign";
208 Names[RTLIB::COPYSIGN_F80] = "copysignl";
209 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
210 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
211 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
212 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
213 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
214 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
215 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
216 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
217 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
218 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
219 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
220 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
221 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
222 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
223 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
224 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
225 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
226 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
227 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
228 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
229 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
230 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
231 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
232 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
233 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
234 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
235 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
236 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
237 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
238 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
239 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
240 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
241 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
242 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
243 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
244 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
245 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
246 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
247 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
248 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
249 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
250 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
251 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
252 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
253 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
254 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
255 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
256 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
257 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
258 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
259 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
260 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
261 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
262 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
263 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
264 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
265 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
266 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
267 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
268 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
269 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
270 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
271 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
272 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
273 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
274 Names[RTLIB::OEQ_F32] = "__eqsf2";
275 Names[RTLIB::OEQ_F64] = "__eqdf2";
276 Names[RTLIB::UNE_F32] = "__nesf2";
277 Names[RTLIB::UNE_F64] = "__nedf2";
278 Names[RTLIB::OGE_F32] = "__gesf2";
279 Names[RTLIB::OGE_F64] = "__gedf2";
280 Names[RTLIB::OLT_F32] = "__ltsf2";
281 Names[RTLIB::OLT_F64] = "__ltdf2";
282 Names[RTLIB::OLE_F32] = "__lesf2";
283 Names[RTLIB::OLE_F64] = "__ledf2";
284 Names[RTLIB::OGT_F32] = "__gtsf2";
285 Names[RTLIB::OGT_F64] = "__gtdf2";
286 Names[RTLIB::UO_F32] = "__unordsf2";
287 Names[RTLIB::UO_F64] = "__unorddf2";
288 Names[RTLIB::O_F32] = "__unordsf2";
289 Names[RTLIB::O_F64] = "__unorddf2";
290 Names[RTLIB::MEMCPY] = "memcpy";
291 Names[RTLIB::MEMMOVE] = "memmove";
292 Names[RTLIB::MEMSET] = "memset";
293 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
294 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
295 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
296 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
297 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
298 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
299 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
300 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
301 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
302 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
303 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
304 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
305 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
306 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
307 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
308 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
309 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
310 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
311 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
312 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
313 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
314 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
315 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
316 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
317 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
318 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
319 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
320 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
321 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
322 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
323 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
324 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
325 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
326 }
327
328 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
329 ///
InitLibcallCallingConvs(CallingConv::ID * CCs)330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
331 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
332 CCs[i] = CallingConv::C;
333 }
334 }
335
336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
337 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
339 if (OpVT == MVT::f32) {
340 if (RetVT == MVT::f64)
341 return FPEXT_F32_F64;
342 }
343
344 return UNKNOWN_LIBCALL;
345 }
346
347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
348 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
350 if (RetVT == MVT::f32) {
351 if (OpVT == MVT::f64)
352 return FPROUND_F64_F32;
353 if (OpVT == MVT::f80)
354 return FPROUND_F80_F32;
355 if (OpVT == MVT::ppcf128)
356 return FPROUND_PPCF128_F32;
357 } else if (RetVT == MVT::f64) {
358 if (OpVT == MVT::f80)
359 return FPROUND_F80_F64;
360 if (OpVT == MVT::ppcf128)
361 return FPROUND_PPCF128_F64;
362 }
363
364 return UNKNOWN_LIBCALL;
365 }
366
367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
370 if (OpVT == MVT::f32) {
371 if (RetVT == MVT::i8)
372 return FPTOSINT_F32_I8;
373 if (RetVT == MVT::i16)
374 return FPTOSINT_F32_I16;
375 if (RetVT == MVT::i32)
376 return FPTOSINT_F32_I32;
377 if (RetVT == MVT::i64)
378 return FPTOSINT_F32_I64;
379 if (RetVT == MVT::i128)
380 return FPTOSINT_F32_I128;
381 } else if (OpVT == MVT::f64) {
382 if (RetVT == MVT::i8)
383 return FPTOSINT_F64_I8;
384 if (RetVT == MVT::i16)
385 return FPTOSINT_F64_I16;
386 if (RetVT == MVT::i32)
387 return FPTOSINT_F64_I32;
388 if (RetVT == MVT::i64)
389 return FPTOSINT_F64_I64;
390 if (RetVT == MVT::i128)
391 return FPTOSINT_F64_I128;
392 } else if (OpVT == MVT::f80) {
393 if (RetVT == MVT::i32)
394 return FPTOSINT_F80_I32;
395 if (RetVT == MVT::i64)
396 return FPTOSINT_F80_I64;
397 if (RetVT == MVT::i128)
398 return FPTOSINT_F80_I128;
399 } else if (OpVT == MVT::ppcf128) {
400 if (RetVT == MVT::i32)
401 return FPTOSINT_PPCF128_I32;
402 if (RetVT == MVT::i64)
403 return FPTOSINT_PPCF128_I64;
404 if (RetVT == MVT::i128)
405 return FPTOSINT_PPCF128_I128;
406 }
407 return UNKNOWN_LIBCALL;
408 }
409
410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
413 if (OpVT == MVT::f32) {
414 if (RetVT == MVT::i8)
415 return FPTOUINT_F32_I8;
416 if (RetVT == MVT::i16)
417 return FPTOUINT_F32_I16;
418 if (RetVT == MVT::i32)
419 return FPTOUINT_F32_I32;
420 if (RetVT == MVT::i64)
421 return FPTOUINT_F32_I64;
422 if (RetVT == MVT::i128)
423 return FPTOUINT_F32_I128;
424 } else if (OpVT == MVT::f64) {
425 if (RetVT == MVT::i8)
426 return FPTOUINT_F64_I8;
427 if (RetVT == MVT::i16)
428 return FPTOUINT_F64_I16;
429 if (RetVT == MVT::i32)
430 return FPTOUINT_F64_I32;
431 if (RetVT == MVT::i64)
432 return FPTOUINT_F64_I64;
433 if (RetVT == MVT::i128)
434 return FPTOUINT_F64_I128;
435 } else if (OpVT == MVT::f80) {
436 if (RetVT == MVT::i32)
437 return FPTOUINT_F80_I32;
438 if (RetVT == MVT::i64)
439 return FPTOUINT_F80_I64;
440 if (RetVT == MVT::i128)
441 return FPTOUINT_F80_I128;
442 } else if (OpVT == MVT::ppcf128) {
443 if (RetVT == MVT::i32)
444 return FPTOUINT_PPCF128_I32;
445 if (RetVT == MVT::i64)
446 return FPTOUINT_PPCF128_I64;
447 if (RetVT == MVT::i128)
448 return FPTOUINT_PPCF128_I128;
449 }
450 return UNKNOWN_LIBCALL;
451 }
452
453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
454 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
456 if (OpVT == MVT::i32) {
457 if (RetVT == MVT::f32)
458 return SINTTOFP_I32_F32;
459 else if (RetVT == MVT::f64)
460 return SINTTOFP_I32_F64;
461 else if (RetVT == MVT::f80)
462 return SINTTOFP_I32_F80;
463 else if (RetVT == MVT::ppcf128)
464 return SINTTOFP_I32_PPCF128;
465 } else if (OpVT == MVT::i64) {
466 if (RetVT == MVT::f32)
467 return SINTTOFP_I64_F32;
468 else if (RetVT == MVT::f64)
469 return SINTTOFP_I64_F64;
470 else if (RetVT == MVT::f80)
471 return SINTTOFP_I64_F80;
472 else if (RetVT == MVT::ppcf128)
473 return SINTTOFP_I64_PPCF128;
474 } else if (OpVT == MVT::i128) {
475 if (RetVT == MVT::f32)
476 return SINTTOFP_I128_F32;
477 else if (RetVT == MVT::f64)
478 return SINTTOFP_I128_F64;
479 else if (RetVT == MVT::f80)
480 return SINTTOFP_I128_F80;
481 else if (RetVT == MVT::ppcf128)
482 return SINTTOFP_I128_PPCF128;
483 }
484 return UNKNOWN_LIBCALL;
485 }
486
487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
488 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
490 if (OpVT == MVT::i32) {
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I32_F32;
493 else if (RetVT == MVT::f64)
494 return UINTTOFP_I32_F64;
495 else if (RetVT == MVT::f80)
496 return UINTTOFP_I32_F80;
497 else if (RetVT == MVT::ppcf128)
498 return UINTTOFP_I32_PPCF128;
499 } else if (OpVT == MVT::i64) {
500 if (RetVT == MVT::f32)
501 return UINTTOFP_I64_F32;
502 else if (RetVT == MVT::f64)
503 return UINTTOFP_I64_F64;
504 else if (RetVT == MVT::f80)
505 return UINTTOFP_I64_F80;
506 else if (RetVT == MVT::ppcf128)
507 return UINTTOFP_I64_PPCF128;
508 } else if (OpVT == MVT::i128) {
509 if (RetVT == MVT::f32)
510 return UINTTOFP_I128_F32;
511 else if (RetVT == MVT::f64)
512 return UINTTOFP_I128_F64;
513 else if (RetVT == MVT::f80)
514 return UINTTOFP_I128_F80;
515 else if (RetVT == MVT::ppcf128)
516 return UINTTOFP_I128_PPCF128;
517 }
518 return UNKNOWN_LIBCALL;
519 }
520
521 /// InitCmpLibcallCCs - Set default comparison libcall CC.
522 ///
InitCmpLibcallCCs(ISD::CondCode * CCs)523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527 CCs[RTLIB::UNE_F32] = ISD::SETNE;
528 CCs[RTLIB::UNE_F64] = ISD::SETNE;
529 CCs[RTLIB::OGE_F32] = ISD::SETGE;
530 CCs[RTLIB::OGE_F64] = ISD::SETGE;
531 CCs[RTLIB::OLT_F32] = ISD::SETLT;
532 CCs[RTLIB::OLT_F64] = ISD::SETLT;
533 CCs[RTLIB::OLE_F32] = ISD::SETLE;
534 CCs[RTLIB::OLE_F64] = ISD::SETLE;
535 CCs[RTLIB::OGT_F32] = ISD::SETGT;
536 CCs[RTLIB::OGT_F64] = ISD::SETGT;
537 CCs[RTLIB::UO_F32] = ISD::SETNE;
538 CCs[RTLIB::UO_F64] = ISD::SETNE;
539 CCs[RTLIB::O_F32] = ISD::SETEQ;
540 CCs[RTLIB::O_F64] = ISD::SETEQ;
541 }
542
543 /// NOTE: The constructor takes ownership of TLOF.
TargetLowering(const TargetMachine & tm,const TargetLoweringObjectFile * tlof)544 TargetLowering::TargetLowering(const TargetMachine &tm,
545 const TargetLoweringObjectFile *tlof)
546 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
547 mayPromoteElements(AllowPromoteIntElem) {
548 // All operations default to being supported.
549 memset(OpActions, 0, sizeof(OpActions));
550 memset(LoadExtActions, 0, sizeof(LoadExtActions));
551 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
552 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
553 memset(CondCodeActions, 0, sizeof(CondCodeActions));
554
555 // Set default actions for various operations.
556 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
557 // Default all indexed load / store to expand.
558 for (unsigned IM = (unsigned)ISD::PRE_INC;
559 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
560 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
561 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
562 }
563
564 // These operations default to expand.
565 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
567 }
568
569 // Most targets ignore the @llvm.prefetch intrinsic.
570 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
571
572 // ConstantFP nodes default to expand. Targets can either change this to
573 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
574 // to optimize expansions for certain constants.
575 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
576 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
577 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
578
579 // These library functions default to expand.
580 setOperationAction(ISD::FLOG , MVT::f64, Expand);
581 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
582 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
583 setOperationAction(ISD::FEXP , MVT::f64, Expand);
584 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
585 setOperationAction(ISD::FLOG , MVT::f32, Expand);
586 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
587 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
588 setOperationAction(ISD::FEXP , MVT::f32, Expand);
589 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
590
591 // Default ISD::TRAP to expand (which turns it into abort).
592 setOperationAction(ISD::TRAP, MVT::Other, Expand);
593
594 IsLittleEndian = TD->isLittleEndian();
595 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
596 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
597 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
598 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
599 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
600 = maxStoresPerMemmoveOptSize = 4;
601 benefitFromCodePlacementOpt = false;
602 UseUnderscoreSetJmp = false;
603 UseUnderscoreLongJmp = false;
604 SelectIsExpensive = false;
605 IntDivIsCheap = false;
606 Pow2DivIsCheap = false;
607 JumpIsExpensive = false;
608 StackPointerRegisterToSaveRestore = 0;
609 ExceptionPointerRegister = 0;
610 ExceptionSelectorRegister = 0;
611 BooleanContents = UndefinedBooleanContent;
612 BooleanVectorContents = UndefinedBooleanContent;
613 SchedPreferenceInfo = Sched::Latency;
614 JumpBufSize = 0;
615 JumpBufAlignment = 0;
616 MinFunctionAlignment = 0;
617 PrefFunctionAlignment = 0;
618 PrefLoopAlignment = 0;
619 MinStackArgumentAlignment = 1;
620 ShouldFoldAtomicFences = false;
621 InsertFencesForAtomic = false;
622
623 InitLibcallNames(LibcallRoutineNames);
624 InitCmpLibcallCCs(CmpLibcallCCs);
625 InitLibcallCallingConvs(LibcallCallingConvs);
626 }
627
~TargetLowering()628 TargetLowering::~TargetLowering() {
629 delete &TLOF;
630 }
631
getShiftAmountTy(EVT LHSTy) const632 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
633 return MVT::getIntegerVT(8*TD->getPointerSize());
634 }
635
636 /// canOpTrap - Returns true if the operation can trap for the value type.
637 /// VT must be a legal type.
canOpTrap(unsigned Op,EVT VT) const638 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
639 assert(isTypeLegal(VT));
640 switch (Op) {
641 default:
642 return false;
643 case ISD::FDIV:
644 case ISD::FREM:
645 case ISD::SDIV:
646 case ISD::UDIV:
647 case ISD::SREM:
648 case ISD::UREM:
649 return true;
650 }
651 }
652
653
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT,TargetLowering * TLI)654 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
655 unsigned &NumIntermediates,
656 EVT &RegisterVT,
657 TargetLowering *TLI) {
658 // Figure out the right, legal destination reg to copy into.
659 unsigned NumElts = VT.getVectorNumElements();
660 MVT EltTy = VT.getVectorElementType();
661
662 unsigned NumVectorRegs = 1;
663
664 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
665 // could break down into LHS/RHS like LegalizeDAG does.
666 if (!isPowerOf2_32(NumElts)) {
667 NumVectorRegs = NumElts;
668 NumElts = 1;
669 }
670
671 // Divide the input until we get to a supported size. This will always
672 // end with a scalar if the target doesn't support vectors.
673 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
674 NumElts >>= 1;
675 NumVectorRegs <<= 1;
676 }
677
678 NumIntermediates = NumVectorRegs;
679
680 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
681 if (!TLI->isTypeLegal(NewVT))
682 NewVT = EltTy;
683 IntermediateVT = NewVT;
684
685 unsigned NewVTSize = NewVT.getSizeInBits();
686
687 // Convert sizes such as i33 to i64.
688 if (!isPowerOf2_32(NewVTSize))
689 NewVTSize = NextPowerOf2(NewVTSize);
690
691 EVT DestVT = TLI->getRegisterType(NewVT);
692 RegisterVT = DestVT;
693 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
694 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
695
696 // Otherwise, promotion or legal types use the same number of registers as
697 // the vector decimated to the appropriate level.
698 return NumVectorRegs;
699 }
700
701 /// isLegalRC - Return true if the value types that can be represented by the
702 /// specified register class are all legal.
isLegalRC(const TargetRegisterClass * RC) const703 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
704 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
705 I != E; ++I) {
706 if (isTypeLegal(*I))
707 return true;
708 }
709 return false;
710 }
711
712 /// hasLegalSuperRegRegClasses - Return true if the specified register class
713 /// has one or more super-reg register classes that are legal.
714 bool
hasLegalSuperRegRegClasses(const TargetRegisterClass * RC) const715 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
716 if (*RC->superregclasses_begin() == 0)
717 return false;
718 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
719 E = RC->superregclasses_end(); I != E; ++I) {
720 const TargetRegisterClass *RRC = *I;
721 if (isLegalRC(RRC))
722 return true;
723 }
724 return false;
725 }
726
727 /// findRepresentativeClass - Return the largest legal super-reg register class
728 /// of the register class for the specified type and its associated "cost".
729 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const730 TargetLowering::findRepresentativeClass(EVT VT) const {
731 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
732 if (!RC)
733 return std::make_pair(RC, 0);
734 const TargetRegisterClass *BestRC = RC;
735 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
736 E = RC->superregclasses_end(); I != E; ++I) {
737 const TargetRegisterClass *RRC = *I;
738 if (RRC->isASubClass() || !isLegalRC(RRC))
739 continue;
740 if (!hasLegalSuperRegRegClasses(RRC))
741 return std::make_pair(RRC, 1);
742 BestRC = RRC;
743 }
744 return std::make_pair(BestRC, 1);
745 }
746
747
748 /// computeRegisterProperties - Once all of the register classes are added,
749 /// this allows us to compute derived properties we expose.
computeRegisterProperties()750 void TargetLowering::computeRegisterProperties() {
751 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
752 "Too many value types for ValueTypeActions to hold!");
753
754 // Everything defaults to needing one register.
755 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
756 NumRegistersForVT[i] = 1;
757 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
758 }
759 // ...except isVoid, which doesn't need any registers.
760 NumRegistersForVT[MVT::isVoid] = 0;
761
762 // Find the largest integer register class.
763 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
764 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
765 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
766
767 // Every integer value type larger than this largest register takes twice as
768 // many registers to represent as the previous ValueType.
769 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
770 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
771 if (!ExpandedVT.isInteger())
772 break;
773 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
774 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
775 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
776 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
777 }
778
779 // Inspect all of the ValueType's smaller than the largest integer
780 // register to see which ones need promotion.
781 unsigned LegalIntReg = LargestIntReg;
782 for (unsigned IntReg = LargestIntReg - 1;
783 IntReg >= (unsigned)MVT::i1; --IntReg) {
784 EVT IVT = (MVT::SimpleValueType)IntReg;
785 if (isTypeLegal(IVT)) {
786 LegalIntReg = IntReg;
787 } else {
788 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
789 (MVT::SimpleValueType)LegalIntReg;
790 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
791 }
792 }
793
794 // ppcf128 type is really two f64's.
795 if (!isTypeLegal(MVT::ppcf128)) {
796 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
797 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
798 TransformToType[MVT::ppcf128] = MVT::f64;
799 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
800 }
801
802 // Decide how to handle f64. If the target does not have native f64 support,
803 // expand it to i64 and we will be generating soft float library calls.
804 if (!isTypeLegal(MVT::f64)) {
805 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
806 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
807 TransformToType[MVT::f64] = MVT::i64;
808 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
809 }
810
811 // Decide how to handle f32. If the target does not have native support for
812 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
813 if (!isTypeLegal(MVT::f32)) {
814 if (isTypeLegal(MVT::f64)) {
815 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
816 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
817 TransformToType[MVT::f32] = MVT::f64;
818 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
819 } else {
820 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
821 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
822 TransformToType[MVT::f32] = MVT::i32;
823 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
824 }
825 }
826
827 // Loop over all of the vector value types to see which need transformations.
828 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
829 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
830 MVT VT = (MVT::SimpleValueType)i;
831 if (isTypeLegal(VT)) continue;
832
833 // Determine if there is a legal wider type. If so, we should promote to
834 // that wider vector type.
835 EVT EltVT = VT.getVectorElementType();
836 unsigned NElts = VT.getVectorNumElements();
837 if (NElts != 1) {
838 bool IsLegalWiderType = false;
839 // If we allow the promotion of vector elements using a flag,
840 // then return TypePromoteInteger on vector elements.
841 // First try to promote the elements of integer vectors. If no legal
842 // promotion was found, fallback to the widen-vector method.
843 if (mayPromoteElements)
844 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
845 EVT SVT = (MVT::SimpleValueType)nVT;
846 // Promote vectors of integers to vectors with the same number
847 // of elements, with a wider element type.
848 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
849 && SVT.getVectorNumElements() == NElts &&
850 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
851 TransformToType[i] = SVT;
852 RegisterTypeForVT[i] = SVT;
853 NumRegistersForVT[i] = 1;
854 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
855 IsLegalWiderType = true;
856 break;
857 }
858 }
859
860 if (IsLegalWiderType) continue;
861
862 // Try to widen the vector.
863 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
864 EVT SVT = (MVT::SimpleValueType)nVT;
865 if (SVT.getVectorElementType() == EltVT &&
866 SVT.getVectorNumElements() > NElts &&
867 isTypeLegal(SVT)) {
868 TransformToType[i] = SVT;
869 RegisterTypeForVT[i] = SVT;
870 NumRegistersForVT[i] = 1;
871 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
872 IsLegalWiderType = true;
873 break;
874 }
875 }
876 if (IsLegalWiderType) continue;
877 }
878
879 MVT IntermediateVT;
880 EVT RegisterVT;
881 unsigned NumIntermediates;
882 NumRegistersForVT[i] =
883 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
884 RegisterVT, this);
885 RegisterTypeForVT[i] = RegisterVT;
886
887 EVT NVT = VT.getPow2VectorType();
888 if (NVT == VT) {
889 // Type is already a power of 2. The default action is to split.
890 TransformToType[i] = MVT::Other;
891 unsigned NumElts = VT.getVectorNumElements();
892 ValueTypeActions.setTypeAction(VT,
893 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
894 } else {
895 TransformToType[i] = NVT;
896 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
897 }
898 }
899
900 // Determine the 'representative' register class for each value type.
901 // An representative register class is the largest (meaning one which is
902 // not a sub-register class / subreg register class) legal register class for
903 // a group of value types. For example, on i386, i8, i16, and i32
904 // representative would be GR32; while on x86_64 it's GR64.
905 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
906 const TargetRegisterClass* RRC;
907 uint8_t Cost;
908 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
909 RepRegClassForVT[i] = RRC;
910 RepRegClassCostForVT[i] = Cost;
911 }
912 }
913
getTargetNodeName(unsigned Opcode) const914 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
915 return NULL;
916 }
917
918
getSetCCResultType(EVT VT) const919 EVT TargetLowering::getSetCCResultType(EVT VT) const {
920 assert(!VT.isVector() && "No default SetCC type for vectors!");
921 return PointerTy.SimpleTy;
922 }
923
getCmpLibcallReturnType() const924 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
925 return MVT::i32; // return the default value
926 }
927
928 /// getVectorTypeBreakdown - Vector types are broken down into some number of
929 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
930 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
931 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
932 ///
933 /// This method returns the number of registers needed, and the VT for each
934 /// register. It also returns the VT and quantity of the intermediate values
935 /// before they are promoted/expanded.
936 ///
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT) const937 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
938 EVT &IntermediateVT,
939 unsigned &NumIntermediates,
940 EVT &RegisterVT) const {
941 unsigned NumElts = VT.getVectorNumElements();
942
943 // If there is a wider vector type with the same element type as this one,
944 // we should widen to that legal vector type. This handles things like
945 // <2 x float> -> <4 x float>.
946 if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
947 RegisterVT = getTypeToTransformTo(Context, VT);
948 if (isTypeLegal(RegisterVT)) {
949 IntermediateVT = RegisterVT;
950 NumIntermediates = 1;
951 return 1;
952 }
953 }
954
955 // Figure out the right, legal destination reg to copy into.
956 EVT EltTy = VT.getVectorElementType();
957
958 unsigned NumVectorRegs = 1;
959
960 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
961 // could break down into LHS/RHS like LegalizeDAG does.
962 if (!isPowerOf2_32(NumElts)) {
963 NumVectorRegs = NumElts;
964 NumElts = 1;
965 }
966
967 // Divide the input until we get to a supported size. This will always
968 // end with a scalar if the target doesn't support vectors.
969 while (NumElts > 1 && !isTypeLegal(
970 EVT::getVectorVT(Context, EltTy, NumElts))) {
971 NumElts >>= 1;
972 NumVectorRegs <<= 1;
973 }
974
975 NumIntermediates = NumVectorRegs;
976
977 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
978 if (!isTypeLegal(NewVT))
979 NewVT = EltTy;
980 IntermediateVT = NewVT;
981
982 EVT DestVT = getRegisterType(Context, NewVT);
983 RegisterVT = DestVT;
984 unsigned NewVTSize = NewVT.getSizeInBits();
985
986 // Convert sizes such as i33 to i64.
987 if (!isPowerOf2_32(NewVTSize))
988 NewVTSize = NextPowerOf2(NewVTSize);
989
990 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
991 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
992
993 // Otherwise, promotion or legal types use the same number of registers as
994 // the vector decimated to the appropriate level.
995 return NumVectorRegs;
996 }
997
998 /// Get the EVTs and ArgFlags collections that represent the legalized return
999 /// type of the given function. This does not require a DAG or a return value,
1000 /// and is suitable for use before any DAGs for the function are constructed.
1001 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(Type * ReturnType,Attributes attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,SmallVectorImpl<uint64_t> * Offsets)1002 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
1003 SmallVectorImpl<ISD::OutputArg> &Outs,
1004 const TargetLowering &TLI,
1005 SmallVectorImpl<uint64_t> *Offsets) {
1006 SmallVector<EVT, 4> ValueVTs;
1007 ComputeValueVTs(TLI, ReturnType, ValueVTs);
1008 unsigned NumValues = ValueVTs.size();
1009 if (NumValues == 0) return;
1010 unsigned Offset = 0;
1011
1012 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1013 EVT VT = ValueVTs[j];
1014 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1015
1016 if (attr & Attribute::SExt)
1017 ExtendKind = ISD::SIGN_EXTEND;
1018 else if (attr & Attribute::ZExt)
1019 ExtendKind = ISD::ZERO_EXTEND;
1020
1021 // FIXME: C calling convention requires the return type to be promoted to
1022 // at least 32-bit. But this is not necessary for non-C calling
1023 // conventions. The frontend should mark functions whose return values
1024 // require promoting with signext or zeroext attributes.
1025 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1026 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1027 if (VT.bitsLT(MinVT))
1028 VT = MinVT;
1029 }
1030
1031 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1032 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1033 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1034 PartVT.getTypeForEVT(ReturnType->getContext()));
1035
1036 // 'inreg' on function refers to return value
1037 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1038 if (attr & Attribute::InReg)
1039 Flags.setInReg();
1040
1041 // Propagate extension type if any
1042 if (attr & Attribute::SExt)
1043 Flags.setSExt();
1044 else if (attr & Attribute::ZExt)
1045 Flags.setZExt();
1046
1047 for (unsigned i = 0; i < NumParts; ++i) {
1048 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1049 if (Offsets) {
1050 Offsets->push_back(Offset);
1051 Offset += PartSize;
1052 }
1053 }
1054 }
1055 }
1056
1057 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1058 /// function arguments in the caller parameter area. This is the actual
1059 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty) const1060 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1061 return TD->getCallFrameTypeAlignment(Ty);
1062 }
1063
1064 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1065 /// current function. The returned value is a member of the
1066 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const1067 unsigned TargetLowering::getJumpTableEncoding() const {
1068 // In non-pic modes, just use the address of a block.
1069 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1070 return MachineJumpTableInfo::EK_BlockAddress;
1071
1072 // In PIC mode, if the target supports a GPRel32 directive, use it.
1073 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1074 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1075
1076 // Otherwise, use a label difference.
1077 return MachineJumpTableInfo::EK_LabelDifference32;
1078 }
1079
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const1080 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1081 SelectionDAG &DAG) const {
1082 // If our PIC model is GP relative, use the global offset table as the base.
1083 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1084 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1085 return Table;
1086 }
1087
1088 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1089 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1090 /// MCExpr.
1091 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const1092 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1093 unsigned JTI,MCContext &Ctx) const{
1094 // The normal PIC reloc base is the label at the start of the jump table.
1095 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1096 }
1097
1098 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1099 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1100 // Assume that everything is safe in static mode.
1101 if (getTargetMachine().getRelocationModel() == Reloc::Static)
1102 return true;
1103
1104 // In dynamic-no-pic mode, assume that known defined values are safe.
1105 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1106 GA &&
1107 !GA->getGlobal()->isDeclaration() &&
1108 !GA->getGlobal()->isWeakForLinker())
1109 return true;
1110
1111 // Otherwise assume nothing is safe.
1112 return false;
1113 }
1114
1115 //===----------------------------------------------------------------------===//
1116 // Optimization Methods
1117 //===----------------------------------------------------------------------===//
1118
1119 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1120 /// specified instruction is a constant integer. If so, check to see if there
1121 /// are any bits set in the constant that are not demanded. If so, shrink the
1122 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)1123 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1124 const APInt &Demanded) {
1125 DebugLoc dl = Op.getDebugLoc();
1126
1127 // FIXME: ISD::SELECT, ISD::SELECT_CC
1128 switch (Op.getOpcode()) {
1129 default: break;
1130 case ISD::XOR:
1131 case ISD::AND:
1132 case ISD::OR: {
1133 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1134 if (!C) return false;
1135
1136 if (Op.getOpcode() == ISD::XOR &&
1137 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1138 return false;
1139
1140 // if we can expand it to have all bits set, do it
1141 if (C->getAPIntValue().intersects(~Demanded)) {
1142 EVT VT = Op.getValueType();
1143 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1144 DAG.getConstant(Demanded &
1145 C->getAPIntValue(),
1146 VT));
1147 return CombineTo(Op, New);
1148 }
1149
1150 break;
1151 }
1152 }
1153
1154 return false;
1155 }
1156
1157 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1158 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1159 /// cast, but it could be generalized for targets with other types of
1160 /// implicit widening casts.
1161 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,DebugLoc dl)1162 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1163 unsigned BitWidth,
1164 const APInt &Demanded,
1165 DebugLoc dl) {
1166 assert(Op.getNumOperands() == 2 &&
1167 "ShrinkDemandedOp only supports binary operators!");
1168 assert(Op.getNode()->getNumValues() == 1 &&
1169 "ShrinkDemandedOp only supports nodes with one result!");
1170
1171 // Don't do this if the node has another user, which may require the
1172 // full value.
1173 if (!Op.getNode()->hasOneUse())
1174 return false;
1175
1176 // Search for the smallest integer type with free casts to and from
1177 // Op's type. For expedience, just check power-of-2 integer types.
1178 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1179 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1180 if (!isPowerOf2_32(SmallVTBits))
1181 SmallVTBits = NextPowerOf2(SmallVTBits);
1182 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1183 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1184 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1185 TLI.isZExtFree(SmallVT, Op.getValueType())) {
1186 // We found a type with free casts.
1187 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1188 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1189 Op.getNode()->getOperand(0)),
1190 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1191 Op.getNode()->getOperand(1)));
1192 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1193 return CombineTo(Op, Z);
1194 }
1195 }
1196 return false;
1197 }
1198
1199 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1200 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1201 /// use this information to simplify Op, create a new simplified DAG node and
1202 /// return true, returning the original and new nodes in Old and New. Otherwise,
1203 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1204 /// the expression (used to simplify the caller). The KnownZero/One bits may
1205 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const1206 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1207 const APInt &DemandedMask,
1208 APInt &KnownZero,
1209 APInt &KnownOne,
1210 TargetLoweringOpt &TLO,
1211 unsigned Depth) const {
1212 unsigned BitWidth = DemandedMask.getBitWidth();
1213 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1214 "Mask size mismatches value type size!");
1215 APInt NewMask = DemandedMask;
1216 DebugLoc dl = Op.getDebugLoc();
1217
1218 // Don't know anything.
1219 KnownZero = KnownOne = APInt(BitWidth, 0);
1220
1221 // Other users may use these bits.
1222 if (!Op.getNode()->hasOneUse()) {
1223 if (Depth != 0) {
1224 // If not at the root, Just compute the KnownZero/KnownOne bits to
1225 // simplify things downstream.
1226 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1227 return false;
1228 }
1229 // If this is the root being simplified, allow it to have multiple uses,
1230 // just set the NewMask to all bits.
1231 NewMask = APInt::getAllOnesValue(BitWidth);
1232 } else if (DemandedMask == 0) {
1233 // Not demanding any bits from Op.
1234 if (Op.getOpcode() != ISD::UNDEF)
1235 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1236 return false;
1237 } else if (Depth == 6) { // Limit search depth.
1238 return false;
1239 }
1240
1241 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1242 switch (Op.getOpcode()) {
1243 case ISD::Constant:
1244 // We know all of the bits for a constant!
1245 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1246 KnownZero = ~KnownOne & NewMask;
1247 return false; // Don't fall through, will infinitely loop.
1248 case ISD::AND:
1249 // If the RHS is a constant, check to see if the LHS would be zero without
1250 // using the bits from the RHS. Below, we use knowledge about the RHS to
1251 // simplify the LHS, here we're using information from the LHS to simplify
1252 // the RHS.
1253 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1254 APInt LHSZero, LHSOne;
1255 // Do not increment Depth here; that can cause an infinite loop.
1256 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1257 LHSZero, LHSOne, Depth);
1258 // If the LHS already has zeros where RHSC does, this and is dead.
1259 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1260 return TLO.CombineTo(Op, Op.getOperand(0));
1261 // If any of the set bits in the RHS are known zero on the LHS, shrink
1262 // the constant.
1263 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1264 return true;
1265 }
1266
1267 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1268 KnownOne, TLO, Depth+1))
1269 return true;
1270 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1271 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1272 KnownZero2, KnownOne2, TLO, Depth+1))
1273 return true;
1274 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1275
1276 // If all of the demanded bits are known one on one side, return the other.
1277 // These bits cannot contribute to the result of the 'and'.
1278 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1279 return TLO.CombineTo(Op, Op.getOperand(0));
1280 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1281 return TLO.CombineTo(Op, Op.getOperand(1));
1282 // If all of the demanded bits in the inputs are known zeros, return zero.
1283 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1284 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1285 // If the RHS is a constant, see if we can simplify it.
1286 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1287 return true;
1288 // If the operation can be done in a smaller type, do so.
1289 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1290 return true;
1291
1292 // Output known-1 bits are only known if set in both the LHS & RHS.
1293 KnownOne &= KnownOne2;
1294 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1295 KnownZero |= KnownZero2;
1296 break;
1297 case ISD::OR:
1298 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1299 KnownOne, TLO, Depth+1))
1300 return true;
1301 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1302 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1303 KnownZero2, KnownOne2, TLO, Depth+1))
1304 return true;
1305 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1306
1307 // If all of the demanded bits are known zero on one side, return the other.
1308 // These bits cannot contribute to the result of the 'or'.
1309 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1310 return TLO.CombineTo(Op, Op.getOperand(0));
1311 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1312 return TLO.CombineTo(Op, Op.getOperand(1));
1313 // If all of the potentially set bits on one side are known to be set on
1314 // the other side, just use the 'other' side.
1315 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1316 return TLO.CombineTo(Op, Op.getOperand(0));
1317 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1318 return TLO.CombineTo(Op, Op.getOperand(1));
1319 // If the RHS is a constant, see if we can simplify it.
1320 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1321 return true;
1322 // If the operation can be done in a smaller type, do so.
1323 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1324 return true;
1325
1326 // Output known-0 bits are only known if clear in both the LHS & RHS.
1327 KnownZero &= KnownZero2;
1328 // Output known-1 are known to be set if set in either the LHS | RHS.
1329 KnownOne |= KnownOne2;
1330 break;
1331 case ISD::XOR:
1332 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1333 KnownOne, TLO, Depth+1))
1334 return true;
1335 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1337 KnownOne2, TLO, Depth+1))
1338 return true;
1339 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1340
1341 // If all of the demanded bits are known zero on one side, return the other.
1342 // These bits cannot contribute to the result of the 'xor'.
1343 if ((KnownZero & NewMask) == NewMask)
1344 return TLO.CombineTo(Op, Op.getOperand(0));
1345 if ((KnownZero2 & NewMask) == NewMask)
1346 return TLO.CombineTo(Op, Op.getOperand(1));
1347 // If the operation can be done in a smaller type, do so.
1348 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1349 return true;
1350
1351 // If all of the unknown bits are known to be zero on one side or the other
1352 // (but not both) turn this into an *inclusive* or.
1353 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1354 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1355 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1356 Op.getOperand(0),
1357 Op.getOperand(1)));
1358
1359 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1360 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1361 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1362 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1363
1364 // If all of the demanded bits on one side are known, and all of the set
1365 // bits on that side are also known to be set on the other side, turn this
1366 // into an AND, as we know the bits will be cleared.
1367 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1368 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1369 if ((KnownOne & KnownOne2) == KnownOne) {
1370 EVT VT = Op.getValueType();
1371 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1372 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1373 Op.getOperand(0), ANDC));
1374 }
1375 }
1376
1377 // If the RHS is a constant, see if we can simplify it.
1378 // for XOR, we prefer to force bits to 1 if they will make a -1.
1379 // if we can't force bits, try to shrink constant
1380 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1381 APInt Expanded = C->getAPIntValue() | (~NewMask);
1382 // if we can expand it to have all bits set, do it
1383 if (Expanded.isAllOnesValue()) {
1384 if (Expanded != C->getAPIntValue()) {
1385 EVT VT = Op.getValueType();
1386 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1387 TLO.DAG.getConstant(Expanded, VT));
1388 return TLO.CombineTo(Op, New);
1389 }
1390 // if it already has all the bits set, nothing to change
1391 // but don't shrink either!
1392 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1393 return true;
1394 }
1395 }
1396
1397 KnownZero = KnownZeroOut;
1398 KnownOne = KnownOneOut;
1399 break;
1400 case ISD::SELECT:
1401 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1402 KnownOne, TLO, Depth+1))
1403 return true;
1404 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1405 KnownOne2, TLO, Depth+1))
1406 return true;
1407 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410 // If the operands are constants, see if we can simplify them.
1411 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1412 return true;
1413
1414 // Only known if known in both the LHS and RHS.
1415 KnownOne &= KnownOne2;
1416 KnownZero &= KnownZero2;
1417 break;
1418 case ISD::SELECT_CC:
1419 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1420 KnownOne, TLO, Depth+1))
1421 return true;
1422 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1423 KnownOne2, TLO, Depth+1))
1424 return true;
1425 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1426 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1427
1428 // If the operands are constants, see if we can simplify them.
1429 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1430 return true;
1431
1432 // Only known if known in both the LHS and RHS.
1433 KnownOne &= KnownOne2;
1434 KnownZero &= KnownZero2;
1435 break;
1436 case ISD::SHL:
1437 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1438 unsigned ShAmt = SA->getZExtValue();
1439 SDValue InOp = Op.getOperand(0);
1440
1441 // If the shift count is an invalid immediate, don't do anything.
1442 if (ShAmt >= BitWidth)
1443 break;
1444
1445 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1446 // single shift. We can do this if the bottom bits (which are shifted
1447 // out) are never demanded.
1448 if (InOp.getOpcode() == ISD::SRL &&
1449 isa<ConstantSDNode>(InOp.getOperand(1))) {
1450 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1451 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1452 unsigned Opc = ISD::SHL;
1453 int Diff = ShAmt-C1;
1454 if (Diff < 0) {
1455 Diff = -Diff;
1456 Opc = ISD::SRL;
1457 }
1458
1459 SDValue NewSA =
1460 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1461 EVT VT = Op.getValueType();
1462 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1463 InOp.getOperand(0), NewSA));
1464 }
1465 }
1466
1467 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1468 KnownZero, KnownOne, TLO, Depth+1))
1469 return true;
1470
1471 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1472 // are not demanded. This will likely allow the anyext to be folded away.
1473 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1474 SDValue InnerOp = InOp.getNode()->getOperand(0);
1475 EVT InnerVT = InnerOp.getValueType();
1476 if ((APInt::getHighBitsSet(BitWidth,
1477 BitWidth - InnerVT.getSizeInBits()) &
1478 DemandedMask) == 0 &&
1479 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1480 EVT ShTy = getShiftAmountTy(InnerVT);
1481 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1482 ShTy = InnerVT;
1483 SDValue NarrowShl =
1484 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1485 TLO.DAG.getConstant(ShAmt, ShTy));
1486 return
1487 TLO.CombineTo(Op,
1488 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1489 NarrowShl));
1490 }
1491 }
1492
1493 KnownZero <<= SA->getZExtValue();
1494 KnownOne <<= SA->getZExtValue();
1495 // low bits known zero.
1496 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1497 }
1498 break;
1499 case ISD::SRL:
1500 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1501 EVT VT = Op.getValueType();
1502 unsigned ShAmt = SA->getZExtValue();
1503 unsigned VTSize = VT.getSizeInBits();
1504 SDValue InOp = Op.getOperand(0);
1505
1506 // If the shift count is an invalid immediate, don't do anything.
1507 if (ShAmt >= BitWidth)
1508 break;
1509
1510 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1511 // single shift. We can do this if the top bits (which are shifted out)
1512 // are never demanded.
1513 if (InOp.getOpcode() == ISD::SHL &&
1514 isa<ConstantSDNode>(InOp.getOperand(1))) {
1515 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1516 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1517 unsigned Opc = ISD::SRL;
1518 int Diff = ShAmt-C1;
1519 if (Diff < 0) {
1520 Diff = -Diff;
1521 Opc = ISD::SHL;
1522 }
1523
1524 SDValue NewSA =
1525 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1526 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1527 InOp.getOperand(0), NewSA));
1528 }
1529 }
1530
1531 // Compute the new bits that are at the top now.
1532 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1533 KnownZero, KnownOne, TLO, Depth+1))
1534 return true;
1535 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1536 KnownZero = KnownZero.lshr(ShAmt);
1537 KnownOne = KnownOne.lshr(ShAmt);
1538
1539 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1540 KnownZero |= HighBits; // High bits known zero.
1541 }
1542 break;
1543 case ISD::SRA:
1544 // If this is an arithmetic shift right and only the low-bit is set, we can
1545 // always convert this into a logical shr, even if the shift amount is
1546 // variable. The low bit of the shift cannot be an input sign bit unless
1547 // the shift amount is >= the size of the datatype, which is undefined.
1548 if (DemandedMask == 1)
1549 return TLO.CombineTo(Op,
1550 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1551 Op.getOperand(0), Op.getOperand(1)));
1552
1553 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1554 EVT VT = Op.getValueType();
1555 unsigned ShAmt = SA->getZExtValue();
1556
1557 // If the shift count is an invalid immediate, don't do anything.
1558 if (ShAmt >= BitWidth)
1559 break;
1560
1561 APInt InDemandedMask = (NewMask << ShAmt);
1562
1563 // If any of the demanded bits are produced by the sign extension, we also
1564 // demand the input sign bit.
1565 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1566 if (HighBits.intersects(NewMask))
1567 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1568
1569 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1570 KnownZero, KnownOne, TLO, Depth+1))
1571 return true;
1572 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573 KnownZero = KnownZero.lshr(ShAmt);
1574 KnownOne = KnownOne.lshr(ShAmt);
1575
1576 // Handle the sign bit, adjusted to where it is now in the mask.
1577 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1578
1579 // If the input sign bit is known to be zero, or if none of the top bits
1580 // are demanded, turn this into an unsigned shift right.
1581 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1582 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1583 Op.getOperand(0),
1584 Op.getOperand(1)));
1585 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1586 KnownOne |= HighBits;
1587 }
1588 }
1589 break;
1590 case ISD::SIGN_EXTEND_INREG: {
1591 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1592
1593 // Sign extension. Compute the demanded bits in the result that are not
1594 // present in the input.
1595 APInt NewBits =
1596 APInt::getHighBitsSet(BitWidth,
1597 BitWidth - EVT.getScalarType().getSizeInBits());
1598
1599 // If none of the extended bits are demanded, eliminate the sextinreg.
1600 if ((NewBits & NewMask) == 0)
1601 return TLO.CombineTo(Op, Op.getOperand(0));
1602
1603 APInt InSignBit =
1604 APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1605 APInt InputDemandedBits =
1606 APInt::getLowBitsSet(BitWidth,
1607 EVT.getScalarType().getSizeInBits()) &
1608 NewMask;
1609
1610 // Since the sign extended bits are demanded, we know that the sign
1611 // bit is demanded.
1612 InputDemandedBits |= InSignBit;
1613
1614 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1615 KnownZero, KnownOne, TLO, Depth+1))
1616 return true;
1617 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1618
1619 // If the sign bit of the input is known set or clear, then we know the
1620 // top bits of the result.
1621
1622 // If the input sign bit is known zero, convert this into a zero extension.
1623 if (KnownZero.intersects(InSignBit))
1624 return TLO.CombineTo(Op,
1625 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1626
1627 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1628 KnownOne |= NewBits;
1629 KnownZero &= ~NewBits;
1630 } else { // Input sign bit unknown
1631 KnownZero &= ~NewBits;
1632 KnownOne &= ~NewBits;
1633 }
1634 break;
1635 }
1636 case ISD::ZERO_EXTEND: {
1637 unsigned OperandBitWidth =
1638 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1639 APInt InMask = NewMask.trunc(OperandBitWidth);
1640
1641 // If none of the top bits are demanded, convert this into an any_extend.
1642 APInt NewBits =
1643 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1644 if (!NewBits.intersects(NewMask))
1645 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1646 Op.getValueType(),
1647 Op.getOperand(0)));
1648
1649 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1650 KnownZero, KnownOne, TLO, Depth+1))
1651 return true;
1652 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653 KnownZero = KnownZero.zext(BitWidth);
1654 KnownOne = KnownOne.zext(BitWidth);
1655 KnownZero |= NewBits;
1656 break;
1657 }
1658 case ISD::SIGN_EXTEND: {
1659 EVT InVT = Op.getOperand(0).getValueType();
1660 unsigned InBits = InVT.getScalarType().getSizeInBits();
1661 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1662 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1663 APInt NewBits = ~InMask & NewMask;
1664
1665 // If none of the top bits are demanded, convert this into an any_extend.
1666 if (NewBits == 0)
1667 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1668 Op.getValueType(),
1669 Op.getOperand(0)));
1670
1671 // Since some of the sign extended bits are demanded, we know that the sign
1672 // bit is demanded.
1673 APInt InDemandedBits = InMask & NewMask;
1674 InDemandedBits |= InSignBit;
1675 InDemandedBits = InDemandedBits.trunc(InBits);
1676
1677 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1678 KnownOne, TLO, Depth+1))
1679 return true;
1680 KnownZero = KnownZero.zext(BitWidth);
1681 KnownOne = KnownOne.zext(BitWidth);
1682
1683 // If the sign bit is known zero, convert this to a zero extend.
1684 if (KnownZero.intersects(InSignBit))
1685 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1686 Op.getValueType(),
1687 Op.getOperand(0)));
1688
1689 // If the sign bit is known one, the top bits match.
1690 if (KnownOne.intersects(InSignBit)) {
1691 KnownOne |= NewBits;
1692 KnownZero &= ~NewBits;
1693 } else { // Otherwise, top bits aren't known.
1694 KnownOne &= ~NewBits;
1695 KnownZero &= ~NewBits;
1696 }
1697 break;
1698 }
1699 case ISD::ANY_EXTEND: {
1700 unsigned OperandBitWidth =
1701 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1702 APInt InMask = NewMask.trunc(OperandBitWidth);
1703 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1704 KnownZero, KnownOne, TLO, Depth+1))
1705 return true;
1706 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1707 KnownZero = KnownZero.zext(BitWidth);
1708 KnownOne = KnownOne.zext(BitWidth);
1709 break;
1710 }
1711 case ISD::TRUNCATE: {
1712 // Simplify the input, using demanded bit information, and compute the known
1713 // zero/one bits live out.
1714 unsigned OperandBitWidth =
1715 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1716 APInt TruncMask = NewMask.zext(OperandBitWidth);
1717 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1718 KnownZero, KnownOne, TLO, Depth+1))
1719 return true;
1720 KnownZero = KnownZero.trunc(BitWidth);
1721 KnownOne = KnownOne.trunc(BitWidth);
1722
1723 // If the input is only used by this truncate, see if we can shrink it based
1724 // on the known demanded bits.
1725 if (Op.getOperand(0).getNode()->hasOneUse()) {
1726 SDValue In = Op.getOperand(0);
1727 switch (In.getOpcode()) {
1728 default: break;
1729 case ISD::SRL:
1730 // Shrink SRL by a constant if none of the high bits shifted in are
1731 // demanded.
1732 if (TLO.LegalTypes() &&
1733 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1734 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1735 // undesirable.
1736 break;
1737 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1738 if (!ShAmt)
1739 break;
1740 SDValue Shift = In.getOperand(1);
1741 if (TLO.LegalTypes()) {
1742 uint64_t ShVal = ShAmt->getZExtValue();
1743 Shift =
1744 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1745 }
1746
1747 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1748 OperandBitWidth - BitWidth);
1749 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1750
1751 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1752 // None of the shifted in bits are needed. Add a truncate of the
1753 // shift input, then shift it.
1754 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1755 Op.getValueType(),
1756 In.getOperand(0));
1757 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1758 Op.getValueType(),
1759 NewTrunc,
1760 Shift));
1761 }
1762 break;
1763 }
1764 }
1765
1766 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767 break;
1768 }
1769 case ISD::AssertZext: {
1770 // AssertZext demands all of the high bits, plus any of the low bits
1771 // demanded by its users.
1772 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1773 APInt InMask = APInt::getLowBitsSet(BitWidth,
1774 VT.getSizeInBits());
1775 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1776 KnownZero, KnownOne, TLO, Depth+1))
1777 return true;
1778 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1779
1780 KnownZero |= ~InMask & NewMask;
1781 break;
1782 }
1783 case ISD::BITCAST:
1784 // If this is an FP->Int bitcast and if the sign bit is the only
1785 // thing demanded, turn this into a FGETSIGN.
1786 if (!Op.getOperand(0).getValueType().isVector() &&
1787 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1788 Op.getOperand(0).getValueType().isFloatingPoint()) {
1789 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1790 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1791 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1792 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1793 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1794 // place. We expect the SHL to be eliminated by other optimizations.
1795 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1796 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1797 if (!OpVTLegal && OpVTSizeInBits > 32)
1798 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1799 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1800 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1801 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1802 Op.getValueType(),
1803 Sign, ShAmt));
1804 }
1805 }
1806 break;
1807 case ISD::ADD:
1808 case ISD::MUL:
1809 case ISD::SUB: {
1810 // Add, Sub, and Mul don't demand any bits in positions beyond that
1811 // of the highest bit demanded of them.
1812 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1813 BitWidth - NewMask.countLeadingZeros());
1814 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1815 KnownOne2, TLO, Depth+1))
1816 return true;
1817 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1818 KnownOne2, TLO, Depth+1))
1819 return true;
1820 // See if the operation should be performed at a smaller bit width.
1821 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1822 return true;
1823 }
1824 // FALL THROUGH
1825 default:
1826 // Just use ComputeMaskedBits to compute output bits.
1827 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1828 break;
1829 }
1830
1831 // If we know the value of all of the demanded bits, return this as a
1832 // constant.
1833 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1834 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1835
1836 return false;
1837 }
1838
1839 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1840 /// in Mask are known to be either zero or one and return them in the
1841 /// KnownZero/KnownOne bitsets.
computeMaskedBitsForTargetNode(const SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1842 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1843 const APInt &Mask,
1844 APInt &KnownZero,
1845 APInt &KnownOne,
1846 const SelectionDAG &DAG,
1847 unsigned Depth) const {
1848 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1849 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1850 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1851 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1852 "Should use MaskedValueIsZero if you don't know whether Op"
1853 " is a target node!");
1854 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1855 }
1856
1857 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1858 /// targets that want to expose additional information about sign bits to the
1859 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,unsigned Depth) const1860 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1861 unsigned Depth) const {
1862 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1863 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1864 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1865 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1866 "Should use ComputeNumSignBits if you don't know whether Op"
1867 " is a target node!");
1868 return 1;
1869 }
1870
1871 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1872 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1873 /// determine which bit is set.
1874 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1875 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1876 // A left-shift of a constant one will have exactly one bit set, because
1877 // shifting the bit off the end is undefined.
1878 if (Val.getOpcode() == ISD::SHL)
1879 if (ConstantSDNode *C =
1880 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1881 if (C->getAPIntValue() == 1)
1882 return true;
1883
1884 // Similarly, a right-shift of a constant sign-bit will have exactly
1885 // one bit set.
1886 if (Val.getOpcode() == ISD::SRL)
1887 if (ConstantSDNode *C =
1888 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1889 if (C->getAPIntValue().isSignBit())
1890 return true;
1891
1892 // More could be done here, though the above checks are enough
1893 // to handle some common cases.
1894
1895 // Fall back to ComputeMaskedBits to catch other known cases.
1896 EVT OpVT = Val.getValueType();
1897 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1898 APInt Mask = APInt::getAllOnesValue(BitWidth);
1899 APInt KnownZero, KnownOne;
1900 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1901 return (KnownZero.countPopulation() == BitWidth - 1) &&
1902 (KnownOne.countPopulation() == 1);
1903 }
1904
1905 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1906 /// and cc. If it is unable to simplify it, return a null SDValue.
1907 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,DebugLoc dl) const1908 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1909 ISD::CondCode Cond, bool foldBooleans,
1910 DAGCombinerInfo &DCI, DebugLoc dl) const {
1911 SelectionDAG &DAG = DCI.DAG;
1912
1913 // These setcc operations always fold.
1914 switch (Cond) {
1915 default: break;
1916 case ISD::SETFALSE:
1917 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1918 case ISD::SETTRUE:
1919 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1920 }
1921
1922 // Ensure that the constant occurs on the RHS, and fold constant
1923 // comparisons.
1924 if (isa<ConstantSDNode>(N0.getNode()))
1925 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1926
1927 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1928 const APInt &C1 = N1C->getAPIntValue();
1929
1930 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1931 // equality comparison, then we're just comparing whether X itself is
1932 // zero.
1933 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1934 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1935 N0.getOperand(1).getOpcode() == ISD::Constant) {
1936 const APInt &ShAmt
1937 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1938 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1939 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1940 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1941 // (srl (ctlz x), 5) == 0 -> X != 0
1942 // (srl (ctlz x), 5) != 1 -> X != 0
1943 Cond = ISD::SETNE;
1944 } else {
1945 // (srl (ctlz x), 5) != 0 -> X == 0
1946 // (srl (ctlz x), 5) == 1 -> X == 0
1947 Cond = ISD::SETEQ;
1948 }
1949 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1950 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1951 Zero, Cond);
1952 }
1953 }
1954
1955 SDValue CTPOP = N0;
1956 // Look through truncs that don't change the value of a ctpop.
1957 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1958 CTPOP = N0.getOperand(0);
1959
1960 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1961 (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1962 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1963 EVT CTVT = CTPOP.getValueType();
1964 SDValue CTOp = CTPOP.getOperand(0);
1965
1966 // (ctpop x) u< 2 -> (x & x-1) == 0
1967 // (ctpop x) u> 1 -> (x & x-1) != 0
1968 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1969 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1970 DAG.getConstant(1, CTVT));
1971 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1972 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1973 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1974 }
1975
1976 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1977 }
1978
1979 // (zext x) == C --> x == (trunc C)
1980 if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1981 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1982 unsigned MinBits = N0.getValueSizeInBits();
1983 SDValue PreZExt;
1984 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1985 // ZExt
1986 MinBits = N0->getOperand(0).getValueSizeInBits();
1987 PreZExt = N0->getOperand(0);
1988 } else if (N0->getOpcode() == ISD::AND) {
1989 // DAGCombine turns costly ZExts into ANDs
1990 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1991 if ((C->getAPIntValue()+1).isPowerOf2()) {
1992 MinBits = C->getAPIntValue().countTrailingOnes();
1993 PreZExt = N0->getOperand(0);
1994 }
1995 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1996 // ZEXTLOAD
1997 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1998 MinBits = LN0->getMemoryVT().getSizeInBits();
1999 PreZExt = N0;
2000 }
2001 }
2002
2003 // Make sure we're not loosing bits from the constant.
2004 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2005 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2006 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2007 // Will get folded away.
2008 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2009 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2010 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2011 }
2012 }
2013 }
2014
2015 // If the LHS is '(and load, const)', the RHS is 0,
2016 // the test is for equality or unsigned, and all 1 bits of the const are
2017 // in the same partial word, see if we can shorten the load.
2018 if (DCI.isBeforeLegalize() &&
2019 N0.getOpcode() == ISD::AND && C1 == 0 &&
2020 N0.getNode()->hasOneUse() &&
2021 isa<LoadSDNode>(N0.getOperand(0)) &&
2022 N0.getOperand(0).getNode()->hasOneUse() &&
2023 isa<ConstantSDNode>(N0.getOperand(1))) {
2024 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2025 APInt bestMask;
2026 unsigned bestWidth = 0, bestOffset = 0;
2027 if (!Lod->isVolatile() && Lod->isUnindexed()) {
2028 unsigned origWidth = N0.getValueType().getSizeInBits();
2029 unsigned maskWidth = origWidth;
2030 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2031 // 8 bits, but have to be careful...
2032 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2033 origWidth = Lod->getMemoryVT().getSizeInBits();
2034 const APInt &Mask =
2035 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2036 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2037 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2038 for (unsigned offset=0; offset<origWidth/width; offset++) {
2039 if ((newMask & Mask) == Mask) {
2040 if (!TD->isLittleEndian())
2041 bestOffset = (origWidth/width - offset - 1) * (width/8);
2042 else
2043 bestOffset = (uint64_t)offset * (width/8);
2044 bestMask = Mask.lshr(offset * (width/8) * 8);
2045 bestWidth = width;
2046 break;
2047 }
2048 newMask = newMask << width;
2049 }
2050 }
2051 }
2052 if (bestWidth) {
2053 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2054 if (newVT.isRound()) {
2055 EVT PtrType = Lod->getOperand(1).getValueType();
2056 SDValue Ptr = Lod->getBasePtr();
2057 if (bestOffset != 0)
2058 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2059 DAG.getConstant(bestOffset, PtrType));
2060 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2061 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2062 Lod->getPointerInfo().getWithOffset(bestOffset),
2063 false, false, NewAlign);
2064 return DAG.getSetCC(dl, VT,
2065 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2066 DAG.getConstant(bestMask.trunc(bestWidth),
2067 newVT)),
2068 DAG.getConstant(0LL, newVT), Cond);
2069 }
2070 }
2071 }
2072
2073 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2074 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2075 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2076
2077 // If the comparison constant has bits in the upper part, the
2078 // zero-extended value could never match.
2079 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2080 C1.getBitWidth() - InSize))) {
2081 switch (Cond) {
2082 case ISD::SETUGT:
2083 case ISD::SETUGE:
2084 case ISD::SETEQ: return DAG.getConstant(0, VT);
2085 case ISD::SETULT:
2086 case ISD::SETULE:
2087 case ISD::SETNE: return DAG.getConstant(1, VT);
2088 case ISD::SETGT:
2089 case ISD::SETGE:
2090 // True if the sign bit of C1 is set.
2091 return DAG.getConstant(C1.isNegative(), VT);
2092 case ISD::SETLT:
2093 case ISD::SETLE:
2094 // True if the sign bit of C1 isn't set.
2095 return DAG.getConstant(C1.isNonNegative(), VT);
2096 default:
2097 break;
2098 }
2099 }
2100
2101 // Otherwise, we can perform the comparison with the low bits.
2102 switch (Cond) {
2103 case ISD::SETEQ:
2104 case ISD::SETNE:
2105 case ISD::SETUGT:
2106 case ISD::SETUGE:
2107 case ISD::SETULT:
2108 case ISD::SETULE: {
2109 EVT newVT = N0.getOperand(0).getValueType();
2110 if (DCI.isBeforeLegalizeOps() ||
2111 (isOperationLegal(ISD::SETCC, newVT) &&
2112 getCondCodeAction(Cond, newVT)==Legal))
2113 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2114 DAG.getConstant(C1.trunc(InSize), newVT),
2115 Cond);
2116 break;
2117 }
2118 default:
2119 break; // todo, be more careful with signed comparisons
2120 }
2121 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2122 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2123 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2124 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2125 EVT ExtDstTy = N0.getValueType();
2126 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2127
2128 // If the constant doesn't fit into the number of bits for the source of
2129 // the sign extension, it is impossible for both sides to be equal.
2130 if (C1.getMinSignedBits() > ExtSrcTyBits)
2131 return DAG.getConstant(Cond == ISD::SETNE, VT);
2132
2133 SDValue ZextOp;
2134 EVT Op0Ty = N0.getOperand(0).getValueType();
2135 if (Op0Ty == ExtSrcTy) {
2136 ZextOp = N0.getOperand(0);
2137 } else {
2138 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2139 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2140 DAG.getConstant(Imm, Op0Ty));
2141 }
2142 if (!DCI.isCalledByLegalizer())
2143 DCI.AddToWorklist(ZextOp.getNode());
2144 // Otherwise, make this a use of a zext.
2145 return DAG.getSetCC(dl, VT, ZextOp,
2146 DAG.getConstant(C1 & APInt::getLowBitsSet(
2147 ExtDstTyBits,
2148 ExtSrcTyBits),
2149 ExtDstTy),
2150 Cond);
2151 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2152 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2153 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2154 if (N0.getOpcode() == ISD::SETCC &&
2155 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2156 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2157 if (TrueWhenTrue)
2158 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2159 // Invert the condition.
2160 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2161 CC = ISD::getSetCCInverse(CC,
2162 N0.getOperand(0).getValueType().isInteger());
2163 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2164 }
2165
2166 if ((N0.getOpcode() == ISD::XOR ||
2167 (N0.getOpcode() == ISD::AND &&
2168 N0.getOperand(0).getOpcode() == ISD::XOR &&
2169 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2170 isa<ConstantSDNode>(N0.getOperand(1)) &&
2171 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2172 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2173 // can only do this if the top bits are known zero.
2174 unsigned BitWidth = N0.getValueSizeInBits();
2175 if (DAG.MaskedValueIsZero(N0,
2176 APInt::getHighBitsSet(BitWidth,
2177 BitWidth-1))) {
2178 // Okay, get the un-inverted input value.
2179 SDValue Val;
2180 if (N0.getOpcode() == ISD::XOR)
2181 Val = N0.getOperand(0);
2182 else {
2183 assert(N0.getOpcode() == ISD::AND &&
2184 N0.getOperand(0).getOpcode() == ISD::XOR);
2185 // ((X^1)&1)^1 -> X & 1
2186 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2187 N0.getOperand(0).getOperand(0),
2188 N0.getOperand(1));
2189 }
2190
2191 return DAG.getSetCC(dl, VT, Val, N1,
2192 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2193 }
2194 } else if (N1C->getAPIntValue() == 1 &&
2195 (VT == MVT::i1 ||
2196 getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2197 SDValue Op0 = N0;
2198 if (Op0.getOpcode() == ISD::TRUNCATE)
2199 Op0 = Op0.getOperand(0);
2200
2201 if ((Op0.getOpcode() == ISD::XOR) &&
2202 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2203 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2204 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2205 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2206 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2207 Cond);
2208 } else if (Op0.getOpcode() == ISD::AND &&
2209 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2210 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2211 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2212 if (Op0.getValueType().bitsGT(VT))
2213 Op0 = DAG.getNode(ISD::AND, dl, VT,
2214 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2215 DAG.getConstant(1, VT));
2216 else if (Op0.getValueType().bitsLT(VT))
2217 Op0 = DAG.getNode(ISD::AND, dl, VT,
2218 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2219 DAG.getConstant(1, VT));
2220
2221 return DAG.getSetCC(dl, VT, Op0,
2222 DAG.getConstant(0, Op0.getValueType()),
2223 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2224 }
2225 }
2226 }
2227
2228 APInt MinVal, MaxVal;
2229 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2230 if (ISD::isSignedIntSetCC(Cond)) {
2231 MinVal = APInt::getSignedMinValue(OperandBitSize);
2232 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2233 } else {
2234 MinVal = APInt::getMinValue(OperandBitSize);
2235 MaxVal = APInt::getMaxValue(OperandBitSize);
2236 }
2237
2238 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2239 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2240 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
2241 // X >= C0 --> X > (C0-1)
2242 return DAG.getSetCC(dl, VT, N0,
2243 DAG.getConstant(C1-1, N1.getValueType()),
2244 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2245 }
2246
2247 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2248 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
2249 // X <= C0 --> X < (C0+1)
2250 return DAG.getSetCC(dl, VT, N0,
2251 DAG.getConstant(C1+1, N1.getValueType()),
2252 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2253 }
2254
2255 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2256 return DAG.getConstant(0, VT); // X < MIN --> false
2257 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2258 return DAG.getConstant(1, VT); // X >= MIN --> true
2259 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2260 return DAG.getConstant(0, VT); // X > MAX --> false
2261 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2262 return DAG.getConstant(1, VT); // X <= MAX --> true
2263
2264 // Canonicalize setgt X, Min --> setne X, Min
2265 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2266 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2267 // Canonicalize setlt X, Max --> setne X, Max
2268 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2269 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2270
2271 // If we have setult X, 1, turn it into seteq X, 0
2272 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2273 return DAG.getSetCC(dl, VT, N0,
2274 DAG.getConstant(MinVal, N0.getValueType()),
2275 ISD::SETEQ);
2276 // If we have setugt X, Max-1, turn it into seteq X, Max
2277 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2278 return DAG.getSetCC(dl, VT, N0,
2279 DAG.getConstant(MaxVal, N0.getValueType()),
2280 ISD::SETEQ);
2281
2282 // If we have "setcc X, C0", check to see if we can shrink the immediate
2283 // by changing cc.
2284
2285 // SETUGT X, SINTMAX -> SETLT X, 0
2286 if (Cond == ISD::SETUGT &&
2287 C1 == APInt::getSignedMaxValue(OperandBitSize))
2288 return DAG.getSetCC(dl, VT, N0,
2289 DAG.getConstant(0, N1.getValueType()),
2290 ISD::SETLT);
2291
2292 // SETULT X, SINTMIN -> SETGT X, -1
2293 if (Cond == ISD::SETULT &&
2294 C1 == APInt::getSignedMinValue(OperandBitSize)) {
2295 SDValue ConstMinusOne =
2296 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2297 N1.getValueType());
2298 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2299 }
2300
2301 // Fold bit comparisons when we can.
2302 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2303 (VT == N0.getValueType() ||
2304 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2305 N0.getOpcode() == ISD::AND)
2306 if (ConstantSDNode *AndRHS =
2307 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2308 EVT ShiftTy = DCI.isBeforeLegalize() ?
2309 getPointerTy() : getShiftAmountTy(N0.getValueType());
2310 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
2311 // Perform the xform if the AND RHS is a single bit.
2312 if (AndRHS->getAPIntValue().isPowerOf2()) {
2313 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2314 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2315 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2316 }
2317 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2318 // (X & 8) == 8 --> (X & 8) >> 3
2319 // Perform the xform if C1 is a single bit.
2320 if (C1.isPowerOf2()) {
2321 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2322 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2323 DAG.getConstant(C1.logBase2(), ShiftTy)));
2324 }
2325 }
2326 }
2327 }
2328
2329 if (isa<ConstantFPSDNode>(N0.getNode())) {
2330 // Constant fold or commute setcc.
2331 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2332 if (O.getNode()) return O;
2333 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2334 // If the RHS of an FP comparison is a constant, simplify it away in
2335 // some cases.
2336 if (CFP->getValueAPF().isNaN()) {
2337 // If an operand is known to be a nan, we can fold it.
2338 switch (ISD::getUnorderedFlavor(Cond)) {
2339 default: llvm_unreachable("Unknown flavor!");
2340 case 0: // Known false.
2341 return DAG.getConstant(0, VT);
2342 case 1: // Known true.
2343 return DAG.getConstant(1, VT);
2344 case 2: // Undefined.
2345 return DAG.getUNDEF(VT);
2346 }
2347 }
2348
2349 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2350 // constant if knowing that the operand is non-nan is enough. We prefer to
2351 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2352 // materialize 0.0.
2353 if (Cond == ISD::SETO || Cond == ISD::SETUO)
2354 return DAG.getSetCC(dl, VT, N0, N0, Cond);
2355
2356 // If the condition is not legal, see if we can find an equivalent one
2357 // which is legal.
2358 if (!isCondCodeLegal(Cond, N0.getValueType())) {
2359 // If the comparison was an awkward floating-point == or != and one of
2360 // the comparison operands is infinity or negative infinity, convert the
2361 // condition to a less-awkward <= or >=.
2362 if (CFP->getValueAPF().isInfinity()) {
2363 if (CFP->getValueAPF().isNegative()) {
2364 if (Cond == ISD::SETOEQ &&
2365 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2366 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2367 if (Cond == ISD::SETUEQ &&
2368 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2369 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2370 if (Cond == ISD::SETUNE &&
2371 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2372 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2373 if (Cond == ISD::SETONE &&
2374 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2375 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2376 } else {
2377 if (Cond == ISD::SETOEQ &&
2378 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2379 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2380 if (Cond == ISD::SETUEQ &&
2381 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2382 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2383 if (Cond == ISD::SETUNE &&
2384 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2385 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2386 if (Cond == ISD::SETONE &&
2387 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2388 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2389 }
2390 }
2391 }
2392 }
2393
2394 if (N0 == N1) {
2395 // We can always fold X == X for integer setcc's.
2396 if (N0.getValueType().isInteger())
2397 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2398 unsigned UOF = ISD::getUnorderedFlavor(Cond);
2399 if (UOF == 2) // FP operators that are undefined on NaNs.
2400 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2401 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2402 return DAG.getConstant(UOF, VT);
2403 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2404 // if it is not already.
2405 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2406 if (NewCond != Cond)
2407 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2408 }
2409
2410 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2411 N0.getValueType().isInteger()) {
2412 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2413 N0.getOpcode() == ISD::XOR) {
2414 // Simplify (X+Y) == (X+Z) --> Y == Z
2415 if (N0.getOpcode() == N1.getOpcode()) {
2416 if (N0.getOperand(0) == N1.getOperand(0))
2417 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2418 if (N0.getOperand(1) == N1.getOperand(1))
2419 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2420 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2421 // If X op Y == Y op X, try other combinations.
2422 if (N0.getOperand(0) == N1.getOperand(1))
2423 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2424 Cond);
2425 if (N0.getOperand(1) == N1.getOperand(0))
2426 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2427 Cond);
2428 }
2429 }
2430
2431 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2432 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2433 // Turn (X+C1) == C2 --> X == C2-C1
2434 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2435 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2436 DAG.getConstant(RHSC->getAPIntValue()-
2437 LHSR->getAPIntValue(),
2438 N0.getValueType()), Cond);
2439 }
2440
2441 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2442 if (N0.getOpcode() == ISD::XOR)
2443 // If we know that all of the inverted bits are zero, don't bother
2444 // performing the inversion.
2445 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2446 return
2447 DAG.getSetCC(dl, VT, N0.getOperand(0),
2448 DAG.getConstant(LHSR->getAPIntValue() ^
2449 RHSC->getAPIntValue(),
2450 N0.getValueType()),
2451 Cond);
2452 }
2453
2454 // Turn (C1-X) == C2 --> X == C1-C2
2455 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2456 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2457 return
2458 DAG.getSetCC(dl, VT, N0.getOperand(1),
2459 DAG.getConstant(SUBC->getAPIntValue() -
2460 RHSC->getAPIntValue(),
2461 N0.getValueType()),
2462 Cond);
2463 }
2464 }
2465 }
2466
2467 // Simplify (X+Z) == X --> Z == 0
2468 if (N0.getOperand(0) == N1)
2469 return DAG.getSetCC(dl, VT, N0.getOperand(1),
2470 DAG.getConstant(0, N0.getValueType()), Cond);
2471 if (N0.getOperand(1) == N1) {
2472 if (DAG.isCommutativeBinOp(N0.getOpcode()))
2473 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2474 DAG.getConstant(0, N0.getValueType()), Cond);
2475 else if (N0.getNode()->hasOneUse()) {
2476 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2477 // (Z-X) == X --> Z == X<<1
2478 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2479 N1,
2480 DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2481 if (!DCI.isCalledByLegalizer())
2482 DCI.AddToWorklist(SH.getNode());
2483 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2484 }
2485 }
2486 }
2487
2488 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2489 N1.getOpcode() == ISD::XOR) {
2490 // Simplify X == (X+Z) --> Z == 0
2491 if (N1.getOperand(0) == N0) {
2492 return DAG.getSetCC(dl, VT, N1.getOperand(1),
2493 DAG.getConstant(0, N1.getValueType()), Cond);
2494 } else if (N1.getOperand(1) == N0) {
2495 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2496 return DAG.getSetCC(dl, VT, N1.getOperand(0),
2497 DAG.getConstant(0, N1.getValueType()), Cond);
2498 } else if (N1.getNode()->hasOneUse()) {
2499 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2500 // X == (Z-X) --> X<<1 == Z
2501 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2502 DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2503 if (!DCI.isCalledByLegalizer())
2504 DCI.AddToWorklist(SH.getNode());
2505 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2506 }
2507 }
2508 }
2509
2510 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2511 // Note that where y is variable and is known to have at most
2512 // one bit set (for example, if it is z&1) we cannot do this;
2513 // the expressions are not equivalent when y==0.
2514 if (N0.getOpcode() == ISD::AND)
2515 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2516 if (ValueHasExactlyOneBitSet(N1, DAG)) {
2517 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2518 SDValue Zero = DAG.getConstant(0, N1.getValueType());
2519 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2520 }
2521 }
2522 if (N1.getOpcode() == ISD::AND)
2523 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2524 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2525 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2526 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2527 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2528 }
2529 }
2530 }
2531
2532 // Fold away ALL boolean setcc's.
2533 SDValue Temp;
2534 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2535 switch (Cond) {
2536 default: llvm_unreachable("Unknown integer setcc!");
2537 case ISD::SETEQ: // X == Y -> ~(X^Y)
2538 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2539 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2540 if (!DCI.isCalledByLegalizer())
2541 DCI.AddToWorklist(Temp.getNode());
2542 break;
2543 case ISD::SETNE: // X != Y --> (X^Y)
2544 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2545 break;
2546 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2547 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2548 Temp = DAG.getNOT(dl, N0, MVT::i1);
2549 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2550 if (!DCI.isCalledByLegalizer())
2551 DCI.AddToWorklist(Temp.getNode());
2552 break;
2553 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2554 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2555 Temp = DAG.getNOT(dl, N1, MVT::i1);
2556 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2557 if (!DCI.isCalledByLegalizer())
2558 DCI.AddToWorklist(Temp.getNode());
2559 break;
2560 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2561 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2562 Temp = DAG.getNOT(dl, N0, MVT::i1);
2563 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2564 if (!DCI.isCalledByLegalizer())
2565 DCI.AddToWorklist(Temp.getNode());
2566 break;
2567 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2568 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2569 Temp = DAG.getNOT(dl, N1, MVT::i1);
2570 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2571 break;
2572 }
2573 if (VT != MVT::i1) {
2574 if (!DCI.isCalledByLegalizer())
2575 DCI.AddToWorklist(N0.getNode());
2576 // FIXME: If running after legalize, we probably can't do this.
2577 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2578 }
2579 return N0;
2580 }
2581
2582 // Could not fold it.
2583 return SDValue();
2584 }
2585
2586 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2587 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2588 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2589 int64_t &Offset) const {
2590 if (isa<GlobalAddressSDNode>(N)) {
2591 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2592 GA = GASD->getGlobal();
2593 Offset += GASD->getOffset();
2594 return true;
2595 }
2596
2597 if (N->getOpcode() == ISD::ADD) {
2598 SDValue N1 = N->getOperand(0);
2599 SDValue N2 = N->getOperand(1);
2600 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2601 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2602 if (V) {
2603 Offset += V->getSExtValue();
2604 return true;
2605 }
2606 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2607 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2608 if (V) {
2609 Offset += V->getSExtValue();
2610 return true;
2611 }
2612 }
2613 }
2614
2615 return false;
2616 }
2617
2618
2619 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2620 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2621 // Default implementation: no optimization.
2622 return SDValue();
2623 }
2624
2625 //===----------------------------------------------------------------------===//
2626 // Inline Assembler Implementation Methods
2627 //===----------------------------------------------------------------------===//
2628
2629
2630 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2631 TargetLowering::getConstraintType(const std::string &Constraint) const {
2632 if (Constraint.size() == 1) {
2633 switch (Constraint[0]) {
2634 default: break;
2635 case 'r': return C_RegisterClass;
2636 case 'm': // memory
2637 case 'o': // offsetable
2638 case 'V': // not offsetable
2639 return C_Memory;
2640 case 'i': // Simple Integer or Relocatable Constant
2641 case 'n': // Simple Integer
2642 case 'E': // Floating Point Constant
2643 case 'F': // Floating Point Constant
2644 case 's': // Relocatable Constant
2645 case 'p': // Address.
2646 case 'X': // Allow ANY value.
2647 case 'I': // Target registers.
2648 case 'J':
2649 case 'K':
2650 case 'L':
2651 case 'M':
2652 case 'N':
2653 case 'O':
2654 case 'P':
2655 case '<':
2656 case '>':
2657 return C_Other;
2658 }
2659 }
2660
2661 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2662 Constraint[Constraint.size()-1] == '}')
2663 return C_Register;
2664 return C_Unknown;
2665 }
2666
2667 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2668 /// with another that has more specific requirements based on the type of the
2669 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2670 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2671 if (ConstraintVT.isInteger())
2672 return "r";
2673 if (ConstraintVT.isFloatingPoint())
2674 return "f"; // works for many targets
2675 return 0;
2676 }
2677
2678 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2679 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2680 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2681 std::string &Constraint,
2682 std::vector<SDValue> &Ops,
2683 SelectionDAG &DAG) const {
2684
2685 if (Constraint.length() > 1) return;
2686
2687 char ConstraintLetter = Constraint[0];
2688 switch (ConstraintLetter) {
2689 default: break;
2690 case 'X': // Allows any operand; labels (basic block) use this.
2691 if (Op.getOpcode() == ISD::BasicBlock) {
2692 Ops.push_back(Op);
2693 return;
2694 }
2695 // fall through
2696 case 'i': // Simple Integer or Relocatable Constant
2697 case 'n': // Simple Integer
2698 case 's': { // Relocatable Constant
2699 // These operands are interested in values of the form (GV+C), where C may
2700 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2701 // is possible and fine if either GV or C are missing.
2702 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2703 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2704
2705 // If we have "(add GV, C)", pull out GV/C
2706 if (Op.getOpcode() == ISD::ADD) {
2707 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2708 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2709 if (C == 0 || GA == 0) {
2710 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2711 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2712 }
2713 if (C == 0 || GA == 0)
2714 C = 0, GA = 0;
2715 }
2716
2717 // If we find a valid operand, map to the TargetXXX version so that the
2718 // value itself doesn't get selected.
2719 if (GA) { // Either &GV or &GV+C
2720 if (ConstraintLetter != 'n') {
2721 int64_t Offs = GA->getOffset();
2722 if (C) Offs += C->getZExtValue();
2723 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2724 C ? C->getDebugLoc() : DebugLoc(),
2725 Op.getValueType(), Offs));
2726 return;
2727 }
2728 }
2729 if (C) { // just C, no GV.
2730 // Simple constants are not allowed for 's'.
2731 if (ConstraintLetter != 's') {
2732 // gcc prints these as sign extended. Sign extend value to 64 bits
2733 // now; without this it would get ZExt'd later in
2734 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2735 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2736 MVT::i64));
2737 return;
2738 }
2739 }
2740 break;
2741 }
2742 }
2743 }
2744
2745 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const2746 getRegForInlineAsmConstraint(const std::string &Constraint,
2747 EVT VT) const {
2748 if (Constraint[0] != '{')
2749 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2750 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2751
2752 // Remove the braces from around the name.
2753 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2754
2755 // Figure out which register class contains this reg.
2756 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2757 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2758 E = RI->regclass_end(); RCI != E; ++RCI) {
2759 const TargetRegisterClass *RC = *RCI;
2760
2761 // If none of the value types for this register class are valid, we
2762 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2763 if (!isLegalRC(RC))
2764 continue;
2765
2766 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2767 I != E; ++I) {
2768 if (RegName.equals_lower(RI->getName(*I)))
2769 return std::make_pair(*I, RC);
2770 }
2771 }
2772
2773 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2774 }
2775
2776 //===----------------------------------------------------------------------===//
2777 // Constraint Selection.
2778
2779 /// isMatchingInputConstraint - Return true of this is an input operand that is
2780 /// a matching constraint like "4".
isMatchingInputConstraint() const2781 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2782 assert(!ConstraintCode.empty() && "No known constraint!");
2783 return isdigit(ConstraintCode[0]);
2784 }
2785
2786 /// getMatchedOperand - If this is an input matching constraint, this method
2787 /// returns the output operand it matches.
getMatchedOperand() const2788 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2789 assert(!ConstraintCode.empty() && "No known constraint!");
2790 return atoi(ConstraintCode.c_str());
2791 }
2792
2793
2794 /// ParseConstraints - Split up the constraint string from the inline
2795 /// assembly value into the specific constraints and their prefixes,
2796 /// and also tie in the associated operand values.
2797 /// If this returns an empty vector, and if the constraint string itself
2798 /// isn't empty, there was an error parsing.
ParseConstraints(ImmutableCallSite CS) const2799 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2800 ImmutableCallSite CS) const {
2801 /// ConstraintOperands - Information about all of the constraints.
2802 AsmOperandInfoVector ConstraintOperands;
2803 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2804 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2805
2806 // Do a prepass over the constraints, canonicalizing them, and building up the
2807 // ConstraintOperands list.
2808 InlineAsm::ConstraintInfoVector
2809 ConstraintInfos = IA->ParseConstraints();
2810
2811 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2812 unsigned ResNo = 0; // ResNo - The result number of the next output.
2813
2814 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2815 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2816 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2817
2818 // Update multiple alternative constraint count.
2819 if (OpInfo.multipleAlternatives.size() > maCount)
2820 maCount = OpInfo.multipleAlternatives.size();
2821
2822 OpInfo.ConstraintVT = MVT::Other;
2823
2824 // Compute the value type for each operand.
2825 switch (OpInfo.Type) {
2826 case InlineAsm::isOutput:
2827 // Indirect outputs just consume an argument.
2828 if (OpInfo.isIndirect) {
2829 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2830 break;
2831 }
2832
2833 // The return value of the call is this value. As such, there is no
2834 // corresponding argument.
2835 assert(!CS.getType()->isVoidTy() &&
2836 "Bad inline asm!");
2837 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2838 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2839 } else {
2840 assert(ResNo == 0 && "Asm only has one result!");
2841 OpInfo.ConstraintVT = getValueType(CS.getType());
2842 }
2843 ++ResNo;
2844 break;
2845 case InlineAsm::isInput:
2846 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2847 break;
2848 case InlineAsm::isClobber:
2849 // Nothing to do.
2850 break;
2851 }
2852
2853 if (OpInfo.CallOperandVal) {
2854 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2855 if (OpInfo.isIndirect) {
2856 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2857 if (!PtrTy)
2858 report_fatal_error("Indirect operand for inline asm not a pointer!");
2859 OpTy = PtrTy->getElementType();
2860 }
2861
2862 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2863 if (StructType *STy = dyn_cast<StructType>(OpTy))
2864 if (STy->getNumElements() == 1)
2865 OpTy = STy->getElementType(0);
2866
2867 // If OpTy is not a single value, it may be a struct/union that we
2868 // can tile with integers.
2869 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2870 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2871 switch (BitSize) {
2872 default: break;
2873 case 1:
2874 case 8:
2875 case 16:
2876 case 32:
2877 case 64:
2878 case 128:
2879 OpInfo.ConstraintVT =
2880 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2881 break;
2882 }
2883 } else if (dyn_cast<PointerType>(OpTy)) {
2884 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2885 } else {
2886 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2887 }
2888 }
2889 }
2890
2891 // If we have multiple alternative constraints, select the best alternative.
2892 if (ConstraintInfos.size()) {
2893 if (maCount) {
2894 unsigned bestMAIndex = 0;
2895 int bestWeight = -1;
2896 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2897 int weight = -1;
2898 unsigned maIndex;
2899 // Compute the sums of the weights for each alternative, keeping track
2900 // of the best (highest weight) one so far.
2901 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2902 int weightSum = 0;
2903 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2904 cIndex != eIndex; ++cIndex) {
2905 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2906 if (OpInfo.Type == InlineAsm::isClobber)
2907 continue;
2908
2909 // If this is an output operand with a matching input operand,
2910 // look up the matching input. If their types mismatch, e.g. one
2911 // is an integer, the other is floating point, or their sizes are
2912 // different, flag it as an maCantMatch.
2913 if (OpInfo.hasMatchingInput()) {
2914 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2915 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2916 if ((OpInfo.ConstraintVT.isInteger() !=
2917 Input.ConstraintVT.isInteger()) ||
2918 (OpInfo.ConstraintVT.getSizeInBits() !=
2919 Input.ConstraintVT.getSizeInBits())) {
2920 weightSum = -1; // Can't match.
2921 break;
2922 }
2923 }
2924 }
2925 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2926 if (weight == -1) {
2927 weightSum = -1;
2928 break;
2929 }
2930 weightSum += weight;
2931 }
2932 // Update best.
2933 if (weightSum > bestWeight) {
2934 bestWeight = weightSum;
2935 bestMAIndex = maIndex;
2936 }
2937 }
2938
2939 // Now select chosen alternative in each constraint.
2940 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2941 cIndex != eIndex; ++cIndex) {
2942 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2943 if (cInfo.Type == InlineAsm::isClobber)
2944 continue;
2945 cInfo.selectAlternative(bestMAIndex);
2946 }
2947 }
2948 }
2949
2950 // Check and hook up tied operands, choose constraint code to use.
2951 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2952 cIndex != eIndex; ++cIndex) {
2953 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2954
2955 // If this is an output operand with a matching input operand, look up the
2956 // matching input. If their types mismatch, e.g. one is an integer, the
2957 // other is floating point, or their sizes are different, flag it as an
2958 // error.
2959 if (OpInfo.hasMatchingInput()) {
2960 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2961
2962 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2963 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2964 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
2965 std::pair<unsigned, const TargetRegisterClass*> InputRC =
2966 getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
2967 if ((OpInfo.ConstraintVT.isInteger() !=
2968 Input.ConstraintVT.isInteger()) ||
2969 (MatchRC.second != InputRC.second)) {
2970 report_fatal_error("Unsupported asm: input constraint"
2971 " with a matching output constraint of"
2972 " incompatible type!");
2973 }
2974 }
2975
2976 }
2977 }
2978
2979 return ConstraintOperands;
2980 }
2981
2982
2983 /// getConstraintGenerality - Return an integer indicating how general CT
2984 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2985 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2986 switch (CT) {
2987 default: llvm_unreachable("Unknown constraint type!");
2988 case TargetLowering::C_Other:
2989 case TargetLowering::C_Unknown:
2990 return 0;
2991 case TargetLowering::C_Register:
2992 return 1;
2993 case TargetLowering::C_RegisterClass:
2994 return 2;
2995 case TargetLowering::C_Memory:
2996 return 3;
2997 }
2998 }
2999
3000 /// Examine constraint type and operand type and determine a weight value.
3001 /// This object must already have been set up with the operand type
3002 /// and the current alternative constraint selected.
3003 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const3004 TargetLowering::getMultipleConstraintMatchWeight(
3005 AsmOperandInfo &info, int maIndex) const {
3006 InlineAsm::ConstraintCodeVector *rCodes;
3007 if (maIndex >= (int)info.multipleAlternatives.size())
3008 rCodes = &info.Codes;
3009 else
3010 rCodes = &info.multipleAlternatives[maIndex].Codes;
3011 ConstraintWeight BestWeight = CW_Invalid;
3012
3013 // Loop over the options, keeping track of the most general one.
3014 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3015 ConstraintWeight weight =
3016 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3017 if (weight > BestWeight)
3018 BestWeight = weight;
3019 }
3020
3021 return BestWeight;
3022 }
3023
3024 /// Examine constraint type and operand type and determine a weight value.
3025 /// This object must already have been set up with the operand type
3026 /// and the current alternative constraint selected.
3027 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3028 TargetLowering::getSingleConstraintMatchWeight(
3029 AsmOperandInfo &info, const char *constraint) const {
3030 ConstraintWeight weight = CW_Invalid;
3031 Value *CallOperandVal = info.CallOperandVal;
3032 // If we don't have a value, we can't do a match,
3033 // but allow it at the lowest weight.
3034 if (CallOperandVal == NULL)
3035 return CW_Default;
3036 // Look at the constraint type.
3037 switch (*constraint) {
3038 case 'i': // immediate integer.
3039 case 'n': // immediate integer with a known value.
3040 if (isa<ConstantInt>(CallOperandVal))
3041 weight = CW_Constant;
3042 break;
3043 case 's': // non-explicit intregal immediate.
3044 if (isa<GlobalValue>(CallOperandVal))
3045 weight = CW_Constant;
3046 break;
3047 case 'E': // immediate float if host format.
3048 case 'F': // immediate float.
3049 if (isa<ConstantFP>(CallOperandVal))
3050 weight = CW_Constant;
3051 break;
3052 case '<': // memory operand with autodecrement.
3053 case '>': // memory operand with autoincrement.
3054 case 'm': // memory operand.
3055 case 'o': // offsettable memory operand
3056 case 'V': // non-offsettable memory operand
3057 weight = CW_Memory;
3058 break;
3059 case 'r': // general register.
3060 case 'g': // general register, memory operand or immediate integer.
3061 // note: Clang converts "g" to "imr".
3062 if (CallOperandVal->getType()->isIntegerTy())
3063 weight = CW_Register;
3064 break;
3065 case 'X': // any operand.
3066 default:
3067 weight = CW_Default;
3068 break;
3069 }
3070 return weight;
3071 }
3072
3073 /// ChooseConstraint - If there are multiple different constraints that we
3074 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3075 /// This is somewhat tricky: constraints fall into four classes:
3076 /// Other -> immediates and magic values
3077 /// Register -> one specific register
3078 /// RegisterClass -> a group of regs
3079 /// Memory -> memory
3080 /// Ideally, we would pick the most specific constraint possible: if we have
3081 /// something that fits into a register, we would pick it. The problem here
3082 /// is that if we have something that could either be in a register or in
3083 /// memory that use of the register could cause selection of *other*
3084 /// operands to fail: they might only succeed if we pick memory. Because of
3085 /// this the heuristic we use is:
3086 ///
3087 /// 1) If there is an 'other' constraint, and if the operand is valid for
3088 /// that constraint, use it. This makes us take advantage of 'i'
3089 /// constraints when available.
3090 /// 2) Otherwise, pick the most general constraint present. This prefers
3091 /// 'm' over 'r', for example.
3092 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)3093 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3094 const TargetLowering &TLI,
3095 SDValue Op, SelectionDAG *DAG) {
3096 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3097 unsigned BestIdx = 0;
3098 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3099 int BestGenerality = -1;
3100
3101 // Loop over the options, keeping track of the most general one.
3102 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3103 TargetLowering::ConstraintType CType =
3104 TLI.getConstraintType(OpInfo.Codes[i]);
3105
3106 // If this is an 'other' constraint, see if the operand is valid for it.
3107 // For example, on X86 we might have an 'rI' constraint. If the operand
3108 // is an integer in the range [0..31] we want to use I (saving a load
3109 // of a register), otherwise we must use 'r'.
3110 if (CType == TargetLowering::C_Other && Op.getNode()) {
3111 assert(OpInfo.Codes[i].size() == 1 &&
3112 "Unhandled multi-letter 'other' constraint");
3113 std::vector<SDValue> ResultOps;
3114 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3115 ResultOps, *DAG);
3116 if (!ResultOps.empty()) {
3117 BestType = CType;
3118 BestIdx = i;
3119 break;
3120 }
3121 }
3122
3123 // Things with matching constraints can only be registers, per gcc
3124 // documentation. This mainly affects "g" constraints.
3125 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3126 continue;
3127
3128 // This constraint letter is more general than the previous one, use it.
3129 int Generality = getConstraintGenerality(CType);
3130 if (Generality > BestGenerality) {
3131 BestType = CType;
3132 BestIdx = i;
3133 BestGenerality = Generality;
3134 }
3135 }
3136
3137 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3138 OpInfo.ConstraintType = BestType;
3139 }
3140
3141 /// ComputeConstraintToUse - Determines the constraint code and constraint
3142 /// type to use for the specific AsmOperandInfo, setting
3143 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const3144 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3145 SDValue Op,
3146 SelectionDAG *DAG) const {
3147 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3148
3149 // Single-letter constraints ('r') are very common.
3150 if (OpInfo.Codes.size() == 1) {
3151 OpInfo.ConstraintCode = OpInfo.Codes[0];
3152 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3153 } else {
3154 ChooseConstraint(OpInfo, *this, Op, DAG);
3155 }
3156
3157 // 'X' matches anything.
3158 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3159 // Labels and constants are handled elsewhere ('X' is the only thing
3160 // that matches labels). For Functions, the type here is the type of
3161 // the result, which is not what we want to look at; leave them alone.
3162 Value *v = OpInfo.CallOperandVal;
3163 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3164 OpInfo.CallOperandVal = v;
3165 return;
3166 }
3167
3168 // Otherwise, try to resolve it to something we know about by looking at
3169 // the actual operand type.
3170 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3171 OpInfo.ConstraintCode = Repl;
3172 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3173 }
3174 }
3175 }
3176
3177 //===----------------------------------------------------------------------===//
3178 // Loop Strength Reduction hooks
3179 //===----------------------------------------------------------------------===//
3180
3181 /// isLegalAddressingMode - Return true if the addressing mode represented
3182 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const3183 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3184 Type *Ty) const {
3185 // The default implementation of this implements a conservative RISCy, r+r and
3186 // r+i addr mode.
3187
3188 // Allows a sign-extended 16-bit immediate field.
3189 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3190 return false;
3191
3192 // No global is ever allowed as a base.
3193 if (AM.BaseGV)
3194 return false;
3195
3196 // Only support r+r,
3197 switch (AM.Scale) {
3198 case 0: // "r+i" or just "i", depending on HasBaseReg.
3199 break;
3200 case 1:
3201 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3202 return false;
3203 // Otherwise we have r+r or r+i.
3204 break;
3205 case 2:
3206 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3207 return false;
3208 // Allow 2*r as r+r.
3209 break;
3210 }
3211
3212 return true;
3213 }
3214
3215 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3216 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,DebugLoc dl,SelectionDAG & DAG) const3217 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3218 SelectionDAG &DAG) const {
3219 ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3220 APInt d = C->getAPIntValue();
3221 assert(d != 0 && "Division by zero!");
3222
3223 // Shift the value upfront if it is even, so the LSB is one.
3224 unsigned ShAmt = d.countTrailingZeros();
3225 if (ShAmt) {
3226 // TODO: For UDIV use SRL instead of SRA.
3227 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3228 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3229 d = d.ashr(ShAmt);
3230 }
3231
3232 // Calculate the multiplicative inverse, using Newton's method.
3233 APInt t, xn = d;
3234 while ((t = d*xn) != 1)
3235 xn *= APInt(d.getBitWidth(), 2) - t;
3236
3237 Op2 = DAG.getConstant(xn, Op1.getValueType());
3238 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3239 }
3240
3241 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3242 /// return a DAG expression to select that will generate the same value by
3243 /// multiplying by a magic number. See:
3244 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildSDIV(SDNode * N,SelectionDAG & DAG,std::vector<SDNode * > * Created) const3245 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3246 std::vector<SDNode*>* Created) const {
3247 EVT VT = N->getValueType(0);
3248 DebugLoc dl= N->getDebugLoc();
3249
3250 // Check to see if we can do this.
3251 // FIXME: We should be more aggressive here.
3252 if (!isTypeLegal(VT))
3253 return SDValue();
3254
3255 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3256 APInt::ms magics = d.magic();
3257
3258 // Multiply the numerator (operand 0) by the magic value
3259 // FIXME: We should support doing a MUL in a wider type
3260 SDValue Q;
3261 if (isOperationLegalOrCustom(ISD::MULHS, VT))
3262 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3263 DAG.getConstant(magics.m, VT));
3264 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3265 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3266 N->getOperand(0),
3267 DAG.getConstant(magics.m, VT)).getNode(), 1);
3268 else
3269 return SDValue(); // No mulhs or equvialent
3270 // If d > 0 and m < 0, add the numerator
3271 if (d.isStrictlyPositive() && magics.m.isNegative()) {
3272 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3273 if (Created)
3274 Created->push_back(Q.getNode());
3275 }
3276 // If d < 0 and m > 0, subtract the numerator.
3277 if (d.isNegative() && magics.m.isStrictlyPositive()) {
3278 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3279 if (Created)
3280 Created->push_back(Q.getNode());
3281 }
3282 // Shift right algebraic if shift value is nonzero
3283 if (magics.s > 0) {
3284 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3285 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3286 if (Created)
3287 Created->push_back(Q.getNode());
3288 }
3289 // Extract the sign bit and add it to the quotient
3290 SDValue T =
3291 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3292 getShiftAmountTy(Q.getValueType())));
3293 if (Created)
3294 Created->push_back(T.getNode());
3295 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3296 }
3297
3298 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3299 /// return a DAG expression to select that will generate the same value by
3300 /// multiplying by a magic number. See:
3301 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildUDIV(SDNode * N,SelectionDAG & DAG,std::vector<SDNode * > * Created) const3302 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3303 std::vector<SDNode*>* Created) const {
3304 EVT VT = N->getValueType(0);
3305 DebugLoc dl = N->getDebugLoc();
3306
3307 // Check to see if we can do this.
3308 // FIXME: We should be more aggressive here.
3309 if (!isTypeLegal(VT))
3310 return SDValue();
3311
3312 // FIXME: We should use a narrower constant when the upper
3313 // bits are known to be zero.
3314 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3315 APInt::mu magics = N1C.magicu();
3316
3317 SDValue Q = N->getOperand(0);
3318
3319 // If the divisor is even, we can avoid using the expensive fixup by shifting
3320 // the divided value upfront.
3321 if (magics.a != 0 && !N1C[0]) {
3322 unsigned Shift = N1C.countTrailingZeros();
3323 Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3324 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3325 if (Created)
3326 Created->push_back(Q.getNode());
3327
3328 // Get magic number for the shifted divisor.
3329 magics = N1C.lshr(Shift).magicu(Shift);
3330 assert(magics.a == 0 && "Should use cheap fixup now");
3331 }
3332
3333 // Multiply the numerator (operand 0) by the magic value
3334 // FIXME: We should support doing a MUL in a wider type
3335 if (isOperationLegalOrCustom(ISD::MULHU, VT))
3336 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3337 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3338 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3339 DAG.getConstant(magics.m, VT)).getNode(), 1);
3340 else
3341 return SDValue(); // No mulhu or equvialent
3342 if (Created)
3343 Created->push_back(Q.getNode());
3344
3345 if (magics.a == 0) {
3346 assert(magics.s < N1C.getBitWidth() &&
3347 "We shouldn't generate an undefined shift!");
3348 return DAG.getNode(ISD::SRL, dl, VT, Q,
3349 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3350 } else {
3351 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3352 if (Created)
3353 Created->push_back(NPQ.getNode());
3354 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3355 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3356 if (Created)
3357 Created->push_back(NPQ.getNode());
3358 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3359 if (Created)
3360 Created->push_back(NPQ.getNode());
3361 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3362 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3363 }
3364 }
3365