1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/Type.h"
22 using namespace llvm;
23
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)24 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
25 Instruction *InsertBefore)
26 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
27
28 // If requested, insert this instruction into a basic block...
29 if (InsertBefore) {
30 BasicBlock *BB = InsertBefore->getParent();
31 assert(BB && "Instruction to insert before is not in a basic block!");
32 BB->getInstList().insert(InsertBefore->getIterator(), this);
33 }
34 }
35
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)36 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
37 BasicBlock *InsertAtEnd)
38 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
39
40 // append this instruction into the basic block
41 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
42 InsertAtEnd->getInstList().push_back(this);
43 }
44
~Instruction()45 Instruction::~Instruction() {
46 assert(!Parent && "Instruction still linked in the program!");
47 if (hasMetadataHashEntry())
48 clearMetadataHashEntries();
49 }
50
51
setParent(BasicBlock * P)52 void Instruction::setParent(BasicBlock *P) {
53 Parent = P;
54 }
55
getModule() const56 const Module *Instruction::getModule() const {
57 return getParent()->getModule();
58 }
59
getFunction() const60 const Function *Instruction::getFunction() const {
61 return getParent()->getParent();
62 }
63
removeFromParent()64 void Instruction::removeFromParent() {
65 getParent()->getInstList().remove(getIterator());
66 }
67
eraseFromParent()68 iplist<Instruction>::iterator Instruction::eraseFromParent() {
69 return getParent()->getInstList().erase(getIterator());
70 }
71
72 /// Insert an unlinked instruction into a basic block immediately before the
73 /// specified instruction.
insertBefore(Instruction * InsertPos)74 void Instruction::insertBefore(Instruction *InsertPos) {
75 InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
76 }
77
78 /// Insert an unlinked instruction into a basic block immediately after the
79 /// specified instruction.
insertAfter(Instruction * InsertPos)80 void Instruction::insertAfter(Instruction *InsertPos) {
81 InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
82 this);
83 }
84
85 /// Unlink this instruction from its current basic block and insert it into the
86 /// basic block that MovePos lives in, right before MovePos.
moveBefore(Instruction * MovePos)87 void Instruction::moveBefore(Instruction *MovePos) {
88 moveBefore(*MovePos->getParent(), MovePos->getIterator());
89 }
90
moveAfter(Instruction * MovePos)91 void Instruction::moveAfter(Instruction *MovePos) {
92 moveBefore(*MovePos->getParent(), ++MovePos->getIterator());
93 }
94
moveBefore(BasicBlock & BB,SymbolTableList<Instruction>::iterator I)95 void Instruction::moveBefore(BasicBlock &BB,
96 SymbolTableList<Instruction>::iterator I) {
97 assert(I == BB.end() || I->getParent() == &BB);
98 BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
99 }
100
setHasNoUnsignedWrap(bool b)101 void Instruction::setHasNoUnsignedWrap(bool b) {
102 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
103 }
104
setHasNoSignedWrap(bool b)105 void Instruction::setHasNoSignedWrap(bool b) {
106 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
107 }
108
setIsExact(bool b)109 void Instruction::setIsExact(bool b) {
110 cast<PossiblyExactOperator>(this)->setIsExact(b);
111 }
112
hasNoUnsignedWrap() const113 bool Instruction::hasNoUnsignedWrap() const {
114 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
115 }
116
hasNoSignedWrap() const117 bool Instruction::hasNoSignedWrap() const {
118 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
119 }
120
dropPoisonGeneratingFlags()121 void Instruction::dropPoisonGeneratingFlags() {
122 switch (getOpcode()) {
123 case Instruction::Add:
124 case Instruction::Sub:
125 case Instruction::Mul:
126 case Instruction::Shl:
127 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
128 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
129 break;
130
131 case Instruction::UDiv:
132 case Instruction::SDiv:
133 case Instruction::AShr:
134 case Instruction::LShr:
135 cast<PossiblyExactOperator>(this)->setIsExact(false);
136 break;
137
138 case Instruction::GetElementPtr:
139 cast<GetElementPtrInst>(this)->setIsInBounds(false);
140 break;
141 }
142 }
143
isExact() const144 bool Instruction::isExact() const {
145 return cast<PossiblyExactOperator>(this)->isExact();
146 }
147
setFast(bool B)148 void Instruction::setFast(bool B) {
149 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
150 cast<FPMathOperator>(this)->setFast(B);
151 }
152
setHasAllowReassoc(bool B)153 void Instruction::setHasAllowReassoc(bool B) {
154 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
155 cast<FPMathOperator>(this)->setHasAllowReassoc(B);
156 }
157
setHasNoNaNs(bool B)158 void Instruction::setHasNoNaNs(bool B) {
159 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
160 cast<FPMathOperator>(this)->setHasNoNaNs(B);
161 }
162
setHasNoInfs(bool B)163 void Instruction::setHasNoInfs(bool B) {
164 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
165 cast<FPMathOperator>(this)->setHasNoInfs(B);
166 }
167
setHasNoSignedZeros(bool B)168 void Instruction::setHasNoSignedZeros(bool B) {
169 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
170 cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
171 }
172
setHasAllowReciprocal(bool B)173 void Instruction::setHasAllowReciprocal(bool B) {
174 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
175 cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
176 }
177
setHasApproxFunc(bool B)178 void Instruction::setHasApproxFunc(bool B) {
179 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
180 cast<FPMathOperator>(this)->setHasApproxFunc(B);
181 }
182
setFastMathFlags(FastMathFlags FMF)183 void Instruction::setFastMathFlags(FastMathFlags FMF) {
184 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
185 cast<FPMathOperator>(this)->setFastMathFlags(FMF);
186 }
187
copyFastMathFlags(FastMathFlags FMF)188 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
189 assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
190 cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
191 }
192
isFast() const193 bool Instruction::isFast() const {
194 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
195 return cast<FPMathOperator>(this)->isFast();
196 }
197
hasAllowReassoc() const198 bool Instruction::hasAllowReassoc() const {
199 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
200 return cast<FPMathOperator>(this)->hasAllowReassoc();
201 }
202
hasNoNaNs() const203 bool Instruction::hasNoNaNs() const {
204 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
205 return cast<FPMathOperator>(this)->hasNoNaNs();
206 }
207
hasNoInfs() const208 bool Instruction::hasNoInfs() const {
209 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
210 return cast<FPMathOperator>(this)->hasNoInfs();
211 }
212
hasNoSignedZeros() const213 bool Instruction::hasNoSignedZeros() const {
214 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
215 return cast<FPMathOperator>(this)->hasNoSignedZeros();
216 }
217
hasAllowReciprocal() const218 bool Instruction::hasAllowReciprocal() const {
219 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
220 return cast<FPMathOperator>(this)->hasAllowReciprocal();
221 }
222
hasAllowContract() const223 bool Instruction::hasAllowContract() const {
224 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
225 return cast<FPMathOperator>(this)->hasAllowContract();
226 }
227
hasApproxFunc() const228 bool Instruction::hasApproxFunc() const {
229 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
230 return cast<FPMathOperator>(this)->hasApproxFunc();
231 }
232
getFastMathFlags() const233 FastMathFlags Instruction::getFastMathFlags() const {
234 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
235 return cast<FPMathOperator>(this)->getFastMathFlags();
236 }
237
copyFastMathFlags(const Instruction * I)238 void Instruction::copyFastMathFlags(const Instruction *I) {
239 copyFastMathFlags(I->getFastMathFlags());
240 }
241
copyIRFlags(const Value * V,bool IncludeWrapFlags)242 void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
243 // Copy the wrapping flags.
244 if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
245 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
246 setHasNoSignedWrap(OB->hasNoSignedWrap());
247 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
248 }
249 }
250
251 // Copy the exact flag.
252 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
253 if (isa<PossiblyExactOperator>(this))
254 setIsExact(PE->isExact());
255
256 // Copy the fast-math flags.
257 if (auto *FP = dyn_cast<FPMathOperator>(V))
258 if (isa<FPMathOperator>(this))
259 copyFastMathFlags(FP->getFastMathFlags());
260
261 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
262 if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
263 DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
264 }
265
andIRFlags(const Value * V)266 void Instruction::andIRFlags(const Value *V) {
267 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
268 if (isa<OverflowingBinaryOperator>(this)) {
269 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
270 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
271 }
272 }
273
274 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
275 if (isa<PossiblyExactOperator>(this))
276 setIsExact(isExact() & PE->isExact());
277
278 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
279 if (isa<FPMathOperator>(this)) {
280 FastMathFlags FM = getFastMathFlags();
281 FM &= FP->getFastMathFlags();
282 copyFastMathFlags(FM);
283 }
284 }
285
286 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
287 if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
288 DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
289 }
290
getOpcodeName(unsigned OpCode)291 const char *Instruction::getOpcodeName(unsigned OpCode) {
292 switch (OpCode) {
293 // Terminators
294 case Ret: return "ret";
295 case Br: return "br";
296 case Switch: return "switch";
297 case IndirectBr: return "indirectbr";
298 case Invoke: return "invoke";
299 case Resume: return "resume";
300 case Unreachable: return "unreachable";
301 case CleanupRet: return "cleanupret";
302 case CatchRet: return "catchret";
303 case CatchPad: return "catchpad";
304 case CatchSwitch: return "catchswitch";
305
306 // Standard binary operators...
307 case Add: return "add";
308 case FAdd: return "fadd";
309 case Sub: return "sub";
310 case FSub: return "fsub";
311 case Mul: return "mul";
312 case FMul: return "fmul";
313 case UDiv: return "udiv";
314 case SDiv: return "sdiv";
315 case FDiv: return "fdiv";
316 case URem: return "urem";
317 case SRem: return "srem";
318 case FRem: return "frem";
319
320 // Logical operators...
321 case And: return "and";
322 case Or : return "or";
323 case Xor: return "xor";
324
325 // Memory instructions...
326 case Alloca: return "alloca";
327 case Load: return "load";
328 case Store: return "store";
329 case AtomicCmpXchg: return "cmpxchg";
330 case AtomicRMW: return "atomicrmw";
331 case Fence: return "fence";
332 case GetElementPtr: return "getelementptr";
333
334 // Convert instructions...
335 case Trunc: return "trunc";
336 case ZExt: return "zext";
337 case SExt: return "sext";
338 case FPTrunc: return "fptrunc";
339 case FPExt: return "fpext";
340 case FPToUI: return "fptoui";
341 case FPToSI: return "fptosi";
342 case UIToFP: return "uitofp";
343 case SIToFP: return "sitofp";
344 case IntToPtr: return "inttoptr";
345 case PtrToInt: return "ptrtoint";
346 case BitCast: return "bitcast";
347 case AddrSpaceCast: return "addrspacecast";
348
349 // Other instructions...
350 case ICmp: return "icmp";
351 case FCmp: return "fcmp";
352 case PHI: return "phi";
353 case Select: return "select";
354 case Call: return "call";
355 case Shl: return "shl";
356 case LShr: return "lshr";
357 case AShr: return "ashr";
358 case VAArg: return "va_arg";
359 case ExtractElement: return "extractelement";
360 case InsertElement: return "insertelement";
361 case ShuffleVector: return "shufflevector";
362 case ExtractValue: return "extractvalue";
363 case InsertValue: return "insertvalue";
364 case LandingPad: return "landingpad";
365 case CleanupPad: return "cleanuppad";
366
367 default: return "<Invalid operator> ";
368 }
369 }
370
371 /// Return true if both instructions have the same special state. This must be
372 /// kept in sync with FunctionComparator::cmpOperations in
373 /// lib/Transforms/IPO/MergeFunctions.cpp.
haveSameSpecialState(const Instruction * I1,const Instruction * I2,bool IgnoreAlignment=false)374 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
375 bool IgnoreAlignment = false) {
376 assert(I1->getOpcode() == I2->getOpcode() &&
377 "Can not compare special state of different instructions");
378
379 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
380 return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
381 (AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
382 IgnoreAlignment);
383 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
384 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
385 (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
386 IgnoreAlignment) &&
387 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
388 LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
389 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
390 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
391 (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
392 IgnoreAlignment) &&
393 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
394 SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
395 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
396 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
397 if (const CallInst *CI = dyn_cast<CallInst>(I1))
398 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
399 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
400 CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
401 CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
402 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
403 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
404 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
405 CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
406 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
407 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
408 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
409 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
410 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
411 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
412 FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
413 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
414 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
415 CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
416 CXI->getSuccessOrdering() ==
417 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
418 CXI->getFailureOrdering() ==
419 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
420 CXI->getSyncScopeID() ==
421 cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
422 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
423 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
424 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
425 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
426 RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
427
428 return true;
429 }
430
isIdenticalTo(const Instruction * I) const431 bool Instruction::isIdenticalTo(const Instruction *I) const {
432 return isIdenticalToWhenDefined(I) &&
433 SubclassOptionalData == I->SubclassOptionalData;
434 }
435
isIdenticalToWhenDefined(const Instruction * I) const436 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
437 if (getOpcode() != I->getOpcode() ||
438 getNumOperands() != I->getNumOperands() ||
439 getType() != I->getType())
440 return false;
441
442 // If both instructions have no operands, they are identical.
443 if (getNumOperands() == 0 && I->getNumOperands() == 0)
444 return haveSameSpecialState(this, I);
445
446 // We have two instructions of identical opcode and #operands. Check to see
447 // if all operands are the same.
448 if (!std::equal(op_begin(), op_end(), I->op_begin()))
449 return false;
450
451 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
452 const PHINode *otherPHI = cast<PHINode>(I);
453 return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
454 otherPHI->block_begin());
455 }
456
457 return haveSameSpecialState(this, I);
458 }
459
460 // Keep this in sync with FunctionComparator::cmpOperations in
461 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I,unsigned flags) const462 bool Instruction::isSameOperationAs(const Instruction *I,
463 unsigned flags) const {
464 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
465 bool UseScalarTypes = flags & CompareUsingScalarTypes;
466
467 if (getOpcode() != I->getOpcode() ||
468 getNumOperands() != I->getNumOperands() ||
469 (UseScalarTypes ?
470 getType()->getScalarType() != I->getType()->getScalarType() :
471 getType() != I->getType()))
472 return false;
473
474 // We have two instructions of identical opcode and #operands. Check to see
475 // if all operands are the same type
476 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
477 if (UseScalarTypes ?
478 getOperand(i)->getType()->getScalarType() !=
479 I->getOperand(i)->getType()->getScalarType() :
480 getOperand(i)->getType() != I->getOperand(i)->getType())
481 return false;
482
483 return haveSameSpecialState(this, I, IgnoreAlignment);
484 }
485
isUsedOutsideOfBlock(const BasicBlock * BB) const486 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
487 for (const Use &U : uses()) {
488 // PHI nodes uses values in the corresponding predecessor block. For other
489 // instructions, just check to see whether the parent of the use matches up.
490 const Instruction *I = cast<Instruction>(U.getUser());
491 const PHINode *PN = dyn_cast<PHINode>(I);
492 if (!PN) {
493 if (I->getParent() != BB)
494 return true;
495 continue;
496 }
497
498 if (PN->getIncomingBlock(U) != BB)
499 return true;
500 }
501 return false;
502 }
503
mayReadFromMemory() const504 bool Instruction::mayReadFromMemory() const {
505 switch (getOpcode()) {
506 default: return false;
507 case Instruction::VAArg:
508 case Instruction::Load:
509 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
510 case Instruction::AtomicCmpXchg:
511 case Instruction::AtomicRMW:
512 case Instruction::CatchPad:
513 case Instruction::CatchRet:
514 return true;
515 case Instruction::Call:
516 return !cast<CallInst>(this)->doesNotAccessMemory();
517 case Instruction::Invoke:
518 return !cast<InvokeInst>(this)->doesNotAccessMemory();
519 case Instruction::Store:
520 return !cast<StoreInst>(this)->isUnordered();
521 }
522 }
523
mayWriteToMemory() const524 bool Instruction::mayWriteToMemory() const {
525 switch (getOpcode()) {
526 default: return false;
527 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
528 case Instruction::Store:
529 case Instruction::VAArg:
530 case Instruction::AtomicCmpXchg:
531 case Instruction::AtomicRMW:
532 case Instruction::CatchPad:
533 case Instruction::CatchRet:
534 return true;
535 case Instruction::Call:
536 return !cast<CallInst>(this)->onlyReadsMemory();
537 case Instruction::Invoke:
538 return !cast<InvokeInst>(this)->onlyReadsMemory();
539 case Instruction::Load:
540 return !cast<LoadInst>(this)->isUnordered();
541 }
542 }
543
isAtomic() const544 bool Instruction::isAtomic() const {
545 switch (getOpcode()) {
546 default:
547 return false;
548 case Instruction::AtomicCmpXchg:
549 case Instruction::AtomicRMW:
550 case Instruction::Fence:
551 return true;
552 case Instruction::Load:
553 return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
554 case Instruction::Store:
555 return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
556 }
557 }
558
hasAtomicLoad() const559 bool Instruction::hasAtomicLoad() const {
560 assert(isAtomic());
561 switch (getOpcode()) {
562 default:
563 return false;
564 case Instruction::AtomicCmpXchg:
565 case Instruction::AtomicRMW:
566 case Instruction::Load:
567 return true;
568 }
569 }
570
hasAtomicStore() const571 bool Instruction::hasAtomicStore() const {
572 assert(isAtomic());
573 switch (getOpcode()) {
574 default:
575 return false;
576 case Instruction::AtomicCmpXchg:
577 case Instruction::AtomicRMW:
578 case Instruction::Store:
579 return true;
580 }
581 }
582
mayThrow() const583 bool Instruction::mayThrow() const {
584 if (const CallInst *CI = dyn_cast<CallInst>(this))
585 return !CI->doesNotThrow();
586 if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
587 return CRI->unwindsToCaller();
588 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
589 return CatchSwitch->unwindsToCaller();
590 return isa<ResumeInst>(this);
591 }
592
isSafeToRemove() const593 bool Instruction::isSafeToRemove() const {
594 return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
595 !isa<TerminatorInst>(this);
596 }
597
getNextNonDebugInstruction() const598 const Instruction *Instruction::getNextNonDebugInstruction() const {
599 for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
600 if (!isa<DbgInfoIntrinsic>(I))
601 return I;
602 return nullptr;
603 }
604
isAssociative() const605 bool Instruction::isAssociative() const {
606 unsigned Opcode = getOpcode();
607 if (isAssociative(Opcode))
608 return true;
609
610 switch (Opcode) {
611 case FMul:
612 case FAdd:
613 return cast<FPMathOperator>(this)->hasAllowReassoc() &&
614 cast<FPMathOperator>(this)->hasNoSignedZeros();
615 default:
616 return false;
617 }
618 }
619
cloneImpl() const620 Instruction *Instruction::cloneImpl() const {
621 llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
622 }
623
swapProfMetadata()624 void Instruction::swapProfMetadata() {
625 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
626 if (!ProfileData || ProfileData->getNumOperands() != 3 ||
627 !isa<MDString>(ProfileData->getOperand(0)))
628 return;
629
630 MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
631 if (MDName->getString() != "branch_weights")
632 return;
633
634 // The first operand is the name. Fetch them backwards and build a new one.
635 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
636 ProfileData->getOperand(1)};
637 setMetadata(LLVMContext::MD_prof,
638 MDNode::get(ProfileData->getContext(), Ops));
639 }
640
copyMetadata(const Instruction & SrcInst,ArrayRef<unsigned> WL)641 void Instruction::copyMetadata(const Instruction &SrcInst,
642 ArrayRef<unsigned> WL) {
643 if (!SrcInst.hasMetadata())
644 return;
645
646 DenseSet<unsigned> WLS;
647 for (unsigned M : WL)
648 WLS.insert(M);
649
650 // Otherwise, enumerate and copy over metadata from the old instruction to the
651 // new one.
652 SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
653 SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
654 for (const auto &MD : TheMDs) {
655 if (WL.empty() || WLS.count(MD.first))
656 setMetadata(MD.first, MD.second);
657 }
658 if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
659 setDebugLoc(SrcInst.getDebugLoc());
660 }
661
clone() const662 Instruction *Instruction::clone() const {
663 Instruction *New = nullptr;
664 switch (getOpcode()) {
665 default:
666 llvm_unreachable("Unhandled Opcode.");
667 #define HANDLE_INST(num, opc, clas) \
668 case Instruction::opc: \
669 New = cast<clas>(this)->cloneImpl(); \
670 break;
671 #include "llvm/IR/Instruction.def"
672 #undef HANDLE_INST
673 }
674
675 New->SubclassOptionalData = SubclassOptionalData;
676 New->copyMetadata(*this);
677 return New;
678 }
679
updateProfWeight(uint64_t S,uint64_t T)680 void Instruction::updateProfWeight(uint64_t S, uint64_t T) {
681 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
682 if (ProfileData == nullptr)
683 return;
684
685 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
686 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
687 !ProfDataName->getString().equals("VP")))
688 return;
689
690 MDBuilder MDB(getContext());
691 SmallVector<Metadata *, 3> Vals;
692 Vals.push_back(ProfileData->getOperand(0));
693 APInt APS(128, S), APT(128, T);
694 if (ProfDataName->getString().equals("branch_weights"))
695 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
696 // Using APInt::div may be expensive, but most cases should fit 64 bits.
697 APInt Val(128,
698 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i))
699 ->getValue()
700 .getZExtValue());
701 Val *= APS;
702 Vals.push_back(MDB.createConstant(
703 ConstantInt::get(Type::getInt64Ty(getContext()),
704 Val.udiv(APT).getLimitedValue())));
705 }
706 else if (ProfDataName->getString().equals("VP"))
707 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
708 // The first value is the key of the value profile, which will not change.
709 Vals.push_back(ProfileData->getOperand(i));
710 // Using APInt::div may be expensive, but most cases should fit 64 bits.
711 APInt Val(128,
712 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
713 ->getValue()
714 .getZExtValue());
715 Val *= APS;
716 Vals.push_back(MDB.createConstant(
717 ConstantInt::get(Type::getInt64Ty(getContext()),
718 Val.udiv(APT).getLimitedValue())));
719 }
720 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
721 }
722
setProfWeight(uint64_t W)723 void Instruction::setProfWeight(uint64_t W) {
724 assert((isa<CallInst>(this) || isa<InvokeInst>(this)) &&
725 "Can only set weights for call and invoke instrucitons");
726 SmallVector<uint32_t, 1> Weights;
727 Weights.push_back(W);
728 MDBuilder MDB(getContext());
729 setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
730 }
731