• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/zone/accounting-allocator.h"
6 
7 #include <cstdlib>
8 
9 #if V8_LIBC_BIONIC
10 #include <malloc.h>  // NOLINT
11 #endif
12 
13 #include "src/allocation.h"
14 
15 namespace v8 {
16 namespace internal {
17 
AccountingAllocator()18 AccountingAllocator::AccountingAllocator() : unused_segments_mutex_() {
19   static const size_t kDefaultBucketMaxSize = 5;
20 
21   memory_pressure_level_.SetValue(MemoryPressureLevel::kNone);
22   std::fill(unused_segments_heads_, unused_segments_heads_ + kNumberBuckets,
23             nullptr);
24   std::fill(unused_segments_sizes_, unused_segments_sizes_ + kNumberBuckets, 0);
25   std::fill(unused_segments_max_sizes_,
26             unused_segments_max_sizes_ + kNumberBuckets, kDefaultBucketMaxSize);
27 }
28 
~AccountingAllocator()29 AccountingAllocator::~AccountingAllocator() { ClearPool(); }
30 
MemoryPressureNotification(MemoryPressureLevel level)31 void AccountingAllocator::MemoryPressureNotification(
32     MemoryPressureLevel level) {
33   memory_pressure_level_.SetValue(level);
34 
35   if (level != MemoryPressureLevel::kNone) {
36     ClearPool();
37   }
38 }
39 
ConfigureSegmentPool(const size_t max_pool_size)40 void AccountingAllocator::ConfigureSegmentPool(const size_t max_pool_size) {
41   // The sum of the bytes of one segment of each size.
42   static const size_t full_size = (size_t(1) << (kMaxSegmentSizePower + 1)) -
43                                   (size_t(1) << kMinSegmentSizePower);
44   size_t fits_fully = max_pool_size / full_size;
45 
46   base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
47 
48   // We assume few zones (less than 'fits_fully' many) to be active at the same
49   // time. When zones grow regularly, they will keep requesting segments of
50   // increasing size each time. Therefore we try to get as many segments with an
51   // equal number of segments of each size as possible.
52   // The remaining space is used to make more room for an 'incomplete set' of
53   // segments beginning with the smaller ones.
54   // This code will work best if the max_pool_size is a multiple of the
55   // full_size. If max_pool_size is no sum of segment sizes the actual pool
56   // size might be smaller then max_pool_size. Note that no actual memory gets
57   // wasted though.
58   // TODO(heimbuef): Determine better strategy generating a segment sizes
59   // distribution that is closer to real/benchmark usecases and uses the given
60   // max_pool_size more efficiently.
61   size_t total_size = fits_fully * full_size;
62 
63   for (size_t power = 0; power < kNumberBuckets; ++power) {
64     if (total_size + (size_t(1) << (power + kMinSegmentSizePower)) <=
65         max_pool_size) {
66       unused_segments_max_sizes_[power] = fits_fully + 1;
67       total_size += size_t(1) << power;
68     } else {
69       unused_segments_max_sizes_[power] = fits_fully;
70     }
71   }
72 }
73 
GetSegment(size_t bytes)74 Segment* AccountingAllocator::GetSegment(size_t bytes) {
75   Segment* result = GetSegmentFromPool(bytes);
76   if (result == nullptr) {
77     result = AllocateSegment(bytes);
78     if (result != nullptr) {
79       result->Initialize(bytes);
80     }
81   }
82 
83   return result;
84 }
85 
AllocateSegment(size_t bytes)86 Segment* AccountingAllocator::AllocateSegment(size_t bytes) {
87   void* memory = AllocWithRetry(bytes);
88   if (memory != nullptr) {
89     base::AtomicWord current =
90         base::Relaxed_AtomicIncrement(&current_memory_usage_, bytes);
91     base::AtomicWord max = base::Relaxed_Load(&max_memory_usage_);
92     while (current > max) {
93       max = base::Relaxed_CompareAndSwap(&max_memory_usage_, max, current);
94     }
95   }
96   return reinterpret_cast<Segment*>(memory);
97 }
98 
ReturnSegment(Segment * segment)99 void AccountingAllocator::ReturnSegment(Segment* segment) {
100   segment->ZapContents();
101 
102   if (memory_pressure_level_.Value() != MemoryPressureLevel::kNone) {
103     FreeSegment(segment);
104   } else if (!AddSegmentToPool(segment)) {
105     FreeSegment(segment);
106   }
107 }
108 
FreeSegment(Segment * memory)109 void AccountingAllocator::FreeSegment(Segment* memory) {
110   base::Relaxed_AtomicIncrement(&current_memory_usage_,
111                                 -static_cast<base::AtomicWord>(memory->size()));
112   memory->ZapHeader();
113   free(memory);
114 }
115 
GetCurrentMemoryUsage() const116 size_t AccountingAllocator::GetCurrentMemoryUsage() const {
117   return base::Relaxed_Load(&current_memory_usage_);
118 }
119 
GetMaxMemoryUsage() const120 size_t AccountingAllocator::GetMaxMemoryUsage() const {
121   return base::Relaxed_Load(&max_memory_usage_);
122 }
123 
GetCurrentPoolSize() const124 size_t AccountingAllocator::GetCurrentPoolSize() const {
125   return base::Relaxed_Load(&current_pool_size_);
126 }
127 
GetSegmentFromPool(size_t requested_size)128 Segment* AccountingAllocator::GetSegmentFromPool(size_t requested_size) {
129   if (requested_size > (1 << kMaxSegmentSizePower)) {
130     return nullptr;
131   }
132 
133   size_t power = kMinSegmentSizePower;
134   while (requested_size > (static_cast<size_t>(1) << power)) power++;
135 
136   DCHECK_GE(power, kMinSegmentSizePower + 0);
137   power -= kMinSegmentSizePower;
138 
139   Segment* segment;
140   {
141     base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
142 
143     segment = unused_segments_heads_[power];
144 
145     if (segment != nullptr) {
146       unused_segments_heads_[power] = segment->next();
147       segment->set_next(nullptr);
148 
149       unused_segments_sizes_[power]--;
150       base::Relaxed_AtomicIncrement(
151           &current_pool_size_, -static_cast<base::AtomicWord>(segment->size()));
152     }
153   }
154 
155   if (segment) {
156     DCHECK_GE(segment->size(), requested_size);
157   }
158   return segment;
159 }
160 
AddSegmentToPool(Segment * segment)161 bool AccountingAllocator::AddSegmentToPool(Segment* segment) {
162   size_t size = segment->size();
163 
164   if (size >= (1 << (kMaxSegmentSizePower + 1))) return false;
165 
166   if (size < (1 << kMinSegmentSizePower)) return false;
167 
168   size_t power = kMaxSegmentSizePower;
169 
170   while (size < (static_cast<size_t>(1) << power)) power--;
171 
172   DCHECK_GE(power, kMinSegmentSizePower + 0);
173   power -= kMinSegmentSizePower;
174 
175   {
176     base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
177 
178     if (unused_segments_sizes_[power] >= unused_segments_max_sizes_[power]) {
179       return false;
180     }
181 
182     segment->set_next(unused_segments_heads_[power]);
183     unused_segments_heads_[power] = segment;
184     base::Relaxed_AtomicIncrement(&current_pool_size_, size);
185     unused_segments_sizes_[power]++;
186   }
187 
188   return true;
189 }
190 
ClearPool()191 void AccountingAllocator::ClearPool() {
192   base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
193 
194   for (size_t power = 0; power <= kMaxSegmentSizePower - kMinSegmentSizePower;
195        power++) {
196     Segment* current = unused_segments_heads_[power];
197     while (current) {
198       Segment* next = current->next();
199       FreeSegment(current);
200       current = next;
201     }
202     unused_segments_heads_[power] = nullptr;
203   }
204 }
205 
206 }  // namespace internal
207 }  // namespace v8
208