1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8 /*
9 * UBI attaching sub-system.
10 *
11 * This sub-system is responsible for attaching MTD devices and it also
12 * implements flash media scanning.
13 *
14 * The attaching information is represented by a &struct ubi_attach_info'
15 * object. Information about volumes is represented by &struct ubi_ainf_volume
16 * objects which are kept in volume RB-tree with root at the @volumes field.
17 * The RB-tree is indexed by the volume ID.
18 *
19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20 * objects are kept in per-volume RB-trees with the root at the corresponding
21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22 * per-volume objects and each of these objects is the root of RB-tree of
23 * per-LEB objects.
24 *
25 * Corrupted physical eraseblocks are put to the @corr list, free physical
26 * eraseblocks are put to the @free list and the physical eraseblock to be
27 * erased are put to the @erase list.
28 *
29 * About corruptions
30 * ~~~~~~~~~~~~~~~~~
31 *
32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33 * whether the headers are corrupted or not. Sometimes UBI also protects the
34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35 * when it moves the contents of a PEB for wear-leveling purposes.
36 *
37 * UBI tries to distinguish between 2 types of corruptions.
38 *
39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40 * tries to handle them gracefully, without printing too many warnings and
41 * error messages. The idea is that we do not lose important data in these
42 * cases - we may lose only the data which were being written to the media just
43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
44 * supposed to handle such data losses (e.g., by using the FS journal).
45 *
46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48 * PEBs in the @erase list are scheduled for erasure later.
49 *
50 * 2. Unexpected corruptions which are not caused by power cuts. During
51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
52 * Obviously, this lessens the amount of available PEBs, and if at some point
53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54 * about such PEBs every time the MTD device is attached.
55 *
56 * However, it is difficult to reliably distinguish between these types of
57 * corruptions and UBI's strategy is as follows (in case of attaching by
58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59 * the data area does not contain all 0xFFs, and there were no bit-flips or
60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
62 * are as follows.
63 * o If the data area contains only 0xFFs, there are no data, and it is safe
64 * to just erase this PEB - this is corruption type 1.
65 * o If the data area has bit-flips or data integrity errors (ECC errors on
66 * NAND), it is probably a PEB which was being erased when power cut
67 * happened, so this is corruption type 1. However, this is just a guess,
68 * which might be wrong.
69 * o Otherwise this is corruption type 2.
70 */
71
72 #ifndef __UBOOT__
73 #include <linux/err.h>
74 #include <linux/slab.h>
75 #include <linux/crc32.h>
76 #include <linux/random.h>
77 #else
78 #include <div64.h>
79 #include <linux/err.h>
80 #endif
81
82 #include <linux/math64.h>
83
84 #include <ubi_uboot.h>
85 #include "ubi.h"
86
87 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
88
89 /* Temporary variables used during scanning */
90 static struct ubi_ec_hdr *ech;
91 static struct ubi_vid_hdr *vidh;
92
93 /**
94 * add_to_list - add physical eraseblock to a list.
95 * @ai: attaching information
96 * @pnum: physical eraseblock number to add
97 * @vol_id: the last used volume id for the PEB
98 * @lnum: the last used LEB number for the PEB
99 * @ec: erase counter of the physical eraseblock
100 * @to_head: if not zero, add to the head of the list
101 * @list: the list to add to
102 *
103 * This function allocates a 'struct ubi_ainf_peb' object for physical
104 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
105 * It stores the @lnum and @vol_id alongside, which can both be
106 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
107 * If @to_head is not zero, PEB will be added to the head of the list, which
108 * basically means it will be processed first later. E.g., we add corrupted
109 * PEBs (corrupted due to power cuts) to the head of the erase list to make
110 * sure we erase them first and get rid of corruptions ASAP. This function
111 * returns zero in case of success and a negative error code in case of
112 * failure.
113 */
add_to_list(struct ubi_attach_info * ai,int pnum,int vol_id,int lnum,int ec,int to_head,struct list_head * list)114 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
115 int lnum, int ec, int to_head, struct list_head *list)
116 {
117 struct ubi_ainf_peb *aeb;
118
119 if (list == &ai->free) {
120 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
121 } else if (list == &ai->erase) {
122 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
123 } else if (list == &ai->alien) {
124 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
125 ai->alien_peb_count += 1;
126 } else
127 BUG();
128
129 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
130 if (!aeb)
131 return -ENOMEM;
132
133 aeb->pnum = pnum;
134 aeb->vol_id = vol_id;
135 aeb->lnum = lnum;
136 aeb->ec = ec;
137 if (to_head)
138 list_add(&aeb->u.list, list);
139 else
140 list_add_tail(&aeb->u.list, list);
141 return 0;
142 }
143
144 /**
145 * add_corrupted - add a corrupted physical eraseblock.
146 * @ai: attaching information
147 * @pnum: physical eraseblock number to add
148 * @ec: erase counter of the physical eraseblock
149 *
150 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
151 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
152 * was presumably not caused by a power cut. Returns zero in case of success
153 * and a negative error code in case of failure.
154 */
add_corrupted(struct ubi_attach_info * ai,int pnum,int ec)155 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
156 {
157 struct ubi_ainf_peb *aeb;
158
159 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
160
161 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
162 if (!aeb)
163 return -ENOMEM;
164
165 ai->corr_peb_count += 1;
166 aeb->pnum = pnum;
167 aeb->ec = ec;
168 list_add(&aeb->u.list, &ai->corr);
169 return 0;
170 }
171
172 /**
173 * validate_vid_hdr - check volume identifier header.
174 * @ubi: UBI device description object
175 * @vid_hdr: the volume identifier header to check
176 * @av: information about the volume this logical eraseblock belongs to
177 * @pnum: physical eraseblock number the VID header came from
178 *
179 * This function checks that data stored in @vid_hdr is consistent. Returns
180 * non-zero if an inconsistency was found and zero if not.
181 *
182 * Note, UBI does sanity check of everything it reads from the flash media.
183 * Most of the checks are done in the I/O sub-system. Here we check that the
184 * information in the VID header is consistent to the information in other VID
185 * headers of the same volume.
186 */
validate_vid_hdr(const struct ubi_device * ubi,const struct ubi_vid_hdr * vid_hdr,const struct ubi_ainf_volume * av,int pnum)187 static int validate_vid_hdr(const struct ubi_device *ubi,
188 const struct ubi_vid_hdr *vid_hdr,
189 const struct ubi_ainf_volume *av, int pnum)
190 {
191 int vol_type = vid_hdr->vol_type;
192 int vol_id = be32_to_cpu(vid_hdr->vol_id);
193 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
194 int data_pad = be32_to_cpu(vid_hdr->data_pad);
195
196 if (av->leb_count != 0) {
197 int av_vol_type;
198
199 /*
200 * This is not the first logical eraseblock belonging to this
201 * volume. Ensure that the data in its VID header is consistent
202 * to the data in previous logical eraseblock headers.
203 */
204
205 if (vol_id != av->vol_id) {
206 ubi_err(ubi, "inconsistent vol_id");
207 goto bad;
208 }
209
210 if (av->vol_type == UBI_STATIC_VOLUME)
211 av_vol_type = UBI_VID_STATIC;
212 else
213 av_vol_type = UBI_VID_DYNAMIC;
214
215 if (vol_type != av_vol_type) {
216 ubi_err(ubi, "inconsistent vol_type");
217 goto bad;
218 }
219
220 if (used_ebs != av->used_ebs) {
221 ubi_err(ubi, "inconsistent used_ebs");
222 goto bad;
223 }
224
225 if (data_pad != av->data_pad) {
226 ubi_err(ubi, "inconsistent data_pad");
227 goto bad;
228 }
229 }
230
231 return 0;
232
233 bad:
234 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
235 ubi_dump_vid_hdr(vid_hdr);
236 ubi_dump_av(av);
237 return -EINVAL;
238 }
239
240 /**
241 * add_volume - add volume to the attaching information.
242 * @ai: attaching information
243 * @vol_id: ID of the volume to add
244 * @pnum: physical eraseblock number
245 * @vid_hdr: volume identifier header
246 *
247 * If the volume corresponding to the @vid_hdr logical eraseblock is already
248 * present in the attaching information, this function does nothing. Otherwise
249 * it adds corresponding volume to the attaching information. Returns a pointer
250 * to the allocated "av" object in case of success and a negative error code in
251 * case of failure.
252 */
add_volume(struct ubi_attach_info * ai,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)253 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
254 int vol_id, int pnum,
255 const struct ubi_vid_hdr *vid_hdr)
256 {
257 struct ubi_ainf_volume *av;
258 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
259
260 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
261
262 /* Walk the volume RB-tree to look if this volume is already present */
263 while (*p) {
264 parent = *p;
265 av = rb_entry(parent, struct ubi_ainf_volume, rb);
266
267 if (vol_id == av->vol_id)
268 return av;
269
270 if (vol_id > av->vol_id)
271 p = &(*p)->rb_left;
272 else
273 p = &(*p)->rb_right;
274 }
275
276 /* The volume is absent - add it */
277 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
278 if (!av)
279 return ERR_PTR(-ENOMEM);
280
281 av->highest_lnum = av->leb_count = 0;
282 av->vol_id = vol_id;
283 av->root = RB_ROOT;
284 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
285 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
286 av->compat = vid_hdr->compat;
287 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
288 : UBI_STATIC_VOLUME;
289 if (vol_id > ai->highest_vol_id)
290 ai->highest_vol_id = vol_id;
291
292 rb_link_node(&av->rb, parent, p);
293 rb_insert_color(&av->rb, &ai->volumes);
294 ai->vols_found += 1;
295 dbg_bld("added volume %d", vol_id);
296 return av;
297 }
298
299 /**
300 * ubi_compare_lebs - find out which logical eraseblock is newer.
301 * @ubi: UBI device description object
302 * @aeb: first logical eraseblock to compare
303 * @pnum: physical eraseblock number of the second logical eraseblock to
304 * compare
305 * @vid_hdr: volume identifier header of the second logical eraseblock
306 *
307 * This function compares 2 copies of a LEB and informs which one is newer. In
308 * case of success this function returns a positive value, in case of failure, a
309 * negative error code is returned. The success return codes use the following
310 * bits:
311 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
312 * second PEB (described by @pnum and @vid_hdr);
313 * o bit 0 is set: the second PEB is newer;
314 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
315 * o bit 1 is set: bit-flips were detected in the newer LEB;
316 * o bit 2 is cleared: the older LEB is not corrupted;
317 * o bit 2 is set: the older LEB is corrupted.
318 */
ubi_compare_lebs(struct ubi_device * ubi,const struct ubi_ainf_peb * aeb,int pnum,const struct ubi_vid_hdr * vid_hdr)319 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
320 int pnum, const struct ubi_vid_hdr *vid_hdr)
321 {
322 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
323 uint32_t data_crc, crc;
324 struct ubi_vid_hdr *vh = NULL;
325 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
326
327 if (sqnum2 == aeb->sqnum) {
328 /*
329 * This must be a really ancient UBI image which has been
330 * created before sequence numbers support has been added. At
331 * that times we used 32-bit LEB versions stored in logical
332 * eraseblocks. That was before UBI got into mainline. We do not
333 * support these images anymore. Well, those images still work,
334 * but only if no unclean reboots happened.
335 */
336 ubi_err(ubi, "unsupported on-flash UBI format");
337 return -EINVAL;
338 }
339
340 /* Obviously the LEB with lower sequence counter is older */
341 second_is_newer = (sqnum2 > aeb->sqnum);
342
343 /*
344 * Now we know which copy is newer. If the copy flag of the PEB with
345 * newer version is not set, then we just return, otherwise we have to
346 * check data CRC. For the second PEB we already have the VID header,
347 * for the first one - we'll need to re-read it from flash.
348 *
349 * Note: this may be optimized so that we wouldn't read twice.
350 */
351
352 if (second_is_newer) {
353 if (!vid_hdr->copy_flag) {
354 /* It is not a copy, so it is newer */
355 dbg_bld("second PEB %d is newer, copy_flag is unset",
356 pnum);
357 return 1;
358 }
359 } else {
360 if (!aeb->copy_flag) {
361 /* It is not a copy, so it is newer */
362 dbg_bld("first PEB %d is newer, copy_flag is unset",
363 pnum);
364 return bitflips << 1;
365 }
366
367 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
368 if (!vh)
369 return -ENOMEM;
370
371 pnum = aeb->pnum;
372 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
373 if (err) {
374 if (err == UBI_IO_BITFLIPS)
375 bitflips = 1;
376 else {
377 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
378 pnum, err);
379 if (err > 0)
380 err = -EIO;
381
382 goto out_free_vidh;
383 }
384 }
385
386 vid_hdr = vh;
387 }
388
389 /* Read the data of the copy and check the CRC */
390
391 len = be32_to_cpu(vid_hdr->data_size);
392
393 mutex_lock(&ubi->buf_mutex);
394 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
395 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
396 goto out_unlock;
397
398 data_crc = be32_to_cpu(vid_hdr->data_crc);
399 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
400 if (crc != data_crc) {
401 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
402 pnum, crc, data_crc);
403 corrupted = 1;
404 bitflips = 0;
405 second_is_newer = !second_is_newer;
406 } else {
407 dbg_bld("PEB %d CRC is OK", pnum);
408 bitflips |= !!err;
409 }
410 mutex_unlock(&ubi->buf_mutex);
411
412 ubi_free_vid_hdr(ubi, vh);
413
414 if (second_is_newer)
415 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
416 else
417 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
418
419 return second_is_newer | (bitflips << 1) | (corrupted << 2);
420
421 out_unlock:
422 mutex_unlock(&ubi->buf_mutex);
423 out_free_vidh:
424 ubi_free_vid_hdr(ubi, vh);
425 return err;
426 }
427
428 /**
429 * ubi_add_to_av - add used physical eraseblock to the attaching information.
430 * @ubi: UBI device description object
431 * @ai: attaching information
432 * @pnum: the physical eraseblock number
433 * @ec: erase counter
434 * @vid_hdr: the volume identifier header
435 * @bitflips: if bit-flips were detected when this physical eraseblock was read
436 *
437 * This function adds information about a used physical eraseblock to the
438 * 'used' tree of the corresponding volume. The function is rather complex
439 * because it has to handle cases when this is not the first physical
440 * eraseblock belonging to the same logical eraseblock, and the newer one has
441 * to be picked, while the older one has to be dropped. This function returns
442 * zero in case of success and a negative error code in case of failure.
443 */
ubi_add_to_av(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)444 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
445 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
446 {
447 int err, vol_id, lnum;
448 unsigned long long sqnum;
449 struct ubi_ainf_volume *av;
450 struct ubi_ainf_peb *aeb;
451 struct rb_node **p, *parent = NULL;
452
453 vol_id = be32_to_cpu(vid_hdr->vol_id);
454 lnum = be32_to_cpu(vid_hdr->lnum);
455 sqnum = be64_to_cpu(vid_hdr->sqnum);
456
457 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
458 pnum, vol_id, lnum, ec, sqnum, bitflips);
459
460 av = add_volume(ai, vol_id, pnum, vid_hdr);
461 if (IS_ERR(av))
462 return PTR_ERR(av);
463
464 if (ai->max_sqnum < sqnum)
465 ai->max_sqnum = sqnum;
466
467 /*
468 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
469 * if this is the first instance of this logical eraseblock or not.
470 */
471 p = &av->root.rb_node;
472 while (*p) {
473 int cmp_res;
474
475 parent = *p;
476 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
477 if (lnum != aeb->lnum) {
478 if (lnum < aeb->lnum)
479 p = &(*p)->rb_left;
480 else
481 p = &(*p)->rb_right;
482 continue;
483 }
484
485 /*
486 * There is already a physical eraseblock describing the same
487 * logical eraseblock present.
488 */
489
490 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
491 aeb->pnum, aeb->sqnum, aeb->ec);
492
493 /*
494 * Make sure that the logical eraseblocks have different
495 * sequence numbers. Otherwise the image is bad.
496 *
497 * However, if the sequence number is zero, we assume it must
498 * be an ancient UBI image from the era when UBI did not have
499 * sequence numbers. We still can attach these images, unless
500 * there is a need to distinguish between old and new
501 * eraseblocks, in which case we'll refuse the image in
502 * 'ubi_compare_lebs()'. In other words, we attach old clean
503 * images, but refuse attaching old images with duplicated
504 * logical eraseblocks because there was an unclean reboot.
505 */
506 if (aeb->sqnum == sqnum && sqnum != 0) {
507 ubi_err(ubi, "two LEBs with same sequence number %llu",
508 sqnum);
509 ubi_dump_aeb(aeb, 0);
510 ubi_dump_vid_hdr(vid_hdr);
511 return -EINVAL;
512 }
513
514 /*
515 * Now we have to drop the older one and preserve the newer
516 * one.
517 */
518 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
519 if (cmp_res < 0)
520 return cmp_res;
521
522 if (cmp_res & 1) {
523 /*
524 * This logical eraseblock is newer than the one
525 * found earlier.
526 */
527 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
528 if (err)
529 return err;
530
531 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
532 aeb->lnum, aeb->ec, cmp_res & 4,
533 &ai->erase);
534 if (err)
535 return err;
536
537 aeb->ec = ec;
538 aeb->pnum = pnum;
539 aeb->vol_id = vol_id;
540 aeb->lnum = lnum;
541 aeb->scrub = ((cmp_res & 2) || bitflips);
542 aeb->copy_flag = vid_hdr->copy_flag;
543 aeb->sqnum = sqnum;
544
545 if (av->highest_lnum == lnum)
546 av->last_data_size =
547 be32_to_cpu(vid_hdr->data_size);
548
549 return 0;
550 } else {
551 /*
552 * This logical eraseblock is older than the one found
553 * previously.
554 */
555 return add_to_list(ai, pnum, vol_id, lnum, ec,
556 cmp_res & 4, &ai->erase);
557 }
558 }
559
560 /*
561 * We've met this logical eraseblock for the first time, add it to the
562 * attaching information.
563 */
564
565 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
566 if (err)
567 return err;
568
569 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
570 if (!aeb)
571 return -ENOMEM;
572
573 aeb->ec = ec;
574 aeb->pnum = pnum;
575 aeb->vol_id = vol_id;
576 aeb->lnum = lnum;
577 aeb->scrub = bitflips;
578 aeb->copy_flag = vid_hdr->copy_flag;
579 aeb->sqnum = sqnum;
580
581 if (av->highest_lnum <= lnum) {
582 av->highest_lnum = lnum;
583 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
584 }
585
586 av->leb_count += 1;
587 rb_link_node(&aeb->u.rb, parent, p);
588 rb_insert_color(&aeb->u.rb, &av->root);
589 return 0;
590 }
591
592 /**
593 * ubi_find_av - find volume in the attaching information.
594 * @ai: attaching information
595 * @vol_id: the requested volume ID
596 *
597 * This function returns a pointer to the volume description or %NULL if there
598 * are no data about this volume in the attaching information.
599 */
ubi_find_av(const struct ubi_attach_info * ai,int vol_id)600 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
601 int vol_id)
602 {
603 struct ubi_ainf_volume *av;
604 struct rb_node *p = ai->volumes.rb_node;
605
606 while (p) {
607 av = rb_entry(p, struct ubi_ainf_volume, rb);
608
609 if (vol_id == av->vol_id)
610 return av;
611
612 if (vol_id > av->vol_id)
613 p = p->rb_left;
614 else
615 p = p->rb_right;
616 }
617
618 return NULL;
619 }
620
621 /**
622 * ubi_remove_av - delete attaching information about a volume.
623 * @ai: attaching information
624 * @av: the volume attaching information to delete
625 */
ubi_remove_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)626 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
627 {
628 struct rb_node *rb;
629 struct ubi_ainf_peb *aeb;
630
631 dbg_bld("remove attaching information about volume %d", av->vol_id);
632
633 while ((rb = rb_first(&av->root))) {
634 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
635 rb_erase(&aeb->u.rb, &av->root);
636 list_add_tail(&aeb->u.list, &ai->erase);
637 }
638
639 rb_erase(&av->rb, &ai->volumes);
640 kfree(av);
641 ai->vols_found -= 1;
642 }
643
644 /**
645 * early_erase_peb - erase a physical eraseblock.
646 * @ubi: UBI device description object
647 * @ai: attaching information
648 * @pnum: physical eraseblock number to erase;
649 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
650 *
651 * This function erases physical eraseblock 'pnum', and writes the erase
652 * counter header to it. This function should only be used on UBI device
653 * initialization stages, when the EBA sub-system had not been yet initialized.
654 * This function returns zero in case of success and a negative error code in
655 * case of failure.
656 */
early_erase_peb(struct ubi_device * ubi,const struct ubi_attach_info * ai,int pnum,int ec)657 static int early_erase_peb(struct ubi_device *ubi,
658 const struct ubi_attach_info *ai, int pnum, int ec)
659 {
660 int err;
661 struct ubi_ec_hdr *ec_hdr;
662
663 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
664 /*
665 * Erase counter overflow. Upgrade UBI and use 64-bit
666 * erase counters internally.
667 */
668 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
669 pnum, ec);
670 return -EINVAL;
671 }
672
673 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
674 if (!ec_hdr)
675 return -ENOMEM;
676
677 ec_hdr->ec = cpu_to_be64(ec);
678
679 err = ubi_io_sync_erase(ubi, pnum, 0);
680 if (err < 0)
681 goto out_free;
682
683 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
684
685 out_free:
686 kfree(ec_hdr);
687 return err;
688 }
689
690 /**
691 * ubi_early_get_peb - get a free physical eraseblock.
692 * @ubi: UBI device description object
693 * @ai: attaching information
694 *
695 * This function returns a free physical eraseblock. It is supposed to be
696 * called on the UBI initialization stages when the wear-leveling sub-system is
697 * not initialized yet. This function picks a physical eraseblocks from one of
698 * the lists, writes the EC header if it is needed, and removes it from the
699 * list.
700 *
701 * This function returns a pointer to the "aeb" of the found free PEB in case
702 * of success and an error code in case of failure.
703 */
ubi_early_get_peb(struct ubi_device * ubi,struct ubi_attach_info * ai)704 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
705 struct ubi_attach_info *ai)
706 {
707 int err = 0;
708 struct ubi_ainf_peb *aeb, *tmp_aeb;
709
710 if (!list_empty(&ai->free)) {
711 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
712 list_del(&aeb->u.list);
713 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
714 return aeb;
715 }
716
717 /*
718 * We try to erase the first physical eraseblock from the erase list
719 * and pick it if we succeed, or try to erase the next one if not. And
720 * so forth. We don't want to take care about bad eraseblocks here -
721 * they'll be handled later.
722 */
723 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
724 if (aeb->ec == UBI_UNKNOWN)
725 aeb->ec = ai->mean_ec;
726
727 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
728 if (err)
729 continue;
730
731 aeb->ec += 1;
732 list_del(&aeb->u.list);
733 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
734 return aeb;
735 }
736
737 ubi_err(ubi, "no free eraseblocks");
738 return ERR_PTR(-ENOSPC);
739 }
740
741 /**
742 * check_corruption - check the data area of PEB.
743 * @ubi: UBI device description object
744 * @vid_hdr: the (corrupted) VID header of this PEB
745 * @pnum: the physical eraseblock number to check
746 *
747 * This is a helper function which is used to distinguish between VID header
748 * corruptions caused by power cuts and other reasons. If the PEB contains only
749 * 0xFF bytes in the data area, the VID header is most probably corrupted
750 * because of a power cut (%0 is returned in this case). Otherwise, it was
751 * probably corrupted for some other reasons (%1 is returned in this case). A
752 * negative error code is returned if a read error occurred.
753 *
754 * If the corruption reason was a power cut, UBI can safely erase this PEB.
755 * Otherwise, it should preserve it to avoid possibly destroying important
756 * information.
757 */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)758 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
759 int pnum)
760 {
761 int err;
762
763 mutex_lock(&ubi->buf_mutex);
764 memset(ubi->peb_buf, 0x00, ubi->leb_size);
765
766 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
767 ubi->leb_size);
768 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
769 /*
770 * Bit-flips or integrity errors while reading the data area.
771 * It is difficult to say for sure what type of corruption is
772 * this, but presumably a power cut happened while this PEB was
773 * erased, so it became unstable and corrupted, and should be
774 * erased.
775 */
776 err = 0;
777 goto out_unlock;
778 }
779
780 if (err)
781 goto out_unlock;
782
783 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
784 goto out_unlock;
785
786 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
787 pnum);
788 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
789 ubi_dump_vid_hdr(vid_hdr);
790 pr_err("hexdump of PEB %d offset %d, length %d",
791 pnum, ubi->leb_start, ubi->leb_size);
792 ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
793 ubi->peb_buf, ubi->leb_size, 1);
794 err = 1;
795
796 out_unlock:
797 mutex_unlock(&ubi->buf_mutex);
798 return err;
799 }
800
801 /**
802 * scan_peb - scan and process UBI headers of a PEB.
803 * @ubi: UBI device description object
804 * @ai: attaching information
805 * @pnum: the physical eraseblock number
806 * @vid: The volume ID of the found volume will be stored in this pointer
807 * @sqnum: The sqnum of the found volume will be stored in this pointer
808 *
809 * This function reads UBI headers of PEB @pnum, checks them, and adds
810 * information about this PEB to the corresponding list or RB-tree in the
811 * "attaching info" structure. Returns zero if the physical eraseblock was
812 * successfully handled and a negative error code in case of failure.
813 */
scan_peb(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int * vid,unsigned long long * sqnum)814 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
815 int pnum, int *vid, unsigned long long *sqnum)
816 {
817 long long uninitialized_var(ec);
818 int err, bitflips = 0, vol_id = -1, ec_err = 0;
819
820 dbg_bld("scan PEB %d", pnum);
821
822 /* Skip bad physical eraseblocks */
823 err = ubi_io_is_bad(ubi, pnum);
824 if (err < 0)
825 return err;
826 else if (err) {
827 ai->bad_peb_count += 1;
828 return 0;
829 }
830
831 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
832 if (err < 0)
833 return err;
834 switch (err) {
835 case 0:
836 break;
837 case UBI_IO_BITFLIPS:
838 bitflips = 1;
839 break;
840 case UBI_IO_FF:
841 ai->empty_peb_count += 1;
842 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
843 UBI_UNKNOWN, 0, &ai->erase);
844 case UBI_IO_FF_BITFLIPS:
845 ai->empty_peb_count += 1;
846 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
847 UBI_UNKNOWN, 1, &ai->erase);
848 case UBI_IO_BAD_HDR_EBADMSG:
849 case UBI_IO_BAD_HDR:
850 /*
851 * We have to also look at the VID header, possibly it is not
852 * corrupted. Set %bitflips flag in order to make this PEB be
853 * moved and EC be re-created.
854 */
855 ec_err = err;
856 ec = UBI_UNKNOWN;
857 bitflips = 1;
858 break;
859 default:
860 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
861 err);
862 return -EINVAL;
863 }
864
865 if (!ec_err) {
866 int image_seq;
867
868 /* Make sure UBI version is OK */
869 if (ech->version != UBI_VERSION) {
870 ubi_err(ubi, "this UBI version is %d, image version is %d",
871 UBI_VERSION, (int)ech->version);
872 return -EINVAL;
873 }
874
875 ec = be64_to_cpu(ech->ec);
876 if (ec > UBI_MAX_ERASECOUNTER) {
877 /*
878 * Erase counter overflow. The EC headers have 64 bits
879 * reserved, but we anyway make use of only 31 bit
880 * values, as this seems to be enough for any existing
881 * flash. Upgrade UBI and use 64-bit erase counters
882 * internally.
883 */
884 ubi_err(ubi, "erase counter overflow, max is %d",
885 UBI_MAX_ERASECOUNTER);
886 ubi_dump_ec_hdr(ech);
887 return -EINVAL;
888 }
889
890 /*
891 * Make sure that all PEBs have the same image sequence number.
892 * This allows us to detect situations when users flash UBI
893 * images incorrectly, so that the flash has the new UBI image
894 * and leftovers from the old one. This feature was added
895 * relatively recently, and the sequence number was always
896 * zero, because old UBI implementations always set it to zero.
897 * For this reasons, we do not panic if some PEBs have zero
898 * sequence number, while other PEBs have non-zero sequence
899 * number.
900 */
901 image_seq = be32_to_cpu(ech->image_seq);
902 if (!ubi->image_seq)
903 ubi->image_seq = image_seq;
904 if (image_seq && ubi->image_seq != image_seq) {
905 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
906 image_seq, pnum, ubi->image_seq);
907 ubi_dump_ec_hdr(ech);
908 return -EINVAL;
909 }
910 }
911
912 /* OK, we've done with the EC header, let's look at the VID header */
913
914 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
915 if (err < 0)
916 return err;
917 switch (err) {
918 case 0:
919 break;
920 case UBI_IO_BITFLIPS:
921 bitflips = 1;
922 break;
923 case UBI_IO_BAD_HDR_EBADMSG:
924 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
925 /*
926 * Both EC and VID headers are corrupted and were read
927 * with data integrity error, probably this is a bad
928 * PEB, bit it is not marked as bad yet. This may also
929 * be a result of power cut during erasure.
930 */
931 ai->maybe_bad_peb_count += 1;
932 case UBI_IO_BAD_HDR:
933 if (ec_err)
934 /*
935 * Both headers are corrupted. There is a possibility
936 * that this a valid UBI PEB which has corresponding
937 * LEB, but the headers are corrupted. However, it is
938 * impossible to distinguish it from a PEB which just
939 * contains garbage because of a power cut during erase
940 * operation. So we just schedule this PEB for erasure.
941 *
942 * Besides, in case of NOR flash, we deliberately
943 * corrupt both headers because NOR flash erasure is
944 * slow and can start from the end.
945 */
946 err = 0;
947 else
948 /*
949 * The EC was OK, but the VID header is corrupted. We
950 * have to check what is in the data area.
951 */
952 err = check_corruption(ubi, vidh, pnum);
953
954 if (err < 0)
955 return err;
956 else if (!err)
957 /* This corruption is caused by a power cut */
958 err = add_to_list(ai, pnum, UBI_UNKNOWN,
959 UBI_UNKNOWN, ec, 1, &ai->erase);
960 else
961 /* This is an unexpected corruption */
962 err = add_corrupted(ai, pnum, ec);
963 if (err)
964 return err;
965 goto adjust_mean_ec;
966 case UBI_IO_FF_BITFLIPS:
967 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
968 ec, 1, &ai->erase);
969 if (err)
970 return err;
971 goto adjust_mean_ec;
972 case UBI_IO_FF:
973 if (ec_err || bitflips)
974 err = add_to_list(ai, pnum, UBI_UNKNOWN,
975 UBI_UNKNOWN, ec, 1, &ai->erase);
976 else
977 err = add_to_list(ai, pnum, UBI_UNKNOWN,
978 UBI_UNKNOWN, ec, 0, &ai->free);
979 if (err)
980 return err;
981 goto adjust_mean_ec;
982 default:
983 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
984 err);
985 return -EINVAL;
986 }
987
988 vol_id = be32_to_cpu(vidh->vol_id);
989 if (vid)
990 *vid = vol_id;
991 if (sqnum)
992 *sqnum = be64_to_cpu(vidh->sqnum);
993 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
994 int lnum = be32_to_cpu(vidh->lnum);
995
996 /* Unsupported internal volume */
997 switch (vidh->compat) {
998 case UBI_COMPAT_DELETE:
999 if (vol_id != UBI_FM_SB_VOLUME_ID
1000 && vol_id != UBI_FM_DATA_VOLUME_ID) {
1001 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1002 vol_id, lnum);
1003 }
1004 err = add_to_list(ai, pnum, vol_id, lnum,
1005 ec, 1, &ai->erase);
1006 if (err)
1007 return err;
1008 return 0;
1009
1010 case UBI_COMPAT_RO:
1011 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1012 vol_id, lnum);
1013 ubi->ro_mode = 1;
1014 break;
1015
1016 case UBI_COMPAT_PRESERVE:
1017 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1018 vol_id, lnum);
1019 err = add_to_list(ai, pnum, vol_id, lnum,
1020 ec, 0, &ai->alien);
1021 if (err)
1022 return err;
1023 return 0;
1024
1025 case UBI_COMPAT_REJECT:
1026 ubi_err(ubi, "incompatible internal volume %d:%d found",
1027 vol_id, lnum);
1028 return -EINVAL;
1029 }
1030 }
1031
1032 if (ec_err)
1033 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1034 pnum);
1035 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1036 if (err)
1037 return err;
1038
1039 adjust_mean_ec:
1040 if (!ec_err) {
1041 ai->ec_sum += ec;
1042 ai->ec_count += 1;
1043 if (ec > ai->max_ec)
1044 ai->max_ec = ec;
1045 if (ec < ai->min_ec)
1046 ai->min_ec = ec;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /**
1053 * late_analysis - analyze the overall situation with PEB.
1054 * @ubi: UBI device description object
1055 * @ai: attaching information
1056 *
1057 * This is a helper function which takes a look what PEBs we have after we
1058 * gather information about all of them ("ai" is compete). It decides whether
1059 * the flash is empty and should be formatted of whether there are too many
1060 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1061 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1062 */
late_analysis(struct ubi_device * ubi,struct ubi_attach_info * ai)1063 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1064 {
1065 struct ubi_ainf_peb *aeb;
1066 int max_corr, peb_count;
1067
1068 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1069 max_corr = peb_count / 20 ?: 8;
1070
1071 /*
1072 * Few corrupted PEBs is not a problem and may be just a result of
1073 * unclean reboots. However, many of them may indicate some problems
1074 * with the flash HW or driver.
1075 */
1076 if (ai->corr_peb_count) {
1077 ubi_err(ubi, "%d PEBs are corrupted and preserved",
1078 ai->corr_peb_count);
1079 pr_err("Corrupted PEBs are:");
1080 list_for_each_entry(aeb, &ai->corr, u.list)
1081 pr_cont(" %d", aeb->pnum);
1082 pr_cont("\n");
1083
1084 /*
1085 * If too many PEBs are corrupted, we refuse attaching,
1086 * otherwise, only print a warning.
1087 */
1088 if (ai->corr_peb_count >= max_corr) {
1089 ubi_err(ubi, "too many corrupted PEBs, refusing");
1090 return -EINVAL;
1091 }
1092 }
1093
1094 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1095 /*
1096 * All PEBs are empty, or almost all - a couple PEBs look like
1097 * they may be bad PEBs which were not marked as bad yet.
1098 *
1099 * This piece of code basically tries to distinguish between
1100 * the following situations:
1101 *
1102 * 1. Flash is empty, but there are few bad PEBs, which are not
1103 * marked as bad so far, and which were read with error. We
1104 * want to go ahead and format this flash. While formatting,
1105 * the faulty PEBs will probably be marked as bad.
1106 *
1107 * 2. Flash contains non-UBI data and we do not want to format
1108 * it and destroy possibly important information.
1109 */
1110 if (ai->maybe_bad_peb_count <= 2) {
1111 ai->is_empty = 1;
1112 ubi_msg(ubi, "empty MTD device detected");
1113 get_random_bytes(&ubi->image_seq,
1114 sizeof(ubi->image_seq));
1115 } else {
1116 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1117 return -EINVAL;
1118 }
1119
1120 }
1121
1122 return 0;
1123 }
1124
1125 /**
1126 * destroy_av - free volume attaching information.
1127 * @av: volume attaching information
1128 * @ai: attaching information
1129 *
1130 * This function destroys the volume attaching information.
1131 */
destroy_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)1132 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1133 {
1134 struct ubi_ainf_peb *aeb;
1135 struct rb_node *this = av->root.rb_node;
1136
1137 while (this) {
1138 if (this->rb_left)
1139 this = this->rb_left;
1140 else if (this->rb_right)
1141 this = this->rb_right;
1142 else {
1143 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1144 this = rb_parent(this);
1145 if (this) {
1146 if (this->rb_left == &aeb->u.rb)
1147 this->rb_left = NULL;
1148 else
1149 this->rb_right = NULL;
1150 }
1151
1152 kmem_cache_free(ai->aeb_slab_cache, aeb);
1153 }
1154 }
1155 kfree(av);
1156 }
1157
1158 /**
1159 * destroy_ai - destroy attaching information.
1160 * @ai: attaching information
1161 */
destroy_ai(struct ubi_attach_info * ai)1162 static void destroy_ai(struct ubi_attach_info *ai)
1163 {
1164 struct ubi_ainf_peb *aeb, *aeb_tmp;
1165 struct ubi_ainf_volume *av;
1166 struct rb_node *rb;
1167
1168 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1169 list_del(&aeb->u.list);
1170 kmem_cache_free(ai->aeb_slab_cache, aeb);
1171 }
1172 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1173 list_del(&aeb->u.list);
1174 kmem_cache_free(ai->aeb_slab_cache, aeb);
1175 }
1176 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1177 list_del(&aeb->u.list);
1178 kmem_cache_free(ai->aeb_slab_cache, aeb);
1179 }
1180 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1181 list_del(&aeb->u.list);
1182 kmem_cache_free(ai->aeb_slab_cache, aeb);
1183 }
1184
1185 /* Destroy the volume RB-tree */
1186 rb = ai->volumes.rb_node;
1187 while (rb) {
1188 if (rb->rb_left)
1189 rb = rb->rb_left;
1190 else if (rb->rb_right)
1191 rb = rb->rb_right;
1192 else {
1193 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1194
1195 rb = rb_parent(rb);
1196 if (rb) {
1197 if (rb->rb_left == &av->rb)
1198 rb->rb_left = NULL;
1199 else
1200 rb->rb_right = NULL;
1201 }
1202
1203 destroy_av(ai, av);
1204 }
1205 }
1206
1207 kmem_cache_destroy(ai->aeb_slab_cache);
1208
1209 kfree(ai);
1210 }
1211
1212 /**
1213 * scan_all - scan entire MTD device.
1214 * @ubi: UBI device description object
1215 * @ai: attach info object
1216 * @start: start scanning at this PEB
1217 *
1218 * This function does full scanning of an MTD device and returns complete
1219 * information about it in form of a "struct ubi_attach_info" object. In case
1220 * of failure, an error code is returned.
1221 */
scan_all(struct ubi_device * ubi,struct ubi_attach_info * ai,int start)1222 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1223 int start)
1224 {
1225 int err, pnum;
1226 struct rb_node *rb1, *rb2;
1227 struct ubi_ainf_volume *av;
1228 struct ubi_ainf_peb *aeb;
1229
1230 err = -ENOMEM;
1231
1232 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1233 if (!ech)
1234 return err;
1235
1236 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1237 if (!vidh)
1238 goto out_ech;
1239
1240 for (pnum = start; pnum < ubi->peb_count; pnum++) {
1241 cond_resched();
1242
1243 dbg_gen("process PEB %d", pnum);
1244 err = scan_peb(ubi, ai, pnum, NULL, NULL);
1245 if (err < 0)
1246 goto out_vidh;
1247 }
1248
1249 ubi_msg(ubi, "scanning is finished");
1250
1251 /* Calculate mean erase counter */
1252 if (ai->ec_count)
1253 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1254
1255 err = late_analysis(ubi, ai);
1256 if (err)
1257 goto out_vidh;
1258
1259 /*
1260 * In case of unknown erase counter we use the mean erase counter
1261 * value.
1262 */
1263 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1264 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1265 if (aeb->ec == UBI_UNKNOWN)
1266 aeb->ec = ai->mean_ec;
1267 }
1268
1269 list_for_each_entry(aeb, &ai->free, u.list) {
1270 if (aeb->ec == UBI_UNKNOWN)
1271 aeb->ec = ai->mean_ec;
1272 }
1273
1274 list_for_each_entry(aeb, &ai->corr, u.list)
1275 if (aeb->ec == UBI_UNKNOWN)
1276 aeb->ec = ai->mean_ec;
1277
1278 list_for_each_entry(aeb, &ai->erase, u.list)
1279 if (aeb->ec == UBI_UNKNOWN)
1280 aeb->ec = ai->mean_ec;
1281
1282 err = self_check_ai(ubi, ai);
1283 if (err)
1284 goto out_vidh;
1285
1286 ubi_free_vid_hdr(ubi, vidh);
1287 kfree(ech);
1288
1289 return 0;
1290
1291 out_vidh:
1292 ubi_free_vid_hdr(ubi, vidh);
1293 out_ech:
1294 kfree(ech);
1295 return err;
1296 }
1297
alloc_ai(void)1298 static struct ubi_attach_info *alloc_ai(void)
1299 {
1300 struct ubi_attach_info *ai;
1301
1302 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1303 if (!ai)
1304 return ai;
1305
1306 INIT_LIST_HEAD(&ai->corr);
1307 INIT_LIST_HEAD(&ai->free);
1308 INIT_LIST_HEAD(&ai->erase);
1309 INIT_LIST_HEAD(&ai->alien);
1310 ai->volumes = RB_ROOT;
1311 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1312 sizeof(struct ubi_ainf_peb),
1313 0, 0, NULL);
1314 if (!ai->aeb_slab_cache) {
1315 kfree(ai);
1316 ai = NULL;
1317 }
1318
1319 return ai;
1320 }
1321
1322 #ifdef CONFIG_MTD_UBI_FASTMAP
1323
1324 /**
1325 * scan_fastmap - try to find a fastmap and attach from it.
1326 * @ubi: UBI device description object
1327 * @ai: attach info object
1328 *
1329 * Returns 0 on success, negative return values indicate an internal
1330 * error.
1331 * UBI_NO_FASTMAP denotes that no fastmap was found.
1332 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1333 */
scan_fast(struct ubi_device * ubi,struct ubi_attach_info ** ai)1334 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1335 {
1336 int err, pnum, fm_anchor = -1;
1337 unsigned long long max_sqnum = 0;
1338
1339 err = -ENOMEM;
1340
1341 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1342 if (!ech)
1343 goto out;
1344
1345 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1346 if (!vidh)
1347 goto out_ech;
1348
1349 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1350 int vol_id = -1;
1351 unsigned long long sqnum = -1;
1352 cond_resched();
1353
1354 dbg_gen("process PEB %d", pnum);
1355 err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1356 if (err < 0)
1357 goto out_vidh;
1358
1359 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1360 max_sqnum = sqnum;
1361 fm_anchor = pnum;
1362 }
1363 }
1364
1365 ubi_free_vid_hdr(ubi, vidh);
1366 kfree(ech);
1367
1368 if (fm_anchor < 0)
1369 return UBI_NO_FASTMAP;
1370
1371 destroy_ai(*ai);
1372 *ai = alloc_ai();
1373 if (!*ai)
1374 return -ENOMEM;
1375
1376 return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1377
1378 out_vidh:
1379 ubi_free_vid_hdr(ubi, vidh);
1380 out_ech:
1381 kfree(ech);
1382 out:
1383 return err;
1384 }
1385
1386 #endif
1387
1388 /**
1389 * ubi_attach - attach an MTD device.
1390 * @ubi: UBI device descriptor
1391 * @force_scan: if set to non-zero attach by scanning
1392 *
1393 * This function returns zero in case of success and a negative error code in
1394 * case of failure.
1395 */
ubi_attach(struct ubi_device * ubi,int force_scan)1396 int ubi_attach(struct ubi_device *ubi, int force_scan)
1397 {
1398 int err;
1399 struct ubi_attach_info *ai;
1400
1401 ai = alloc_ai();
1402 if (!ai)
1403 return -ENOMEM;
1404
1405 #ifdef CONFIG_MTD_UBI_FASTMAP
1406 /* On small flash devices we disable fastmap in any case. */
1407 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1408 ubi->fm_disabled = 1;
1409 force_scan = 1;
1410 }
1411
1412 if (force_scan)
1413 err = scan_all(ubi, ai, 0);
1414 else {
1415 err = scan_fast(ubi, &ai);
1416 if (err > 0 || mtd_is_eccerr(err)) {
1417 if (err != UBI_NO_FASTMAP) {
1418 destroy_ai(ai);
1419 ai = alloc_ai();
1420 if (!ai)
1421 return -ENOMEM;
1422
1423 err = scan_all(ubi, ai, 0);
1424 } else {
1425 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1426 }
1427 }
1428 }
1429 #else
1430 err = scan_all(ubi, ai, 0);
1431 #endif
1432 if (err)
1433 goto out_ai;
1434
1435 ubi->bad_peb_count = ai->bad_peb_count;
1436 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1437 ubi->corr_peb_count = ai->corr_peb_count;
1438 ubi->max_ec = ai->max_ec;
1439 ubi->mean_ec = ai->mean_ec;
1440 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
1441
1442 err = ubi_read_volume_table(ubi, ai);
1443 if (err)
1444 goto out_ai;
1445
1446 err = ubi_wl_init(ubi, ai);
1447 if (err)
1448 goto out_vtbl;
1449
1450 err = ubi_eba_init(ubi, ai);
1451 if (err)
1452 goto out_wl;
1453
1454 #ifdef CONFIG_MTD_UBI_FASTMAP
1455 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1456 struct ubi_attach_info *scan_ai;
1457
1458 scan_ai = alloc_ai();
1459 if (!scan_ai) {
1460 err = -ENOMEM;
1461 goto out_wl;
1462 }
1463
1464 err = scan_all(ubi, scan_ai, 0);
1465 if (err) {
1466 destroy_ai(scan_ai);
1467 goto out_wl;
1468 }
1469
1470 err = self_check_eba(ubi, ai, scan_ai);
1471 destroy_ai(scan_ai);
1472
1473 if (err)
1474 goto out_wl;
1475 }
1476 #endif
1477
1478 destroy_ai(ai);
1479 return 0;
1480
1481 out_wl:
1482 ubi_wl_close(ubi);
1483 out_vtbl:
1484 ubi_free_internal_volumes(ubi);
1485 vfree(ubi->vtbl);
1486 out_ai:
1487 destroy_ai(ai);
1488 return err;
1489 }
1490
1491 /**
1492 * self_check_ai - check the attaching information.
1493 * @ubi: UBI device description object
1494 * @ai: attaching information
1495 *
1496 * This function returns zero if the attaching information is all right, and a
1497 * negative error code if not or if an error occurred.
1498 */
self_check_ai(struct ubi_device * ubi,struct ubi_attach_info * ai)1499 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1500 {
1501 int pnum, err, vols_found = 0;
1502 struct rb_node *rb1, *rb2;
1503 struct ubi_ainf_volume *av;
1504 struct ubi_ainf_peb *aeb, *last_aeb;
1505 uint8_t *buf;
1506
1507 if (!ubi_dbg_chk_gen(ubi))
1508 return 0;
1509
1510 /*
1511 * At first, check that attaching information is OK.
1512 */
1513 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1514 int leb_count = 0;
1515
1516 cond_resched();
1517
1518 vols_found += 1;
1519
1520 if (ai->is_empty) {
1521 ubi_err(ubi, "bad is_empty flag");
1522 goto bad_av;
1523 }
1524
1525 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1526 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1527 av->data_pad < 0 || av->last_data_size < 0) {
1528 ubi_err(ubi, "negative values");
1529 goto bad_av;
1530 }
1531
1532 if (av->vol_id >= UBI_MAX_VOLUMES &&
1533 av->vol_id < UBI_INTERNAL_VOL_START) {
1534 ubi_err(ubi, "bad vol_id");
1535 goto bad_av;
1536 }
1537
1538 if (av->vol_id > ai->highest_vol_id) {
1539 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1540 ai->highest_vol_id, av->vol_id);
1541 goto out;
1542 }
1543
1544 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1545 av->vol_type != UBI_STATIC_VOLUME) {
1546 ubi_err(ubi, "bad vol_type");
1547 goto bad_av;
1548 }
1549
1550 if (av->data_pad > ubi->leb_size / 2) {
1551 ubi_err(ubi, "bad data_pad");
1552 goto bad_av;
1553 }
1554
1555 last_aeb = NULL;
1556 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1557 cond_resched();
1558
1559 last_aeb = aeb;
1560 leb_count += 1;
1561
1562 if (aeb->pnum < 0 || aeb->ec < 0) {
1563 ubi_err(ubi, "negative values");
1564 goto bad_aeb;
1565 }
1566
1567 if (aeb->ec < ai->min_ec) {
1568 ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1569 ai->min_ec, aeb->ec);
1570 goto bad_aeb;
1571 }
1572
1573 if (aeb->ec > ai->max_ec) {
1574 ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1575 ai->max_ec, aeb->ec);
1576 goto bad_aeb;
1577 }
1578
1579 if (aeb->pnum >= ubi->peb_count) {
1580 ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1581 aeb->pnum, ubi->peb_count);
1582 goto bad_aeb;
1583 }
1584
1585 if (av->vol_type == UBI_STATIC_VOLUME) {
1586 if (aeb->lnum >= av->used_ebs) {
1587 ubi_err(ubi, "bad lnum or used_ebs");
1588 goto bad_aeb;
1589 }
1590 } else {
1591 if (av->used_ebs != 0) {
1592 ubi_err(ubi, "non-zero used_ebs");
1593 goto bad_aeb;
1594 }
1595 }
1596
1597 if (aeb->lnum > av->highest_lnum) {
1598 ubi_err(ubi, "incorrect highest_lnum or lnum");
1599 goto bad_aeb;
1600 }
1601 }
1602
1603 if (av->leb_count != leb_count) {
1604 ubi_err(ubi, "bad leb_count, %d objects in the tree",
1605 leb_count);
1606 goto bad_av;
1607 }
1608
1609 if (!last_aeb)
1610 continue;
1611
1612 aeb = last_aeb;
1613
1614 if (aeb->lnum != av->highest_lnum) {
1615 ubi_err(ubi, "bad highest_lnum");
1616 goto bad_aeb;
1617 }
1618 }
1619
1620 if (vols_found != ai->vols_found) {
1621 ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1622 ai->vols_found, vols_found);
1623 goto out;
1624 }
1625
1626 /* Check that attaching information is correct */
1627 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1628 last_aeb = NULL;
1629 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1630 int vol_type;
1631
1632 cond_resched();
1633
1634 last_aeb = aeb;
1635
1636 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1637 if (err && err != UBI_IO_BITFLIPS) {
1638 ubi_err(ubi, "VID header is not OK (%d)",
1639 err);
1640 if (err > 0)
1641 err = -EIO;
1642 return err;
1643 }
1644
1645 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1646 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1647 if (av->vol_type != vol_type) {
1648 ubi_err(ubi, "bad vol_type");
1649 goto bad_vid_hdr;
1650 }
1651
1652 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1653 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1654 goto bad_vid_hdr;
1655 }
1656
1657 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1658 ubi_err(ubi, "bad vol_id %d", av->vol_id);
1659 goto bad_vid_hdr;
1660 }
1661
1662 if (av->compat != vidh->compat) {
1663 ubi_err(ubi, "bad compat %d", vidh->compat);
1664 goto bad_vid_hdr;
1665 }
1666
1667 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1668 ubi_err(ubi, "bad lnum %d", aeb->lnum);
1669 goto bad_vid_hdr;
1670 }
1671
1672 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1673 ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1674 goto bad_vid_hdr;
1675 }
1676
1677 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1678 ubi_err(ubi, "bad data_pad %d", av->data_pad);
1679 goto bad_vid_hdr;
1680 }
1681 }
1682
1683 if (!last_aeb)
1684 continue;
1685
1686 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1687 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1688 goto bad_vid_hdr;
1689 }
1690
1691 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1692 ubi_err(ubi, "bad last_data_size %d",
1693 av->last_data_size);
1694 goto bad_vid_hdr;
1695 }
1696 }
1697
1698 /*
1699 * Make sure that all the physical eraseblocks are in one of the lists
1700 * or trees.
1701 */
1702 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1703 if (!buf)
1704 return -ENOMEM;
1705
1706 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1707 err = ubi_io_is_bad(ubi, pnum);
1708 if (err < 0) {
1709 kfree(buf);
1710 return err;
1711 } else if (err)
1712 buf[pnum] = 1;
1713 }
1714
1715 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1716 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1717 buf[aeb->pnum] = 1;
1718
1719 list_for_each_entry(aeb, &ai->free, u.list)
1720 buf[aeb->pnum] = 1;
1721
1722 list_for_each_entry(aeb, &ai->corr, u.list)
1723 buf[aeb->pnum] = 1;
1724
1725 list_for_each_entry(aeb, &ai->erase, u.list)
1726 buf[aeb->pnum] = 1;
1727
1728 list_for_each_entry(aeb, &ai->alien, u.list)
1729 buf[aeb->pnum] = 1;
1730
1731 err = 0;
1732 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1733 if (!buf[pnum]) {
1734 ubi_err(ubi, "PEB %d is not referred", pnum);
1735 err = 1;
1736 }
1737
1738 kfree(buf);
1739 if (err)
1740 goto out;
1741 return 0;
1742
1743 bad_aeb:
1744 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1745 ubi_dump_aeb(aeb, 0);
1746 ubi_dump_av(av);
1747 goto out;
1748
1749 bad_av:
1750 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1751 ubi_dump_av(av);
1752 goto out;
1753
1754 bad_vid_hdr:
1755 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1756 ubi_dump_av(av);
1757 ubi_dump_vid_hdr(vidh);
1758
1759 out:
1760 dump_stack();
1761 return -EINVAL;
1762 }
1763