1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7
8 #include <float.h> // Required for DBL_MAX and on Win32 for finite()
9 #include <limits.h> // Required for INT_MAX etc.
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h" // Required for V8_INFINITY
13
14 // ----------------------------------------------------------------------------
15 // Extra POSIX/ANSI functions for Win32/MSVC.
16
17 #include "src/base/bits.h"
18 #include "src/base/platform/platform.h"
19 #include "src/conversions.h"
20 #include "src/double.h"
21 #include "src/objects-inl.h"
22
23 namespace v8 {
24 namespace internal {
25
26 // The fast double-to-unsigned-int conversion routine does not guarantee
27 // rounding towards zero, or any reasonable value if the argument is larger
28 // than what fits in an unsigned 32-bit integer.
FastD2UI(double x)29 inline unsigned int FastD2UI(double x) {
30 // There is no unsigned version of lrint, so there is no fast path
31 // in this function as there is in FastD2I. Using lrint doesn't work
32 // for values of 2^31 and above.
33
34 // Convert "small enough" doubles to uint32_t by fixing the 32
35 // least significant non-fractional bits in the low 32 bits of the
36 // double, and reading them from there.
37 const double k2Pow52 = 4503599627370496.0;
38 bool negative = x < 0;
39 if (negative) {
40 x = -x;
41 }
42 if (x < k2Pow52) {
43 x += k2Pow52;
44 uint32_t result;
45 #ifndef V8_TARGET_BIG_ENDIAN
46 void* mantissa_ptr = reinterpret_cast<void*>(&x);
47 #else
48 void* mantissa_ptr =
49 reinterpret_cast<void*>(reinterpret_cast<Address>(&x) + kInt32Size);
50 #endif
51 // Copy least significant 32 bits of mantissa.
52 memcpy(&result, mantissa_ptr, sizeof(result));
53 return negative ? ~result + 1 : result;
54 }
55 // Large number (outside uint32 range), Infinity or NaN.
56 return 0x80000000u; // Return integer indefinite.
57 }
58
59
DoubleToFloat32(double x)60 inline float DoubleToFloat32(double x) {
61 // TODO(yangguo): This static_cast is implementation-defined behaviour in C++,
62 // so we may need to do the conversion manually instead to match the spec.
63 volatile float f = static_cast<float>(x);
64 return f;
65 }
66
67
DoubleToInteger(double x)68 inline double DoubleToInteger(double x) {
69 if (std::isnan(x)) return 0;
70 if (!std::isfinite(x) || x == 0) return x;
71 return (x >= 0) ? std::floor(x) : std::ceil(x);
72 }
73
74
DoubleToInt32(double x)75 int32_t DoubleToInt32(double x) {
76 if ((std::isfinite(x)) && (x <= INT_MAX) && (x >= INT_MIN)) {
77 int32_t i = static_cast<int32_t>(x);
78 if (FastI2D(i) == x) return i;
79 }
80 Double d(x);
81 int exponent = d.Exponent();
82 if (exponent < 0) {
83 if (exponent <= -Double::kSignificandSize) return 0;
84 return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
85 } else {
86 if (exponent > 31) return 0;
87 return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
88 }
89 }
90
DoubleToSmiInteger(double value,int * smi_int_value)91 bool DoubleToSmiInteger(double value, int* smi_int_value) {
92 if (!IsSmiDouble(value)) return false;
93 *smi_int_value = FastD2I(value);
94 DCHECK(Smi::IsValid(*smi_int_value));
95 return true;
96 }
97
IsSmiDouble(double value)98 bool IsSmiDouble(double value) {
99 return value >= Smi::kMinValue && value <= Smi::kMaxValue &&
100 !IsMinusZero(value) && value == FastI2D(FastD2I(value));
101 }
102
103
IsInt32Double(double value)104 bool IsInt32Double(double value) {
105 return value >= kMinInt && value <= kMaxInt && !IsMinusZero(value) &&
106 value == FastI2D(FastD2I(value));
107 }
108
109
IsUint32Double(double value)110 bool IsUint32Double(double value) {
111 return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
112 value == FastUI2D(FastD2UI(value));
113 }
114
DoubleToUint32IfEqualToSelf(double value,uint32_t * uint32_value)115 bool DoubleToUint32IfEqualToSelf(double value, uint32_t* uint32_value) {
116 const double k2Pow52 = 4503599627370496.0;
117 const uint32_t kValidTopBits = 0x43300000;
118 const uint64_t kBottomBitMask = V8_2PART_UINT64_C(0x00000000, FFFFFFFF);
119
120 // Add 2^52 to the double, to place valid uint32 values in the low-significant
121 // bits of the exponent, by effectively setting the (implicit) top bit of the
122 // significand. Note that this addition also normalises 0.0 and -0.0.
123 double shifted_value = value + k2Pow52;
124
125 // At this point, a valid uint32 valued double will be represented as:
126 //
127 // sign = 0
128 // exponent = 52
129 // significand = 1. 00...00 <value>
130 // implicit^ ^^^^^^^ 32 bits
131 // ^^^^^^^^^^^^^^^ 52 bits
132 //
133 // Therefore, we can first check the top 32 bits to make sure that the sign,
134 // exponent and remaining significand bits are valid, and only then check the
135 // value in the bottom 32 bits.
136
137 uint64_t result = bit_cast<uint64_t>(shifted_value);
138 if ((result >> 32) == kValidTopBits) {
139 *uint32_value = result & kBottomBitMask;
140 return FastUI2D(result & kBottomBitMask) == value;
141 }
142 return false;
143 }
144
NumberToInt32(Object * number)145 int32_t NumberToInt32(Object* number) {
146 if (number->IsSmi()) return Smi::ToInt(number);
147 return DoubleToInt32(number->Number());
148 }
149
NumberToUint32(Object * number)150 uint32_t NumberToUint32(Object* number) {
151 if (number->IsSmi()) return Smi::ToInt(number);
152 return DoubleToUint32(number->Number());
153 }
154
PositiveNumberToUint32(Object * number)155 uint32_t PositiveNumberToUint32(Object* number) {
156 if (number->IsSmi()) {
157 int value = Smi::ToInt(number);
158 if (value <= 0) return 0;
159 return value;
160 }
161 DCHECK(number->IsHeapNumber());
162 double value = number->Number();
163 // Catch all values smaller than 1 and use the double-negation trick for NANs.
164 if (!(value >= 1)) return 0;
165 uint32_t max = std::numeric_limits<uint32_t>::max();
166 if (value < max) return static_cast<uint32_t>(value);
167 return max;
168 }
169
NumberToInt64(Object * number)170 int64_t NumberToInt64(Object* number) {
171 if (number->IsSmi()) return Smi::ToInt(number);
172 double d = number->Number();
173 if (std::isnan(d)) return 0;
174 if (d >= static_cast<double>(std::numeric_limits<int64_t>::max())) {
175 return std::numeric_limits<int64_t>::max();
176 }
177 if (d <= static_cast<double>(std::numeric_limits<int64_t>::min())) {
178 return std::numeric_limits<int64_t>::min();
179 }
180 return static_cast<int64_t>(d);
181 }
182
PositiveNumberToUint64(Object * number)183 uint64_t PositiveNumberToUint64(Object* number) {
184 if (number->IsSmi()) {
185 int value = Smi::ToInt(number);
186 if (value <= 0) return 0;
187 return value;
188 }
189 DCHECK(number->IsHeapNumber());
190 double value = number->Number();
191 // Catch all values smaller than 1 and use the double-negation trick for NANs.
192 if (!(value >= 1)) return 0;
193 uint64_t max = std::numeric_limits<uint64_t>::max();
194 if (value < max) return static_cast<uint64_t>(value);
195 return max;
196 }
197
TryNumberToSize(Object * number,size_t * result)198 bool TryNumberToSize(Object* number, size_t* result) {
199 // Do not create handles in this function! Don't use SealHandleScope because
200 // the function can be used concurrently.
201 if (number->IsSmi()) {
202 int value = Smi::ToInt(number);
203 DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
204 std::numeric_limits<size_t>::max());
205 if (value >= 0) {
206 *result = static_cast<size_t>(value);
207 return true;
208 }
209 return false;
210 } else {
211 DCHECK(number->IsHeapNumber());
212 double value = HeapNumber::cast(number)->value();
213 // If value is compared directly to the limit, the limit will be
214 // casted to a double and could end up as limit + 1,
215 // because a double might not have enough mantissa bits for it.
216 // So we might as well cast the limit first, and use < instead of <=.
217 double maxSize = static_cast<double>(std::numeric_limits<size_t>::max());
218 if (value >= 0 && value < maxSize) {
219 *result = static_cast<size_t>(value);
220 return true;
221 } else {
222 return false;
223 }
224 }
225 }
226
NumberToSize(Object * number)227 size_t NumberToSize(Object* number) {
228 size_t result = 0;
229 bool is_valid = TryNumberToSize(number, &result);
230 CHECK(is_valid);
231 return result;
232 }
233
234
DoubleToUint32(double x)235 uint32_t DoubleToUint32(double x) {
236 return static_cast<uint32_t>(DoubleToInt32(x));
237 }
238
239 } // namespace internal
240 } // namespace v8
241
242 #endif // V8_CONVERSIONS_INL_H_
243