• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation is designed for use by code generators which use SjLj
11 // based exception handling.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sjljehprepare"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetLowering.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/IRBuilder.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include <set>
36 using namespace llvm;
37 
38 static cl::opt<bool> DisableOldSjLjEH("disable-old-sjlj-eh", cl::Hidden,
39     cl::desc("Disable the old SjLj EH preparation pass"));
40 
41 STATISTIC(NumInvokes, "Number of invokes replaced");
42 STATISTIC(NumUnwinds, "Number of unwinds replaced");
43 STATISTIC(NumSpilled, "Number of registers live across unwind edges");
44 
45 namespace {
46   class SjLjEHPass : public FunctionPass {
47     const TargetLowering *TLI;
48     Type *FunctionContextTy;
49     Constant *RegisterFn;
50     Constant *UnregisterFn;
51     Constant *BuiltinSetjmpFn;
52     Constant *FrameAddrFn;
53     Constant *StackAddrFn;
54     Constant *StackRestoreFn;
55     Constant *LSDAAddrFn;
56     Value *PersonalityFn;
57     Constant *SelectorFn;
58     Constant *ExceptionFn;
59     Constant *CallSiteFn;
60     Constant *DispatchSetupFn;
61     Constant *FuncCtxFn;
62     Value *CallSite;
63     DenseMap<InvokeInst*, BasicBlock*> LPadSuccMap;
64   public:
65     static char ID; // Pass identification, replacement for typeid
SjLjEHPass(const TargetLowering * tli=NULL)66     explicit SjLjEHPass(const TargetLowering *tli = NULL)
67       : FunctionPass(ID), TLI(tli) { }
68     bool doInitialization(Module &M);
69     bool runOnFunction(Function &F);
70 
getAnalysisUsage(AnalysisUsage & AU) const71     virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
getPassName() const72     const char *getPassName() const {
73       return "SJLJ Exception Handling preparation";
74     }
75 
76   private:
77     bool setupEntryBlockAndCallSites(Function &F);
78     Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads);
79     void lowerIncomingArguments(Function &F);
80     void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst*> Invokes);
81 
82     void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
83     void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
84                             SwitchInst *CatchSwitch);
85     void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
86     void splitLandingPad(InvokeInst *II);
87     bool insertSjLjEHSupport(Function &F);
88   };
89 } // end anonymous namespace
90 
91 char SjLjEHPass::ID = 0;
92 
93 // Public Interface To the SjLjEHPass pass.
createSjLjEHPass(const TargetLowering * TLI)94 FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
95   return new SjLjEHPass(TLI);
96 }
97 // doInitialization - Set up decalarations and types needed to process
98 // exceptions.
doInitialization(Module & M)99 bool SjLjEHPass::doInitialization(Module &M) {
100   // Build the function context structure.
101   // builtin_setjmp uses a five word jbuf
102   Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
103   Type *Int32Ty = Type::getInt32Ty(M.getContext());
104   FunctionContextTy =
105     StructType::get(VoidPtrTy,                        // __prev
106                     Int32Ty,                          // call_site
107                     ArrayType::get(Int32Ty, 4),       // __data
108                     VoidPtrTy,                        // __personality
109                     VoidPtrTy,                        // __lsda
110                     ArrayType::get(VoidPtrTy, 5),     // __jbuf
111                     NULL);
112   RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
113                                      Type::getVoidTy(M.getContext()),
114                                      PointerType::getUnqual(FunctionContextTy),
115                                      (Type *)0);
116   UnregisterFn =
117     M.getOrInsertFunction("_Unwind_SjLj_Unregister",
118                           Type::getVoidTy(M.getContext()),
119                           PointerType::getUnqual(FunctionContextTy),
120                           (Type *)0);
121   FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
122   StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
123   StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
124   BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
125   LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
126   SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
127   ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
128   CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
129   DispatchSetupFn
130     = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
131   FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext);
132   PersonalityFn = 0;
133 
134   return true;
135 }
136 
137 /// insertCallSiteStore - Insert a store of the call-site value to the
138 /// function context
insertCallSiteStore(Instruction * I,int Number,Value * CallSite)139 void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
140                                      Value *CallSite) {
141   ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
142                                               Number);
143   // Insert a store of the call-site number
144   new StoreInst(CallSiteNoC, CallSite, true, I);  // volatile
145 }
146 
147 /// splitLandingPad - Split a landing pad. This takes considerable care because
148 /// of PHIs and other nasties. The problem is that the jump table needs to jump
149 /// to the landing pad block. However, the landing pad block can be jumped to
150 /// only by an invoke instruction. So we clone the landingpad instruction into
151 /// its own basic block, have the invoke jump to there. The landingpad
152 /// instruction's basic block's successor is now the target for the jump table.
153 ///
154 /// But because of PHI nodes, we need to create another basic block for the jump
155 /// table to jump to. This is definitely a hack, because the values for the PHI
156 /// nodes may not be defined on the edge from the jump table. But that's okay,
157 /// because the jump table is simply a construct to mimic what is happening in
158 /// the CFG. So the values are mysteriously there, even though there is no value
159 /// for the PHI from the jump table's edge (hence calling this a hack).
splitLandingPad(InvokeInst * II)160 void SjLjEHPass::splitLandingPad(InvokeInst *II) {
161   SmallVector<BasicBlock*, 2> NewBBs;
162   SplitLandingPadPredecessors(II->getUnwindDest(), II->getParent(),
163                               ".1", ".2", this, NewBBs);
164 
165   // Create an empty block so that the jump table has something to jump to
166   // which doesn't have any PHI nodes.
167   BasicBlock *LPad = NewBBs[0];
168   BasicBlock *Succ = *succ_begin(LPad);
169   BasicBlock *JumpTo = BasicBlock::Create(II->getContext(), "jt.land",
170                                           LPad->getParent(), Succ);
171   LPad->getTerminator()->eraseFromParent();
172   BranchInst::Create(JumpTo, LPad);
173   BranchInst::Create(Succ, JumpTo);
174   LPadSuccMap[II] = JumpTo;
175 
176   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
177     PHINode *PN = cast<PHINode>(I);
178     Value *Val = PN->removeIncomingValue(LPad, false);
179     PN->addIncoming(Val, JumpTo);
180   }
181 }
182 
183 /// markInvokeCallSite - Insert code to mark the call_site for this invoke
markInvokeCallSite(InvokeInst * II,int InvokeNo,Value * CallSite,SwitchInst * CatchSwitch)184 void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
185                                     Value *CallSite,
186                                     SwitchInst *CatchSwitch) {
187   ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
188                                               InvokeNo);
189   // The runtime comes back to the dispatcher with the call_site - 1 in
190   // the context. Odd, but there it is.
191   ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
192                                              InvokeNo - 1);
193 
194   // If the unwind edge has phi nodes, split the edge.
195   if (isa<PHINode>(II->getUnwindDest()->begin())) {
196     // FIXME: New EH - This if-condition will be always true in the new scheme.
197     if (II->getUnwindDest()->isLandingPad())
198       splitLandingPad(II);
199     else
200       SplitCriticalEdge(II, 1, this);
201 
202     // If there are any phi nodes left, they must have a single predecessor.
203     while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
204       PN->replaceAllUsesWith(PN->getIncomingValue(0));
205       PN->eraseFromParent();
206     }
207   }
208 
209   // Insert the store of the call site value
210   insertCallSiteStore(II, InvokeNo, CallSite);
211 
212   // Record the call site value for the back end so it stays associated with
213   // the invoke.
214   CallInst::Create(CallSiteFn, CallSiteNoC, "", II);
215 
216   // Add a switch case to our unwind block.
217   if (BasicBlock *SuccBB = LPadSuccMap[II]) {
218     CatchSwitch->addCase(SwitchValC, SuccBB);
219   } else {
220     CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
221   }
222 
223   // We still want this to look like an invoke so we emit the LSDA properly,
224   // so we don't transform the invoke into a call here.
225 }
226 
227 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
228 /// we reach blocks we've already seen.
MarkBlocksLiveIn(BasicBlock * BB,std::set<BasicBlock * > & LiveBBs)229 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
230   if (!LiveBBs.insert(BB).second) return; // already been here.
231 
232   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
233     MarkBlocksLiveIn(*PI, LiveBBs);
234 }
235 
236 /// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
237 /// we spill into a stack location, guaranteeing that there is nothing live
238 /// across the unwind edge.  This process also splits all critical edges
239 /// coming out of invoke's.
240 /// FIXME: Move this function to a common utility file (Local.cpp?) so
241 /// both SjLj and LowerInvoke can use it.
242 void SjLjEHPass::
splitLiveRangesAcrossInvokes(SmallVector<InvokeInst *,16> & Invokes)243 splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
244   // First step, split all critical edges from invoke instructions.
245   for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
246     InvokeInst *II = Invokes[i];
247     SplitCriticalEdge(II, 0, this);
248 
249     // FIXME: New EH - This if-condition will be always true in the new scheme.
250     if (II->getUnwindDest()->isLandingPad())
251       splitLandingPad(II);
252     else
253       SplitCriticalEdge(II, 1, this);
254 
255     assert(!isa<PHINode>(II->getNormalDest()) &&
256            !isa<PHINode>(II->getUnwindDest()) &&
257            "Critical edge splitting left single entry phi nodes?");
258   }
259 
260   Function *F = Invokes.back()->getParent()->getParent();
261 
262   // To avoid having to handle incoming arguments specially, we lower each arg
263   // to a copy instruction in the entry block.  This ensures that the argument
264   // value itself cannot be live across the entry block.
265   BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
266   while (isa<AllocaInst>(AfterAllocaInsertPt) &&
267         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
268     ++AfterAllocaInsertPt;
269   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
270        AI != E; ++AI) {
271     Type *Ty = AI->getType();
272     // Aggregate types can't be cast, but are legal argument types, so we have
273     // to handle them differently. We use an extract/insert pair as a
274     // lightweight method to achieve the same goal.
275     if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
276       Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
277       Instruction *NI = InsertValueInst::Create(AI, EI, 0);
278       NI->insertAfter(EI);
279       AI->replaceAllUsesWith(NI);
280       // Set the operand of the instructions back to the AllocaInst.
281       EI->setOperand(0, AI);
282       NI->setOperand(0, AI);
283     } else {
284       // This is always a no-op cast because we're casting AI to AI->getType()
285       // so src and destination types are identical. BitCast is the only
286       // possibility.
287       CastInst *NC = new BitCastInst(
288         AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
289       AI->replaceAllUsesWith(NC);
290       // Set the operand of the cast instruction back to the AllocaInst.
291       // Normally it's forbidden to replace a CastInst's operand because it
292       // could cause the opcode to reflect an illegal conversion. However,
293       // we're replacing it here with the same value it was constructed with.
294       // We do this because the above replaceAllUsesWith() clobbered the
295       // operand, but we want this one to remain.
296       NC->setOperand(0, AI);
297     }
298   }
299 
300   // Finally, scan the code looking for instructions with bad live ranges.
301   for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
302     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
303       // Ignore obvious cases we don't have to handle.  In particular, most
304       // instructions either have no uses or only have a single use inside the
305       // current block.  Ignore them quickly.
306       Instruction *Inst = II;
307       if (Inst->use_empty()) continue;
308       if (Inst->hasOneUse() &&
309           cast<Instruction>(Inst->use_back())->getParent() == BB &&
310           !isa<PHINode>(Inst->use_back())) continue;
311 
312       // If this is an alloca in the entry block, it's not a real register
313       // value.
314       if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
315         if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
316           continue;
317 
318       // Avoid iterator invalidation by copying users to a temporary vector.
319       SmallVector<Instruction*,16> Users;
320       for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
321            UI != E; ++UI) {
322         Instruction *User = cast<Instruction>(*UI);
323         if (User->getParent() != BB || isa<PHINode>(User))
324           Users.push_back(User);
325       }
326 
327       // Find all of the blocks that this value is live in.
328       std::set<BasicBlock*> LiveBBs;
329       LiveBBs.insert(Inst->getParent());
330       while (!Users.empty()) {
331         Instruction *U = Users.back();
332         Users.pop_back();
333 
334         if (!isa<PHINode>(U)) {
335           MarkBlocksLiveIn(U->getParent(), LiveBBs);
336         } else {
337           // Uses for a PHI node occur in their predecessor block.
338           PHINode *PN = cast<PHINode>(U);
339           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
340             if (PN->getIncomingValue(i) == Inst)
341               MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
342         }
343       }
344 
345       // Now that we know all of the blocks that this thing is live in, see if
346       // it includes any of the unwind locations.
347       bool NeedsSpill = false;
348       for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
349         BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
350         if (UnwindBlock != BB && LiveBBs.count(UnwindBlock))
351           NeedsSpill = true;
352       }
353 
354       // If we decided we need a spill, do it.
355       // FIXME: Spilling this way is overkill, as it forces all uses of
356       // the value to be reloaded from the stack slot, even those that aren't
357       // in the unwind blocks. We should be more selective.
358       if (NeedsSpill) {
359         ++NumSpilled;
360         DemoteRegToStack(*Inst, true);
361       }
362     }
363 }
364 
365 /// CreateLandingPadLoad - Load the exception handling values and insert them
366 /// into a structure.
CreateLandingPadLoad(Function & F,Value * ExnAddr,Value * SelAddr,BasicBlock::iterator InsertPt)367 static Instruction *CreateLandingPadLoad(Function &F, Value *ExnAddr,
368                                          Value *SelAddr,
369                                          BasicBlock::iterator InsertPt) {
370   Value *Exn = new LoadInst(ExnAddr, "exn", false,
371                             InsertPt);
372   Type *Ty = Type::getInt8PtrTy(F.getContext());
373   Exn = CastInst::Create(Instruction::IntToPtr, Exn, Ty, "", InsertPt);
374   Value *Sel = new LoadInst(SelAddr, "sel", false, InsertPt);
375 
376   Ty = StructType::get(Exn->getType(), Sel->getType(), NULL);
377   InsertValueInst *LPadVal = InsertValueInst::Create(llvm::UndefValue::get(Ty),
378                                                      Exn, 0,
379                                                      "lpad.val", InsertPt);
380   return InsertValueInst::Create(LPadVal, Sel, 1, "lpad.val", InsertPt);
381 }
382 
383 /// ReplaceLandingPadVal - Replace the landingpad instruction's value with a
384 /// load from the stored values (via CreateLandingPadLoad). This looks through
385 /// PHI nodes, and removes them if they are dead.
ReplaceLandingPadVal(Function & F,Instruction * Inst,Value * ExnAddr,Value * SelAddr)386 static void ReplaceLandingPadVal(Function &F, Instruction *Inst, Value *ExnAddr,
387                                  Value *SelAddr) {
388   if (Inst->use_empty()) return;
389 
390   while (!Inst->use_empty()) {
391     Instruction *I = cast<Instruction>(Inst->use_back());
392 
393     if (PHINode *PN = dyn_cast<PHINode>(I)) {
394       ReplaceLandingPadVal(F, PN, ExnAddr, SelAddr);
395       if (PN->use_empty()) PN->eraseFromParent();
396       continue;
397     }
398 
399     I->replaceUsesOfWith(Inst, CreateLandingPadLoad(F, ExnAddr, SelAddr, I));
400   }
401 }
402 
insertSjLjEHSupport(Function & F)403 bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
404   SmallVector<ReturnInst*,16> Returns;
405   SmallVector<UnwindInst*,16> Unwinds;
406   SmallVector<InvokeInst*,16> Invokes;
407 
408   // Look through the terminators of the basic blocks to find invokes, returns
409   // and unwinds.
410   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
411     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
412       // Remember all return instructions in case we insert an invoke into this
413       // function.
414       Returns.push_back(RI);
415     } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
416       Invokes.push_back(II);
417     } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
418       Unwinds.push_back(UI);
419     }
420   }
421 
422   NumInvokes += Invokes.size();
423   NumUnwinds += Unwinds.size();
424 
425   // If we don't have any invokes, there's nothing to do.
426   if (Invokes.empty()) return false;
427 
428   // Find the eh.selector.*, eh.exception and alloca calls.
429   //
430   // Remember any allocas() that aren't in the entry block, as the
431   // jmpbuf saved SP will need to be updated for them.
432   //
433   // We'll use the first eh.selector to determine the right personality
434   // function to use. For SJLJ, we always use the same personality for the
435   // whole function, not on a per-selector basis.
436   // FIXME: That's a bit ugly. Better way?
437   SmallVector<CallInst*,16> EH_Selectors;
438   SmallVector<CallInst*,16> EH_Exceptions;
439   SmallVector<Instruction*,16> JmpbufUpdatePoints;
440 
441   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
442     // Note: Skip the entry block since there's nothing there that interests
443     // us. eh.selector and eh.exception shouldn't ever be there, and we
444     // want to disregard any allocas that are there.
445     //
446     // FIXME: This is awkward. The new EH scheme won't need to skip the entry
447     //        block.
448     if (BB == F.begin()) {
449       if (InvokeInst *II = dyn_cast<InvokeInst>(F.begin()->getTerminator())) {
450         // FIXME: This will be always non-NULL in the new EH.
451         if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
452           if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
453       }
454 
455       continue;
456     }
457 
458     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
459       if (CallInst *CI = dyn_cast<CallInst>(I)) {
460         if (CI->getCalledFunction() == SelectorFn) {
461           if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
462           EH_Selectors.push_back(CI);
463         } else if (CI->getCalledFunction() == ExceptionFn) {
464           EH_Exceptions.push_back(CI);
465         } else if (CI->getCalledFunction() == StackRestoreFn) {
466           JmpbufUpdatePoints.push_back(CI);
467         }
468       } else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
469         JmpbufUpdatePoints.push_back(AI);
470       } else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
471         // FIXME: This will be always non-NULL in the new EH.
472         if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
473           if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
474       }
475     }
476   }
477 
478   // If we don't have any eh.selector calls, we can't determine the personality
479   // function. Without a personality function, we can't process exceptions.
480   if (!PersonalityFn) return false;
481 
482   // We have invokes, so we need to add register/unregister calls to get this
483   // function onto the global unwind stack.
484   //
485   // First thing we need to do is scan the whole function for values that are
486   // live across unwind edges.  Each value that is live across an unwind edge we
487   // spill into a stack location, guaranteeing that there is nothing live across
488   // the unwind edge.  This process also splits all critical edges coming out of
489   // invoke's.
490   splitLiveRangesAcrossInvokes(Invokes);
491 
492 
493   SmallVector<LandingPadInst*, 16> LandingPads;
494   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
495     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
496       // FIXME: This will be always non-NULL in the new EH.
497       if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
498         LandingPads.push_back(LPI);
499   }
500 
501 
502   BasicBlock *EntryBB = F.begin();
503   // Create an alloca for the incoming jump buffer ptr and the new jump buffer
504   // that needs to be restored on all exits from the function.  This is an
505   // alloca because the value needs to be added to the global context list.
506   unsigned Align = 4; // FIXME: Should be a TLI check?
507   AllocaInst *FunctionContext =
508     new AllocaInst(FunctionContextTy, 0, Align,
509                    "fcn_context", F.begin()->begin());
510 
511   Value *Idxs[2];
512   Type *Int32Ty = Type::getInt32Ty(F.getContext());
513   Value *Zero = ConstantInt::get(Int32Ty, 0);
514   // We need to also keep around a reference to the call_site field
515   Idxs[0] = Zero;
516   Idxs[1] = ConstantInt::get(Int32Ty, 1);
517   CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, "call_site",
518                                        EntryBB->getTerminator());
519 
520   // The exception selector comes back in context->data[1]
521   Idxs[1] = ConstantInt::get(Int32Ty, 2);
522   Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, "fc_data",
523                                             EntryBB->getTerminator());
524   Idxs[1] = ConstantInt::get(Int32Ty, 1);
525   Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
526                                                   "exc_selector_gep",
527                                                   EntryBB->getTerminator());
528   // The exception value comes back in context->data[0]
529   Idxs[1] = Zero;
530   Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
531                                                    "exception_gep",
532                                                    EntryBB->getTerminator());
533 
534   // The result of the eh.selector call will be replaced with a a reference to
535   // the selector value returned in the function context. We leave the selector
536   // itself so the EH analysis later can use it.
537   for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
538     CallInst *I = EH_Selectors[i];
539     Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
540     I->replaceAllUsesWith(SelectorVal);
541   }
542 
543   // eh.exception calls are replaced with references to the proper location in
544   // the context. Unlike eh.selector, the eh.exception calls are removed
545   // entirely.
546   for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
547     CallInst *I = EH_Exceptions[i];
548     // Possible for there to be duplicates, so check to make sure the
549     // instruction hasn't already been removed.
550     if (!I->getParent()) continue;
551     Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
552     Type *Ty = Type::getInt8PtrTy(F.getContext());
553     Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
554 
555     I->replaceAllUsesWith(Val);
556     I->eraseFromParent();
557   }
558 
559   for (unsigned i = 0, e = LandingPads.size(); i != e; ++i)
560     ReplaceLandingPadVal(F, LandingPads[i], ExceptionAddr, SelectorAddr);
561 
562   // The entry block changes to have the eh.sjlj.setjmp, with a conditional
563   // branch to a dispatch block for non-zero returns. If we return normally,
564   // we're not handling an exception and just register the function context and
565   // continue.
566 
567   // Create the dispatch block.  The dispatch block is basically a big switch
568   // statement that goes to all of the invoke landing pads.
569   BasicBlock *DispatchBlock =
570     BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
571 
572   // Insert a load of the callsite in the dispatch block, and a switch on its
573   // value. By default, we issue a trap statement.
574   BasicBlock *TrapBlock =
575     BasicBlock::Create(F.getContext(), "trapbb", &F);
576   CallInst::Create(Intrinsic::getDeclaration(F.getParent(), Intrinsic::trap),
577                    "", TrapBlock);
578   new UnreachableInst(F.getContext(), TrapBlock);
579 
580   Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
581                                      DispatchBlock);
582   SwitchInst *DispatchSwitch =
583     SwitchInst::Create(DispatchLoad, TrapBlock, Invokes.size(),
584                        DispatchBlock);
585   // Split the entry block to insert the conditional branch for the setjmp.
586   BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
587                                                    "eh.sjlj.setjmp.cont");
588 
589   // Populate the Function Context
590   //   1. LSDA address
591   //   2. Personality function address
592   //   3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)
593 
594   // LSDA address
595   Idxs[0] = Zero;
596   Idxs[1] = ConstantInt::get(Int32Ty, 4);
597   Value *LSDAFieldPtr =
598     GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
599                               EntryBB->getTerminator());
600   Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
601                                  EntryBB->getTerminator());
602   new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
603 
604   Idxs[1] = ConstantInt::get(Int32Ty, 3);
605   Value *PersonalityFieldPtr =
606     GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
607                               EntryBB->getTerminator());
608   new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
609                 EntryBB->getTerminator());
610 
611   // Save the frame pointer.
612   Idxs[1] = ConstantInt::get(Int32Ty, 5);
613   Value *JBufPtr
614     = GetElementPtrInst::Create(FunctionContext, Idxs, "jbuf_gep",
615                                 EntryBB->getTerminator());
616   Idxs[1] = ConstantInt::get(Int32Ty, 0);
617   Value *FramePtr =
618     GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
619                               EntryBB->getTerminator());
620 
621   Value *Val = CallInst::Create(FrameAddrFn,
622                                 ConstantInt::get(Int32Ty, 0),
623                                 "fp",
624                                 EntryBB->getTerminator());
625   new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
626 
627   // Save the stack pointer.
628   Idxs[1] = ConstantInt::get(Int32Ty, 2);
629   Value *StackPtr =
630     GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
631                               EntryBB->getTerminator());
632 
633   Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
634   new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
635 
636   // Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
637   Value *SetjmpArg =
638     CastInst::Create(Instruction::BitCast, JBufPtr,
639                      Type::getInt8PtrTy(F.getContext()), "",
640                      EntryBB->getTerminator());
641   Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
642                                         "",
643                                         EntryBB->getTerminator());
644 
645   // Add a call to dispatch_setup after the setjmp call. This is expanded to any
646   // target-specific setup that needs to be done.
647   CallInst::Create(DispatchSetupFn, DispatchVal, "", EntryBB->getTerminator());
648 
649   // check the return value of the setjmp. non-zero goes to dispatcher.
650   Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
651                                  ICmpInst::ICMP_EQ, DispatchVal, Zero,
652                                  "notunwind");
653   // Nuke the uncond branch.
654   EntryBB->getTerminator()->eraseFromParent();
655 
656   // Put in a new condbranch in its place.
657   BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
658 
659   // Register the function context and make sure it's known to not throw
660   CallInst *Register =
661     CallInst::Create(RegisterFn, FunctionContext, "",
662                      ContBlock->getTerminator());
663   Register->setDoesNotThrow();
664 
665   // At this point, we are all set up, update the invoke instructions to mark
666   // their call_site values, and fill in the dispatch switch accordingly.
667   for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
668     markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
669 
670   // Mark call instructions that aren't nounwind as no-action (call_site ==
671   // -1). Skip the entry block, as prior to then, no function context has been
672   // created for this function and any unexpected exceptions thrown will go
673   // directly to the caller's context, which is what we want anyway, so no need
674   // to do anything here.
675   for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
676     for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
677       if (CallInst *CI = dyn_cast<CallInst>(I)) {
678         // Ignore calls to the EH builtins (eh.selector, eh.exception)
679         Constant *Callee = CI->getCalledFunction();
680         if (Callee != SelectorFn && Callee != ExceptionFn
681             && !CI->doesNotThrow())
682           insertCallSiteStore(CI, -1, CallSite);
683       } else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
684         insertCallSiteStore(RI, -1, CallSite);
685       }
686   }
687 
688   // Replace all unwinds with a branch to the unwind handler.
689   // ??? Should this ever happen with sjlj exceptions?
690   for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
691     BranchInst::Create(TrapBlock, Unwinds[i]);
692     Unwinds[i]->eraseFromParent();
693   }
694 
695   // Following any allocas not in the entry block, update the saved SP in the
696   // jmpbuf to the new value.
697   for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
698     Instruction *AI = JmpbufUpdatePoints[i];
699     Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
700     StackAddr->insertAfter(AI);
701     Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
702     StoreStackAddr->insertAfter(StackAddr);
703   }
704 
705   // Finally, for any returns from this function, if this function contains an
706   // invoke, add a call to unregister the function context.
707   for (unsigned i = 0, e = Returns.size(); i != e; ++i)
708     CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
709 
710   return true;
711 }
712 
713 /// setupFunctionContext - Allocate the function context on the stack and fill
714 /// it with all of the data that we know at this point.
715 Value *SjLjEHPass::
setupFunctionContext(Function & F,ArrayRef<LandingPadInst * > LPads)716 setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
717   BasicBlock *EntryBB = F.begin();
718 
719   // Create an alloca for the incoming jump buffer ptr and the new jump buffer
720   // that needs to be restored on all exits from the function. This is an alloca
721   // because the value needs to be added to the global context list.
722   unsigned Align =
723     TLI->getTargetData()->getPrefTypeAlignment(FunctionContextTy);
724   AllocaInst *FuncCtx =
725     new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin());
726 
727   // Fill in the function context structure.
728   Value *Idxs[2];
729   Type *Int32Ty = Type::getInt32Ty(F.getContext());
730   Value *Zero = ConstantInt::get(Int32Ty, 0);
731   Value *One = ConstantInt::get(Int32Ty, 1);
732 
733   // Keep around a reference to the call_site field.
734   Idxs[0] = Zero;
735   Idxs[1] = One;
736   CallSite = GetElementPtrInst::Create(FuncCtx, Idxs, "call_site",
737                                        EntryBB->getTerminator());
738 
739   // Reference the __data field.
740   Idxs[1] = ConstantInt::get(Int32Ty, 2);
741   Value *FCData = GetElementPtrInst::Create(FuncCtx, Idxs, "__data",
742                                             EntryBB->getTerminator());
743 
744   // The exception value comes back in context->__data[0].
745   Idxs[1] = Zero;
746   Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
747                                                    "exception_gep",
748                                                    EntryBB->getTerminator());
749 
750   // The exception selector comes back in context->__data[1].
751   Idxs[1] = One;
752   Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
753                                                   "exn_selector_gep",
754                                                   EntryBB->getTerminator());
755 
756   for (unsigned I = 0, E = LPads.size(); I != E; ++I) {
757     LandingPadInst *LPI = LPads[I];
758     IRBuilder<> Builder(LPI->getParent()->getFirstInsertionPt());
759 
760     Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val");
761     ExnVal = Builder.CreateIntToPtr(ExnVal, Type::getInt8PtrTy(F.getContext()));
762     Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val");
763 
764     Type *LPadType = LPI->getType();
765     Value *LPadVal = UndefValue::get(LPadType);
766     LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val");
767     LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val");
768 
769     LPI->replaceAllUsesWith(LPadVal);
770   }
771 
772   // Personality function
773   Idxs[1] = ConstantInt::get(Int32Ty, 3);
774   if (!PersonalityFn)
775     PersonalityFn = LPads[0]->getPersonalityFn();
776   Value *PersonalityFieldPtr =
777     GetElementPtrInst::Create(FuncCtx, Idxs, "pers_fn_gep",
778                               EntryBB->getTerminator());
779   new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
780                 EntryBB->getTerminator());
781 
782   // LSDA address
783   Idxs[1] = ConstantInt::get(Int32Ty, 4);
784   Value *LSDAFieldPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "lsda_gep",
785                                                   EntryBB->getTerminator());
786   Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
787                                  EntryBB->getTerminator());
788   new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
789 
790   return FuncCtx;
791 }
792 
793 /// lowerIncomingArguments - To avoid having to handle incoming arguments
794 /// specially, we lower each arg to a copy instruction in the entry block. This
795 /// ensures that the argument value itself cannot be live out of the entry
796 /// block.
lowerIncomingArguments(Function & F)797 void SjLjEHPass::lowerIncomingArguments(Function &F) {
798   BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
799   while (isa<AllocaInst>(AfterAllocaInsPt) &&
800          isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
801     ++AfterAllocaInsPt;
802 
803   for (Function::arg_iterator
804          AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
805     Type *Ty = AI->getType();
806 
807     // Aggregate types can't be cast, but are legal argument types, so we have
808     // to handle them differently. We use an extract/insert pair as a
809     // lightweight method to achieve the same goal.
810     if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
811       Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt);
812       Instruction *NI = InsertValueInst::Create(AI, EI, 0);
813       NI->insertAfter(EI);
814       AI->replaceAllUsesWith(NI);
815 
816       // Set the operand of the instructions back to the AllocaInst.
817       EI->setOperand(0, AI);
818       NI->setOperand(0, AI);
819     } else {
820       // This is always a no-op cast because we're casting AI to AI->getType()
821       // so src and destination types are identical. BitCast is the only
822       // possibility.
823       CastInst *NC =
824         new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
825                         AfterAllocaInsPt);
826       AI->replaceAllUsesWith(NC);
827 
828       // Set the operand of the cast instruction back to the AllocaInst.
829       // Normally it's forbidden to replace a CastInst's operand because it
830       // could cause the opcode to reflect an illegal conversion. However, we're
831       // replacing it here with the same value it was constructed with.  We do
832       // this because the above replaceAllUsesWith() clobbered the operand, but
833       // we want this one to remain.
834       NC->setOperand(0, AI);
835     }
836   }
837 }
838 
839 /// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
840 /// edge and spill them.
lowerAcrossUnwindEdges(Function & F,ArrayRef<InvokeInst * > Invokes)841 void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
842                                         ArrayRef<InvokeInst*> Invokes) {
843   // Finally, scan the code looking for instructions with bad live ranges.
844   for (Function::iterator
845          BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
846     for (BasicBlock::iterator
847            II = BB->begin(), IIE = BB->end(); II != IIE; ++II) {
848       // Ignore obvious cases we don't have to handle. In particular, most
849       // instructions either have no uses or only have a single use inside the
850       // current block. Ignore them quickly.
851       Instruction *Inst = II;
852       if (Inst->use_empty()) continue;
853       if (Inst->hasOneUse() &&
854           cast<Instruction>(Inst->use_back())->getParent() == BB &&
855           !isa<PHINode>(Inst->use_back())) continue;
856 
857       // If this is an alloca in the entry block, it's not a real register
858       // value.
859       if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
860         if (isa<ConstantInt>(AI->getArraySize()) && BB == F.begin())
861           continue;
862 
863       // Avoid iterator invalidation by copying users to a temporary vector.
864       SmallVector<Instruction*, 16> Users;
865       for (Value::use_iterator
866              UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) {
867         Instruction *User = cast<Instruction>(*UI);
868         if (User->getParent() != BB || isa<PHINode>(User))
869           Users.push_back(User);
870       }
871 
872       // Find all of the blocks that this value is live in.
873       std::set<BasicBlock*> LiveBBs;
874       LiveBBs.insert(Inst->getParent());
875       while (!Users.empty()) {
876         Instruction *U = Users.back();
877         Users.pop_back();
878 
879         if (!isa<PHINode>(U)) {
880           MarkBlocksLiveIn(U->getParent(), LiveBBs);
881         } else {
882           // Uses for a PHI node occur in their predecessor block.
883           PHINode *PN = cast<PHINode>(U);
884           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
885             if (PN->getIncomingValue(i) == Inst)
886               MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
887         }
888       }
889 
890       // Now that we know all of the blocks that this thing is live in, see if
891       // it includes any of the unwind locations.
892       bool NeedsSpill = false;
893       for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
894         BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
895         if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
896           NeedsSpill = true;
897         }
898       }
899 
900       // If we decided we need a spill, do it.
901       // FIXME: Spilling this way is overkill, as it forces all uses of
902       // the value to be reloaded from the stack slot, even those that aren't
903       // in the unwind blocks. We should be more selective.
904       if (NeedsSpill) {
905         ++NumSpilled;
906         DemoteRegToStack(*Inst, true);
907       }
908     }
909   }
910 }
911 
912 /// setupEntryBlockAndCallSites - Setup the entry block by creating and filling
913 /// the function context and marking the call sites with the appropriate
914 /// values. These values are used by the DWARF EH emitter.
setupEntryBlockAndCallSites(Function & F)915 bool SjLjEHPass::setupEntryBlockAndCallSites(Function &F) {
916   SmallVector<ReturnInst*,     16> Returns;
917   SmallVector<InvokeInst*,     16> Invokes;
918   SmallVector<LandingPadInst*, 16> LPads;
919 
920   // Look through the terminators of the basic blocks to find invokes.
921   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
922     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
923       Invokes.push_back(II);
924       LPads.push_back(II->getUnwindDest()->getLandingPadInst());
925     } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
926       Returns.push_back(RI);
927     }
928 
929   if (Invokes.empty()) return false;
930 
931   lowerIncomingArguments(F);
932   lowerAcrossUnwindEdges(F, Invokes);
933 
934   Value *FuncCtx = setupFunctionContext(F, LPads);
935   BasicBlock *EntryBB = F.begin();
936   Type *Int32Ty = Type::getInt32Ty(F.getContext());
937 
938   Value *Idxs[2] = {
939     ConstantInt::get(Int32Ty, 0), 0
940   };
941 
942   // Get a reference to the jump buffer.
943   Idxs[1] = ConstantInt::get(Int32Ty, 5);
944   Value *JBufPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "jbuf_gep",
945                                              EntryBB->getTerminator());
946 
947   // Save the frame pointer.
948   Idxs[1] = ConstantInt::get(Int32Ty, 0);
949   Value *FramePtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
950                                               EntryBB->getTerminator());
951 
952   Value *Val = CallInst::Create(FrameAddrFn,
953                                 ConstantInt::get(Int32Ty, 0),
954                                 "fp",
955                                 EntryBB->getTerminator());
956   new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
957 
958   // Save the stack pointer.
959   Idxs[1] = ConstantInt::get(Int32Ty, 2);
960   Value *StackPtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
961                                               EntryBB->getTerminator());
962 
963   Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
964   new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
965 
966   // Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
967   Value *SetjmpArg = CastInst::Create(Instruction::BitCast, JBufPtr,
968                                       Type::getInt8PtrTy(F.getContext()), "",
969                                       EntryBB->getTerminator());
970   CallInst::Create(BuiltinSetjmpFn, SetjmpArg, "", EntryBB->getTerminator());
971 
972   // Store a pointer to the function context so that the back-end will know
973   // where to look for it.
974   Value *FuncCtxArg = CastInst::Create(Instruction::BitCast, FuncCtx,
975                                        Type::getInt8PtrTy(F.getContext()), "",
976                                        EntryBB->getTerminator());
977   CallInst::Create(FuncCtxFn, FuncCtxArg, "", EntryBB->getTerminator());
978 
979   // At this point, we are all set up, update the invoke instructions to mark
980   // their call_site values.
981   for (unsigned I = 0, E = Invokes.size(); I != E; ++I) {
982     insertCallSiteStore(Invokes[I], I + 1, CallSite);
983 
984     ConstantInt *CallSiteNum =
985       ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);
986 
987     // Record the call site value for the back end so it stays associated with
988     // the invoke.
989     CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]);
990   }
991 
992   // Mark call instructions that aren't nounwind as no-action (call_site ==
993   // -1). Skip the entry block, as prior to then, no function context has been
994   // created for this function and any unexpected exceptions thrown will go
995   // directly to the caller's context, which is what we want anyway, so no need
996   // to do anything here.
997   for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;)
998     for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
999       if (CallInst *CI = dyn_cast<CallInst>(I)) {
1000         if (!CI->doesNotThrow())
1001           insertCallSiteStore(CI, -1, CallSite);
1002       } else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
1003         insertCallSiteStore(RI, -1, CallSite);
1004       }
1005 
1006   // Register the function context and make sure it's known to not throw
1007   CallInst *Register = CallInst::Create(RegisterFn, FuncCtx, "",
1008                                         EntryBB->getTerminator());
1009   Register->setDoesNotThrow();
1010 
1011   // Finally, for any returns from this function, if this function contains an
1012   // invoke, add a call to unregister the function context.
1013   for (unsigned I = 0, E = Returns.size(); I != E; ++I)
1014     CallInst::Create(UnregisterFn, FuncCtx, "", Returns[I]);
1015 
1016   return true;
1017 }
1018 
runOnFunction(Function & F)1019 bool SjLjEHPass::runOnFunction(Function &F) {
1020   bool Res = false;
1021   if (!DisableOldSjLjEH)
1022     Res = insertSjLjEHSupport(F);
1023   else
1024     Res = setupEntryBlockAndCallSites(F);
1025   return Res;
1026 }
1027