• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/reloc-info.h"
6 
7 #include "src/assembler-arch-inl.h"
8 #include "src/code-stubs.h"
9 #include "src/deoptimize-reason.h"
10 #include "src/deoptimizer.h"
11 #include "src/heap/heap-write-barrier-inl.h"
12 #include "src/objects/code-inl.h"
13 #include "src/snapshot/snapshot.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
19 
20 // -----------------------------------------------------------------------------
21 // Implementation of RelocInfoWriter and RelocIterator
22 //
23 // Relocation information is written backwards in memory, from high addresses
24 // towards low addresses, byte by byte.  Therefore, in the encodings listed
25 // below, the first byte listed it at the highest address, and successive
26 // bytes in the record are at progressively lower addresses.
27 //
28 // Encoding
29 //
30 // The most common modes are given single-byte encodings.  Also, it is
31 // easy to identify the type of reloc info and skip unwanted modes in
32 // an iteration.
33 //
34 // The encoding relies on the fact that there are fewer than 14
35 // different relocation modes using standard non-compact encoding.
36 //
37 // The first byte of a relocation record has a tag in its low 2 bits:
38 // Here are the record schemes, depending on the low tag and optional higher
39 // tags.
40 //
41 // Low tag:
42 //   00: embedded_object:      [6-bit pc delta] 00
43 //
44 //   01: code_target:          [6-bit pc delta] 01
45 //
46 //   10: wasm_stub_call:       [6-bit pc delta] 10
47 //
48 //   11: long_record           [6 bit reloc mode] 11
49 //                             followed by pc delta
50 //                             followed by optional data depending on type.
51 //
52 //  If a pc delta exceeds 6 bits, it is split into a remainder that fits into
53 //  6 bits and a part that does not. The latter is encoded as a long record
54 //  with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
55 //  the following record in the usual way. The long pc jump record has variable
56 //  length:
57 //               pc-jump:        [PC_JUMP] 11
58 //                               [7 bits data] 0
59 //                                  ...
60 //                               [7 bits data] 1
61 //               (Bits 6..31 of pc delta, with leading zeroes
62 //                dropped, and last non-zero chunk tagged with 1.)
63 
64 const int kTagBits = 2;
65 const int kTagMask = (1 << kTagBits) - 1;
66 const int kLongTagBits = 6;
67 
68 const int kEmbeddedObjectTag = 0;
69 const int kCodeTargetTag = 1;
70 const int kWasmStubCallTag = 2;
71 const int kDefaultTag = 3;
72 
73 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
74 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
75 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
76 
77 const int kChunkBits = 7;
78 const int kChunkMask = (1 << kChunkBits) - 1;
79 const int kLastChunkTagBits = 1;
80 const int kLastChunkTagMask = 1;
81 const int kLastChunkTag = 1;
82 
WriteLongPCJump(uint32_t pc_delta)83 uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
84   // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
85   // Otherwise write a variable length PC jump for the bits that do
86   // not fit in the kSmallPCDeltaBits bits.
87   if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
88   WriteMode(RelocInfo::PC_JUMP);
89   uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
90   DCHECK_GT(pc_jump, 0);
91   // Write kChunkBits size chunks of the pc_jump.
92   for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
93     byte b = pc_jump & kChunkMask;
94     *--pos_ = b << kLastChunkTagBits;
95   }
96   // Tag the last chunk so it can be identified.
97   *pos_ = *pos_ | kLastChunkTag;
98   // Return the remaining kSmallPCDeltaBits of the pc_delta.
99   return pc_delta & kSmallPCDeltaMask;
100 }
101 
WriteShortTaggedPC(uint32_t pc_delta,int tag)102 void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
103   // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
104   pc_delta = WriteLongPCJump(pc_delta);
105   *--pos_ = pc_delta << kTagBits | tag;
106 }
107 
WriteShortData(intptr_t data_delta)108 void RelocInfoWriter::WriteShortData(intptr_t data_delta) {
109   *--pos_ = static_cast<byte>(data_delta);
110 }
111 
WriteMode(RelocInfo::Mode rmode)112 void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
113   STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
114   *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
115 }
116 
WriteModeAndPC(uint32_t pc_delta,RelocInfo::Mode rmode)117 void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
118   // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
119   pc_delta = WriteLongPCJump(pc_delta);
120   WriteMode(rmode);
121   *--pos_ = pc_delta;
122 }
123 
WriteIntData(int number)124 void RelocInfoWriter::WriteIntData(int number) {
125   for (int i = 0; i < kIntSize; i++) {
126     *--pos_ = static_cast<byte>(number);
127     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
128     number = number >> kBitsPerByte;
129   }
130 }
131 
WriteData(intptr_t data_delta)132 void RelocInfoWriter::WriteData(intptr_t data_delta) {
133   for (int i = 0; i < kIntptrSize; i++) {
134     *--pos_ = static_cast<byte>(data_delta);
135     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
136     data_delta = data_delta >> kBitsPerByte;
137   }
138 }
139 
Write(const RelocInfo * rinfo)140 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
141   RelocInfo::Mode rmode = rinfo->rmode();
142 #ifdef DEBUG
143   byte* begin_pos = pos_;
144 #endif
145   DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
146   DCHECK_GE(rinfo->pc() - reinterpret_cast<Address>(last_pc_), 0);
147   // Use unsigned delta-encoding for pc.
148   uint32_t pc_delta =
149       static_cast<uint32_t>(rinfo->pc() - reinterpret_cast<Address>(last_pc_));
150 
151   // The two most common modes are given small tags, and usually fit in a byte.
152   if (rmode == RelocInfo::EMBEDDED_OBJECT) {
153     WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
154   } else if (rmode == RelocInfo::CODE_TARGET) {
155     WriteShortTaggedPC(pc_delta, kCodeTargetTag);
156     DCHECK_LE(begin_pos - pos_, RelocInfo::kMaxCallSize);
157   } else if (rmode == RelocInfo::WASM_STUB_CALL) {
158     WriteShortTaggedPC(pc_delta, kWasmStubCallTag);
159   } else {
160     WriteModeAndPC(pc_delta, rmode);
161     if (RelocInfo::IsComment(rmode)) {
162       WriteData(rinfo->data());
163     } else if (RelocInfo::IsDeoptReason(rmode)) {
164       DCHECK_LT(rinfo->data(), 1 << kBitsPerByte);
165       WriteShortData(rinfo->data());
166     } else if (RelocInfo::IsConstPool(rmode) ||
167                RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
168                RelocInfo::IsDeoptPosition(rmode)) {
169       WriteIntData(static_cast<int>(rinfo->data()));
170     }
171   }
172   last_pc_ = reinterpret_cast<byte*>(rinfo->pc());
173 #ifdef DEBUG
174   DCHECK_LE(begin_pos - pos_, kMaxSize);
175 #endif
176 }
177 
AdvanceGetTag()178 inline int RelocIterator::AdvanceGetTag() { return *--pos_ & kTagMask; }
179 
GetMode()180 inline RelocInfo::Mode RelocIterator::GetMode() {
181   return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
182                                       ((1 << kLongTagBits) - 1));
183 }
184 
ReadShortTaggedPC()185 inline void RelocIterator::ReadShortTaggedPC() {
186   rinfo_.pc_ += *pos_ >> kTagBits;
187 }
188 
AdvanceReadPC()189 inline void RelocIterator::AdvanceReadPC() { rinfo_.pc_ += *--pos_; }
190 
AdvanceReadInt()191 void RelocIterator::AdvanceReadInt() {
192   int x = 0;
193   for (int i = 0; i < kIntSize; i++) {
194     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
195   }
196   rinfo_.data_ = x;
197 }
198 
AdvanceReadData()199 void RelocIterator::AdvanceReadData() {
200   intptr_t x = 0;
201   for (int i = 0; i < kIntptrSize; i++) {
202     x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
203   }
204   rinfo_.data_ = x;
205 }
206 
AdvanceReadLongPCJump()207 void RelocIterator::AdvanceReadLongPCJump() {
208   // Read the 32-kSmallPCDeltaBits most significant bits of the
209   // pc jump in kChunkBits bit chunks and shift them into place.
210   // Stop when the last chunk is encountered.
211   uint32_t pc_jump = 0;
212   for (int i = 0; i < kIntSize; i++) {
213     byte pc_jump_part = *--pos_;
214     pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
215     if ((pc_jump_part & kLastChunkTagMask) == 1) break;
216   }
217   // The least significant kSmallPCDeltaBits bits will be added
218   // later.
219   rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
220 }
221 
ReadShortData()222 inline void RelocIterator::ReadShortData() {
223   uint8_t unsigned_b = *pos_;
224   rinfo_.data_ = unsigned_b;
225 }
226 
next()227 void RelocIterator::next() {
228   DCHECK(!done());
229   // Basically, do the opposite of RelocInfoWriter::Write.
230   // Reading of data is as far as possible avoided for unwanted modes,
231   // but we must always update the pc.
232   //
233   // We exit this loop by returning when we find a mode we want.
234   while (pos_ > end_) {
235     int tag = AdvanceGetTag();
236     if (tag == kEmbeddedObjectTag) {
237       ReadShortTaggedPC();
238       if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
239     } else if (tag == kCodeTargetTag) {
240       ReadShortTaggedPC();
241       if (SetMode(RelocInfo::CODE_TARGET)) return;
242     } else if (tag == kWasmStubCallTag) {
243       ReadShortTaggedPC();
244       if (SetMode(RelocInfo::WASM_STUB_CALL)) return;
245     } else {
246       DCHECK_EQ(tag, kDefaultTag);
247       RelocInfo::Mode rmode = GetMode();
248       if (rmode == RelocInfo::PC_JUMP) {
249         AdvanceReadLongPCJump();
250       } else {
251         AdvanceReadPC();
252         if (RelocInfo::IsComment(rmode)) {
253           if (SetMode(rmode)) {
254             AdvanceReadData();
255             return;
256           }
257           Advance(kIntptrSize);
258         } else if (RelocInfo::IsDeoptReason(rmode)) {
259           Advance();
260           if (SetMode(rmode)) {
261             ReadShortData();
262             return;
263           }
264         } else if (RelocInfo::IsConstPool(rmode) ||
265                    RelocInfo::IsVeneerPool(rmode) ||
266                    RelocInfo::IsDeoptId(rmode) ||
267                    RelocInfo::IsDeoptPosition(rmode)) {
268           if (SetMode(rmode)) {
269             AdvanceReadInt();
270             return;
271           }
272           Advance(kIntSize);
273         } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
274           return;
275         }
276       }
277     }
278   }
279   done_ = true;
280 }
281 
RelocIterator(Code * code,int mode_mask)282 RelocIterator::RelocIterator(Code* code, int mode_mask)
283     : RelocIterator(code, code->raw_instruction_start(), code->constant_pool(),
284                     code->relocation_end(), code->relocation_start(),
285                     mode_mask) {}
286 
RelocIterator(const CodeReference code_reference,int mode_mask)287 RelocIterator::RelocIterator(const CodeReference code_reference, int mode_mask)
288     : RelocIterator(nullptr, code_reference.instruction_start(),
289                     code_reference.constant_pool(),
290                     code_reference.relocation_end(),
291                     code_reference.relocation_start(), mode_mask) {}
292 
RelocIterator(EmbeddedData * embedded_data,Code * code,int mode_mask)293 RelocIterator::RelocIterator(EmbeddedData* embedded_data, Code* code,
294                              int mode_mask)
295     : RelocIterator(
296           code, embedded_data->InstructionStartOfBuiltin(code->builtin_index()),
297           code->constant_pool(),
298           code->relocation_start() + code->relocation_size(),
299           code->relocation_start(), mode_mask) {}
300 
RelocIterator(const CodeDesc & desc,int mode_mask)301 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
302     : RelocIterator(nullptr, reinterpret_cast<Address>(desc.buffer), 0,
303                     desc.buffer + desc.buffer_size,
304                     desc.buffer + desc.buffer_size - desc.reloc_size,
305                     mode_mask) {}
306 
RelocIterator(Vector<byte> instructions,Vector<const byte> reloc_info,Address const_pool,int mode_mask)307 RelocIterator::RelocIterator(Vector<byte> instructions,
308                              Vector<const byte> reloc_info, Address const_pool,
309                              int mode_mask)
310     : RelocIterator(nullptr, reinterpret_cast<Address>(instructions.start()),
311                     const_pool, reloc_info.start() + reloc_info.size(),
312                     reloc_info.start(), mode_mask) {}
313 
RelocIterator(Code * host,Address pc,Address constant_pool,const byte * pos,const byte * end,int mode_mask)314 RelocIterator::RelocIterator(Code* host, Address pc, Address constant_pool,
315                              const byte* pos, const byte* end, int mode_mask)
316     : pos_(pos), end_(end), mode_mask_(mode_mask) {
317   // Relocation info is read backwards.
318   DCHECK_GE(pos_, end_);
319   rinfo_.host_ = host;
320   rinfo_.pc_ = pc;
321   rinfo_.constant_pool_ = constant_pool;
322   if (mode_mask_ == 0) pos_ = end_;
323   next();
324 }
325 
326 // -----------------------------------------------------------------------------
327 // Implementation of RelocInfo
328 
329 // static
OffHeapTargetIsCodedSpecially()330 bool RelocInfo::OffHeapTargetIsCodedSpecially() {
331 #if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_ARM64) || \
332     defined(V8_TARGET_ARCH_X64)
333   return false;
334 #elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS) || \
335     defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) ||  \
336     defined(V8_TARGET_ARCH_S390)
337   return true;
338 #endif
339 }
340 
wasm_call_address() const341 Address RelocInfo::wasm_call_address() const {
342   DCHECK_EQ(rmode_, WASM_CALL);
343   return Assembler::target_address_at(pc_, constant_pool_);
344 }
345 
set_wasm_call_address(Address address,ICacheFlushMode icache_flush_mode)346 void RelocInfo::set_wasm_call_address(Address address,
347                                       ICacheFlushMode icache_flush_mode) {
348   DCHECK_EQ(rmode_, WASM_CALL);
349   Assembler::set_target_address_at(pc_, constant_pool_, address,
350                                    icache_flush_mode);
351 }
352 
wasm_stub_call_address() const353 Address RelocInfo::wasm_stub_call_address() const {
354   DCHECK_EQ(rmode_, WASM_STUB_CALL);
355   return Assembler::target_address_at(pc_, constant_pool_);
356 }
357 
set_wasm_stub_call_address(Address address,ICacheFlushMode icache_flush_mode)358 void RelocInfo::set_wasm_stub_call_address(Address address,
359                                            ICacheFlushMode icache_flush_mode) {
360   DCHECK_EQ(rmode_, WASM_STUB_CALL);
361   Assembler::set_target_address_at(pc_, constant_pool_, address,
362                                    icache_flush_mode);
363 }
364 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)365 void RelocInfo::set_target_address(Address target,
366                                    WriteBarrierMode write_barrier_mode,
367                                    ICacheFlushMode icache_flush_mode) {
368   DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
369          IsWasmCall(rmode_));
370   Assembler::set_target_address_at(pc_, constant_pool_, target,
371                                    icache_flush_mode);
372   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr &&
373       IsCodeTargetMode(rmode_)) {
374     Code* target_code = Code::GetCodeFromTargetAddress(target);
375     MarkingBarrierForCode(host(), this, target_code);
376   }
377 }
378 
RequiresRelocationAfterCodegen(const CodeDesc & desc)379 bool RelocInfo::RequiresRelocationAfterCodegen(const CodeDesc& desc) {
380   RelocIterator it(desc, RelocInfo::PostCodegenRelocationMask());
381   return !it.done();
382 }
383 
RequiresRelocation(Code * code)384 bool RelocInfo::RequiresRelocation(Code* code) {
385   RelocIterator it(code, RelocInfo::kApplyMask);
386   return !it.done();
387 }
388 
389 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)390 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
391   switch (rmode) {
392     case NONE:
393       return "no reloc";
394     case EMBEDDED_OBJECT:
395       return "embedded object";
396     case CODE_TARGET:
397       return "code target";
398     case RELATIVE_CODE_TARGET:
399       return "relative code target";
400     case RUNTIME_ENTRY:
401       return "runtime entry";
402     case COMMENT:
403       return "comment";
404     case EXTERNAL_REFERENCE:
405       return "external reference";
406     case INTERNAL_REFERENCE:
407       return "internal reference";
408     case INTERNAL_REFERENCE_ENCODED:
409       return "encoded internal reference";
410     case OFF_HEAP_TARGET:
411       return "off heap target";
412     case DEOPT_SCRIPT_OFFSET:
413       return "deopt script offset";
414     case DEOPT_INLINING_ID:
415       return "deopt inlining id";
416     case DEOPT_REASON:
417       return "deopt reason";
418     case DEOPT_ID:
419       return "deopt index";
420     case CONST_POOL:
421       return "constant pool";
422     case VENEER_POOL:
423       return "veneer pool";
424     case WASM_CALL:
425       return "internal wasm call";
426     case WASM_STUB_CALL:
427       return "wasm stub call";
428     case JS_TO_WASM_CALL:
429       return "js to wasm call";
430     case NUMBER_OF_MODES:
431     case PC_JUMP:
432       UNREACHABLE();
433   }
434   return "unknown relocation type";
435 }
436 
Print(Isolate * isolate,std::ostream & os)437 void RelocInfo::Print(Isolate* isolate, std::ostream& os) {  // NOLINT
438   os << reinterpret_cast<const void*>(pc_) << "  " << RelocModeName(rmode_);
439   if (IsComment(rmode_)) {
440     os << "  (" << reinterpret_cast<char*>(data_) << ")";
441   } else if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
442     os << "  (" << data() << ")";
443   } else if (rmode_ == DEOPT_REASON) {
444     os << "  ("
445        << DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
446   } else if (rmode_ == EMBEDDED_OBJECT) {
447     os << "  (" << Brief(target_object()) << ")";
448   } else if (rmode_ == EXTERNAL_REFERENCE) {
449     if (isolate) {
450       ExternalReferenceEncoder ref_encoder(isolate);
451       os << " ("
452          << ref_encoder.NameOfAddress(isolate, target_external_reference())
453          << ") ";
454     }
455     os << " (" << reinterpret_cast<const void*>(target_external_reference())
456        << ")";
457   } else if (IsCodeTargetMode(rmode_)) {
458     const Address code_target = target_address();
459     Code* code = Code::GetCodeFromTargetAddress(code_target);
460     DCHECK(code->IsCode());
461     os << " (" << Code::Kind2String(code->kind());
462     if (Builtins::IsBuiltin(code)) {
463       os << " " << Builtins::name(code->builtin_index());
464     } else if (code->kind() == Code::STUB) {
465       os << " " << CodeStub::MajorName(CodeStub::GetMajorKey(code));
466     }
467     os << ")  (" << reinterpret_cast<const void*>(target_address()) << ")";
468   } else if (IsRuntimeEntry(rmode_) && isolate->deoptimizer_data() != nullptr) {
469     // Deoptimization bailouts are stored as runtime entries.
470     DeoptimizeKind type;
471     if (Deoptimizer::IsDeoptimizationEntry(isolate, target_address(), &type)) {
472       int id = GetDeoptimizationId(isolate, type);
473       os << "  (" << Deoptimizer::MessageFor(type) << " deoptimization bailout "
474          << id << ")";
475     }
476   } else if (IsConstPool(rmode_)) {
477     os << " (size " << static_cast<int>(data_) << ")";
478   }
479 
480   os << "\n";
481 }
482 #endif  // ENABLE_DISASSEMBLER
483 
484 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)485 void RelocInfo::Verify(Isolate* isolate) {
486   switch (rmode_) {
487     case EMBEDDED_OBJECT:
488       Object::VerifyPointer(isolate, target_object());
489       break;
490     case CODE_TARGET:
491     case RELATIVE_CODE_TARGET: {
492       // convert inline target address to code object
493       Address addr = target_address();
494       CHECK_NE(addr, kNullAddress);
495       // Check that we can find the right code object.
496       Code* code = Code::GetCodeFromTargetAddress(addr);
497       Object* found = isolate->FindCodeObject(addr);
498       CHECK(found->IsCode());
499       CHECK(code->address() == HeapObject::cast(found)->address());
500       break;
501     }
502     case INTERNAL_REFERENCE:
503     case INTERNAL_REFERENCE_ENCODED: {
504       Address target = target_internal_reference();
505       Address pc = target_internal_reference_address();
506       Code* code = Code::cast(isolate->FindCodeObject(pc));
507       CHECK(target >= code->InstructionStart());
508       CHECK(target <= code->InstructionEnd());
509       break;
510     }
511     case OFF_HEAP_TARGET: {
512       Address addr = target_off_heap_target();
513       CHECK_NE(addr, kNullAddress);
514       CHECK_NOT_NULL(InstructionStream::TryLookupCode(isolate, addr));
515       break;
516     }
517     case RUNTIME_ENTRY:
518     case COMMENT:
519     case EXTERNAL_REFERENCE:
520     case DEOPT_SCRIPT_OFFSET:
521     case DEOPT_INLINING_ID:
522     case DEOPT_REASON:
523     case DEOPT_ID:
524     case CONST_POOL:
525     case VENEER_POOL:
526     case WASM_CALL:
527     case WASM_STUB_CALL:
528     case JS_TO_WASM_CALL:
529     case NONE:
530       break;
531     case NUMBER_OF_MODES:
532     case PC_JUMP:
533       UNREACHABLE();
534       break;
535   }
536 }
537 #endif  // VERIFY_HEAP
538 
539 }  // namespace internal
540 }  // namespace v8
541