1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 // cduvivier@google.com (Christian Duvivier)
14
15 #include "src/dsp/dsp.h"
16
17 #if defined(WEBP_USE_SSE2)
18
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 #if !defined(USE_TRANSFORM_AC3)
22 #define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE
23 #endif
24
25 #include <emmintrin.h>
26 #include "src/dsp/common_sse2.h"
27 #include "src/dec/vp8i_dec.h"
28 #include "src/utils/utils.h"
29
30 //------------------------------------------------------------------------------
31 // Transforms (Paragraph 14.4)
32
Transform_SSE2(const int16_t * in,uint8_t * dst,int do_two)33 static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) {
34 // This implementation makes use of 16-bit fixed point versions of two
35 // multiply constants:
36 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
37 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
38 //
39 // To be able to use signed 16-bit integers, we use the following trick to
40 // have constants within range:
41 // - Associated constants are obtained by subtracting the 16-bit fixed point
42 // version of one:
43 // k = K - (1 << 16) => K = k + (1 << 16)
44 // K1 = 85267 => k1 = 20091
45 // K2 = 35468 => k2 = -30068
46 // - The multiplication of a variable by a constant become the sum of the
47 // variable and the multiplication of that variable by the associated
48 // constant:
49 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
50 const __m128i k1 = _mm_set1_epi16(20091);
51 const __m128i k2 = _mm_set1_epi16(-30068);
52 __m128i T0, T1, T2, T3;
53
54 // Load and concatenate the transform coefficients (we'll do two transforms
55 // in parallel). In the case of only one transform, the second half of the
56 // vectors will just contain random value we'll never use nor store.
57 __m128i in0, in1, in2, in3;
58 {
59 in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
60 in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
61 in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
62 in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
63 // a00 a10 a20 a30 x x x x
64 // a01 a11 a21 a31 x x x x
65 // a02 a12 a22 a32 x x x x
66 // a03 a13 a23 a33 x x x x
67 if (do_two) {
68 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
69 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
70 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
71 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
72 in0 = _mm_unpacklo_epi64(in0, inB0);
73 in1 = _mm_unpacklo_epi64(in1, inB1);
74 in2 = _mm_unpacklo_epi64(in2, inB2);
75 in3 = _mm_unpacklo_epi64(in3, inB3);
76 // a00 a10 a20 a30 b00 b10 b20 b30
77 // a01 a11 a21 a31 b01 b11 b21 b31
78 // a02 a12 a22 a32 b02 b12 b22 b32
79 // a03 a13 a23 a33 b03 b13 b23 b33
80 }
81 }
82
83 // Vertical pass and subsequent transpose.
84 {
85 // First pass, c and d calculations are longer because of the "trick"
86 // multiplications.
87 const __m128i a = _mm_add_epi16(in0, in2);
88 const __m128i b = _mm_sub_epi16(in0, in2);
89 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
90 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
91 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
92 const __m128i c3 = _mm_sub_epi16(in1, in3);
93 const __m128i c4 = _mm_sub_epi16(c1, c2);
94 const __m128i c = _mm_add_epi16(c3, c4);
95 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
96 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
97 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
98 const __m128i d3 = _mm_add_epi16(in1, in3);
99 const __m128i d4 = _mm_add_epi16(d1, d2);
100 const __m128i d = _mm_add_epi16(d3, d4);
101
102 // Second pass.
103 const __m128i tmp0 = _mm_add_epi16(a, d);
104 const __m128i tmp1 = _mm_add_epi16(b, c);
105 const __m128i tmp2 = _mm_sub_epi16(b, c);
106 const __m128i tmp3 = _mm_sub_epi16(a, d);
107
108 // Transpose the two 4x4.
109 VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
110 }
111
112 // Horizontal pass and subsequent transpose.
113 {
114 // First pass, c and d calculations are longer because of the "trick"
115 // multiplications.
116 const __m128i four = _mm_set1_epi16(4);
117 const __m128i dc = _mm_add_epi16(T0, four);
118 const __m128i a = _mm_add_epi16(dc, T2);
119 const __m128i b = _mm_sub_epi16(dc, T2);
120 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
121 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
122 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
123 const __m128i c3 = _mm_sub_epi16(T1, T3);
124 const __m128i c4 = _mm_sub_epi16(c1, c2);
125 const __m128i c = _mm_add_epi16(c3, c4);
126 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
127 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
128 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
129 const __m128i d3 = _mm_add_epi16(T1, T3);
130 const __m128i d4 = _mm_add_epi16(d1, d2);
131 const __m128i d = _mm_add_epi16(d3, d4);
132
133 // Second pass.
134 const __m128i tmp0 = _mm_add_epi16(a, d);
135 const __m128i tmp1 = _mm_add_epi16(b, c);
136 const __m128i tmp2 = _mm_sub_epi16(b, c);
137 const __m128i tmp3 = _mm_sub_epi16(a, d);
138 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
139 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
140 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
141 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
142
143 // Transpose the two 4x4.
144 VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
145 &T2, &T3);
146 }
147
148 // Add inverse transform to 'dst' and store.
149 {
150 const __m128i zero = _mm_setzero_si128();
151 // Load the reference(s).
152 __m128i dst0, dst1, dst2, dst3;
153 if (do_two) {
154 // Load eight bytes/pixels per line.
155 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
156 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
157 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
158 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
159 } else {
160 // Load four bytes/pixels per line.
161 dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
162 dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
163 dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
164 dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
165 }
166 // Convert to 16b.
167 dst0 = _mm_unpacklo_epi8(dst0, zero);
168 dst1 = _mm_unpacklo_epi8(dst1, zero);
169 dst2 = _mm_unpacklo_epi8(dst2, zero);
170 dst3 = _mm_unpacklo_epi8(dst3, zero);
171 // Add the inverse transform(s).
172 dst0 = _mm_add_epi16(dst0, T0);
173 dst1 = _mm_add_epi16(dst1, T1);
174 dst2 = _mm_add_epi16(dst2, T2);
175 dst3 = _mm_add_epi16(dst3, T3);
176 // Unsigned saturate to 8b.
177 dst0 = _mm_packus_epi16(dst0, dst0);
178 dst1 = _mm_packus_epi16(dst1, dst1);
179 dst2 = _mm_packus_epi16(dst2, dst2);
180 dst3 = _mm_packus_epi16(dst3, dst3);
181 // Store the results.
182 if (do_two) {
183 // Store eight bytes/pixels per line.
184 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
185 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
186 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
187 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
188 } else {
189 // Store four bytes/pixels per line.
190 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
191 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
192 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
193 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
194 }
195 }
196 }
197
198 #if (USE_TRANSFORM_AC3 == 1)
199 #define MUL(a, b) (((a) * (b)) >> 16)
TransformAC3(const int16_t * in,uint8_t * dst)200 static void TransformAC3(const int16_t* in, uint8_t* dst) {
201 static const int kC1 = 20091 + (1 << 16);
202 static const int kC2 = 35468;
203 const __m128i A = _mm_set1_epi16(in[0] + 4);
204 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
205 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
206 const int c1 = MUL(in[1], kC2);
207 const int d1 = MUL(in[1], kC1);
208 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
209 const __m128i B = _mm_adds_epi16(A, CD);
210 const __m128i m0 = _mm_adds_epi16(B, d4);
211 const __m128i m1 = _mm_adds_epi16(B, c4);
212 const __m128i m2 = _mm_subs_epi16(B, c4);
213 const __m128i m3 = _mm_subs_epi16(B, d4);
214 const __m128i zero = _mm_setzero_si128();
215 // Load the source pixels.
216 __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
217 __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
218 __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
219 __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
220 // Convert to 16b.
221 dst0 = _mm_unpacklo_epi8(dst0, zero);
222 dst1 = _mm_unpacklo_epi8(dst1, zero);
223 dst2 = _mm_unpacklo_epi8(dst2, zero);
224 dst3 = _mm_unpacklo_epi8(dst3, zero);
225 // Add the inverse transform.
226 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
227 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
228 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
229 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
230 // Unsigned saturate to 8b.
231 dst0 = _mm_packus_epi16(dst0, dst0);
232 dst1 = _mm_packus_epi16(dst1, dst1);
233 dst2 = _mm_packus_epi16(dst2, dst2);
234 dst3 = _mm_packus_epi16(dst3, dst3);
235 // Store the results.
236 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
237 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
238 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
239 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
240 }
241 #undef MUL
242 #endif // USE_TRANSFORM_AC3
243
244 //------------------------------------------------------------------------------
245 // Loop Filter (Paragraph 15)
246
247 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
248 #define MM_ABS(p, q) _mm_or_si128( \
249 _mm_subs_epu8((q), (p)), \
250 _mm_subs_epu8((p), (q)))
251
252 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b_SSE2(__m128i * const x)253 static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
254 const __m128i zero = _mm_setzero_si128();
255 const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
256 const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
257 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
258 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
259 *x = _mm_packs_epi16(lo_1, hi_1);
260 }
261
262 #define FLIP_SIGN_BIT2(a, b) { \
263 (a) = _mm_xor_si128(a, sign_bit); \
264 (b) = _mm_xor_si128(b, sign_bit); \
265 }
266
267 #define FLIP_SIGN_BIT4(a, b, c, d) { \
268 FLIP_SIGN_BIT2(a, b); \
269 FLIP_SIGN_BIT2(c, d); \
270 }
271
272 // input/output is uint8_t
GetNotHEV_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)273 static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
274 const __m128i* const p0,
275 const __m128i* const q0,
276 const __m128i* const q1,
277 int hev_thresh, __m128i* const not_hev) {
278 const __m128i zero = _mm_setzero_si128();
279 const __m128i t_1 = MM_ABS(*p1, *p0);
280 const __m128i t_2 = MM_ABS(*q1, *q0);
281
282 const __m128i h = _mm_set1_epi8(hev_thresh);
283 const __m128i t_max = _mm_max_epu8(t_1, t_2);
284
285 const __m128i t_max_h = _mm_subs_epu8(t_max, h);
286 *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2
287 }
288
289 // input pixels are int8_t
GetBaseDelta_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)290 static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
291 const __m128i* const p0,
292 const __m128i* const q0,
293 const __m128i* const q1,
294 __m128i* const delta) {
295 // beware of addition order, for saturation!
296 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
297 const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0
298 const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0)
299 const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0)
300 const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0)
301 *delta = s3;
302 }
303
304 // input and output are int8_t
DoSimpleFilter_SSE2(__m128i * const p0,__m128i * const q0,const __m128i * const fl)305 static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
306 __m128i* const q0,
307 const __m128i* const fl) {
308 const __m128i k3 = _mm_set1_epi8(3);
309 const __m128i k4 = _mm_set1_epi8(4);
310 __m128i v3 = _mm_adds_epi8(*fl, k3);
311 __m128i v4 = _mm_adds_epi8(*fl, k4);
312
313 SignedShift8b_SSE2(&v4); // v4 >> 3
314 SignedShift8b_SSE2(&v3); // v3 >> 3
315 *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4
316 *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3
317 }
318
319 // Updates values of 2 pixels at MB edge during complex filtering.
320 // Update operations:
321 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
322 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels_SSE2(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)323 static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
324 const __m128i* const a0_lo,
325 const __m128i* const a0_hi) {
326 const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
327 const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
328 const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
329 const __m128i sign_bit = _mm_set1_epi8(0x80);
330 *pi = _mm_adds_epi8(*pi, delta);
331 *qi = _mm_subs_epi8(*qi, delta);
332 FLIP_SIGN_BIT2(*pi, *qi);
333 }
334
335 // input pixels are uint8_t
NeedsFilter_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)336 static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
337 const __m128i* const p0,
338 const __m128i* const q0,
339 const __m128i* const q1,
340 int thresh, __m128i* const mask) {
341 const __m128i m_thresh = _mm_set1_epi8(thresh);
342 const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
343 const __m128i kFE = _mm_set1_epi8(0xFE);
344 const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero
345 const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2
346
347 const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0)
348 const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2
349 const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2
350
351 const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh
352 *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
353 }
354
355 //------------------------------------------------------------------------------
356 // Edge filtering functions
357
358 // Applies filter on 2 pixels (p0 and q0)
DoFilter2_SSE2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)359 static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
360 __m128i* const q0, __m128i* const q1,
361 int thresh) {
362 __m128i a, mask;
363 const __m128i sign_bit = _mm_set1_epi8(0x80);
364 // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
365 const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
366 const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
367
368 NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
369
370 FLIP_SIGN_BIT2(*p0, *q0);
371 GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
372 a = _mm_and_si128(a, mask); // mask filter values we don't care about
373 DoSimpleFilter_SSE2(p0, q0, &a);
374 FLIP_SIGN_BIT2(*p0, *q0);
375 }
376
377 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4_SSE2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)378 static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
379 __m128i* const q0, __m128i* const q1,
380 const __m128i* const mask,
381 int hev_thresh) {
382 const __m128i zero = _mm_setzero_si128();
383 const __m128i sign_bit = _mm_set1_epi8(0x80);
384 const __m128i k64 = _mm_set1_epi8(64);
385 const __m128i k3 = _mm_set1_epi8(3);
386 const __m128i k4 = _mm_set1_epi8(4);
387 __m128i not_hev;
388 __m128i t1, t2, t3;
389
390 // compute hev mask
391 GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev);
392
393 // convert to signed values
394 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
395
396 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
397 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
398 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
399 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
400 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
401 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
402 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
403
404 t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3
405 t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4
406 SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
407 SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
408 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
409 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3
410 FLIP_SIGN_BIT2(*p0, *q0);
411
412 // this is equivalent to signed (a + 1) >> 1 calculation
413 t2 = _mm_add_epi8(t3, sign_bit);
414 t3 = _mm_avg_epu8(t2, zero);
415 t3 = _mm_sub_epi8(t3, k64);
416
417 t3 = _mm_and_si128(not_hev, t3); // if !hev
418 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
419 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
420 FLIP_SIGN_BIT2(*p1, *q1);
421 }
422
423 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6_SSE2(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)424 static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
425 __m128i* const p0, __m128i* const q0,
426 __m128i* const q1, __m128i* const q2,
427 const __m128i* const mask,
428 int hev_thresh) {
429 const __m128i zero = _mm_setzero_si128();
430 const __m128i sign_bit = _mm_set1_epi8(0x80);
431 __m128i a, not_hev;
432
433 // compute hev mask
434 GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev);
435
436 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
437 FLIP_SIGN_BIT2(*p2, *q2);
438 GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
439
440 { // do simple filter on pixels with hev
441 const __m128i m = _mm_andnot_si128(not_hev, *mask);
442 const __m128i f = _mm_and_si128(a, m);
443 DoSimpleFilter_SSE2(p0, q0, &f);
444 }
445
446 { // do strong filter on pixels with not hev
447 const __m128i k9 = _mm_set1_epi16(0x0900);
448 const __m128i k63 = _mm_set1_epi16(63);
449
450 const __m128i m = _mm_and_si128(not_hev, *mask);
451 const __m128i f = _mm_and_si128(a, m);
452
453 const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
454 const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
455
456 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9
457 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9
458
459 const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63
460 const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63
461
462 const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63
463 const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63
464
465 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63
466 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63
467
468 Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
469 Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
470 Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
471 }
472 }
473
474 // reads 8 rows across a vertical edge.
Load8x4_SSE2(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)475 static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
476 __m128i* const p, __m128i* const q) {
477 // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
478 // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
479 const __m128i A0 = _mm_set_epi32(
480 WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
481 WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
482 const __m128i A1 = _mm_set_epi32(
483 WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
484 WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
485
486 // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
487 // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
488 const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
489 const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
490
491 // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
492 // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
493 const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
494 const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
495
496 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
497 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
498 *p = _mm_unpacklo_epi32(C0, C1);
499 *q = _mm_unpackhi_epi32(C0, C1);
500 }
501
Load16x4_SSE2(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)502 static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
503 const uint8_t* const r8,
504 int stride,
505 __m128i* const p1, __m128i* const p0,
506 __m128i* const q0, __m128i* const q1) {
507 // Assume the pixels around the edge (|) are numbered as follows
508 // 00 01 | 02 03
509 // 10 11 | 12 13
510 // ... | ...
511 // e0 e1 | e2 e3
512 // f0 f1 | f2 f3
513 //
514 // r0 is pointing to the 0th row (00)
515 // r8 is pointing to the 8th row (80)
516
517 // Load
518 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
519 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
520 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
521 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
522 Load8x4_SSE2(r0, stride, p1, q0);
523 Load8x4_SSE2(r8, stride, p0, q1);
524
525 {
526 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
527 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
528 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
529 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
530 const __m128i t1 = *p1;
531 const __m128i t2 = *q0;
532 *p1 = _mm_unpacklo_epi64(t1, *p0);
533 *p0 = _mm_unpackhi_epi64(t1, *p0);
534 *q0 = _mm_unpacklo_epi64(t2, *q1);
535 *q1 = _mm_unpackhi_epi64(t2, *q1);
536 }
537 }
538
Store4x4_SSE2(__m128i * const x,uint8_t * dst,int stride)539 static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
540 uint8_t* dst, int stride) {
541 int i;
542 for (i = 0; i < 4; ++i, dst += stride) {
543 WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
544 *x = _mm_srli_si128(*x, 4);
545 }
546 }
547
548 // Transpose back and store
Store16x4_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)549 static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
550 const __m128i* const p0,
551 const __m128i* const q0,
552 const __m128i* const q1,
553 uint8_t* r0, uint8_t* r8,
554 int stride) {
555 __m128i t1, p1_s, p0_s, q0_s, q1_s;
556
557 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
558 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
559 t1 = *p0;
560 p0_s = _mm_unpacklo_epi8(*p1, t1);
561 p1_s = _mm_unpackhi_epi8(*p1, t1);
562
563 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
564 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
565 t1 = *q0;
566 q0_s = _mm_unpacklo_epi8(t1, *q1);
567 q1_s = _mm_unpackhi_epi8(t1, *q1);
568
569 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
570 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
571 t1 = p0_s;
572 p0_s = _mm_unpacklo_epi16(t1, q0_s);
573 q0_s = _mm_unpackhi_epi16(t1, q0_s);
574
575 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
576 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
577 t1 = p1_s;
578 p1_s = _mm_unpacklo_epi16(t1, q1_s);
579 q1_s = _mm_unpackhi_epi16(t1, q1_s);
580
581 Store4x4_SSE2(&p0_s, r0, stride);
582 r0 += 4 * stride;
583 Store4x4_SSE2(&q0_s, r0, stride);
584
585 Store4x4_SSE2(&p1_s, r8, stride);
586 r8 += 4 * stride;
587 Store4x4_SSE2(&q1_s, r8, stride);
588 }
589
590 //------------------------------------------------------------------------------
591 // Simple In-loop filtering (Paragraph 15.2)
592
SimpleVFilter16_SSE2(uint8_t * p,int stride,int thresh)593 static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
594 // Load
595 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
596 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
597 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
598 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
599
600 DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
601
602 // Store
603 _mm_storeu_si128((__m128i*)&p[-stride], p0);
604 _mm_storeu_si128((__m128i*)&p[0], q0);
605 }
606
SimpleHFilter16_SSE2(uint8_t * p,int stride,int thresh)607 static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
608 __m128i p1, p0, q0, q1;
609
610 p -= 2; // beginning of p1
611
612 Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
613 DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
614 Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
615 }
616
SimpleVFilter16i_SSE2(uint8_t * p,int stride,int thresh)617 static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
618 int k;
619 for (k = 3; k > 0; --k) {
620 p += 4 * stride;
621 SimpleVFilter16_SSE2(p, stride, thresh);
622 }
623 }
624
SimpleHFilter16i_SSE2(uint8_t * p,int stride,int thresh)625 static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
626 int k;
627 for (k = 3; k > 0; --k) {
628 p += 4;
629 SimpleHFilter16_SSE2(p, stride, thresh);
630 }
631 }
632
633 //------------------------------------------------------------------------------
634 // Complex In-loop filtering (Paragraph 15.3)
635
636 #define MAX_DIFF1(p3, p2, p1, p0, m) do { \
637 (m) = MM_ABS(p1, p0); \
638 (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
639 (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
640 } while (0)
641
642 #define MAX_DIFF2(p3, p2, p1, p0, m) do { \
643 (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \
644 (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \
645 (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \
646 } while (0)
647
648 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
649 (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \
650 (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \
651 (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \
652 (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \
653 }
654
655 #define LOADUV_H_EDGE(p, u, v, stride) do { \
656 const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
657 const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \
658 (p) = _mm_unpacklo_epi64(U, V); \
659 } while (0)
660
661 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
662 LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \
663 LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \
664 LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \
665 LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \
666 }
667
668 #define STOREUV(p, u, v, stride) { \
669 _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \
670 (p) = _mm_srli_si128(p, 8); \
671 _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \
672 }
673
ComplexMask_SSE2(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)674 static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
675 const __m128i* const p0,
676 const __m128i* const q0,
677 const __m128i* const q1,
678 int thresh, int ithresh,
679 __m128i* const mask) {
680 const __m128i it = _mm_set1_epi8(ithresh);
681 const __m128i diff = _mm_subs_epu8(*mask, it);
682 const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
683 __m128i filter_mask;
684 NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
685 *mask = _mm_and_si128(thresh_mask, filter_mask);
686 }
687
688 // on macroblock edges
VFilter16_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)689 static void VFilter16_SSE2(uint8_t* p, int stride,
690 int thresh, int ithresh, int hev_thresh) {
691 __m128i t1;
692 __m128i mask;
693 __m128i p2, p1, p0, q0, q1, q2;
694
695 // Load p3, p2, p1, p0
696 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
697 MAX_DIFF1(t1, p2, p1, p0, mask);
698
699 // Load q0, q1, q2, q3
700 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
701 MAX_DIFF2(t1, q2, q1, q0, mask);
702
703 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
704 DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
705
706 // Store
707 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
708 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
709 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
710 _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
711 _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
712 _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
713 }
714
HFilter16_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)715 static void HFilter16_SSE2(uint8_t* p, int stride,
716 int thresh, int ithresh, int hev_thresh) {
717 __m128i mask;
718 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
719
720 uint8_t* const b = p - 4;
721 Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
722 MAX_DIFF1(p3, p2, p1, p0, mask);
723
724 Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
725 MAX_DIFF2(q3, q2, q1, q0, mask);
726
727 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
728 DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
729
730 Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
731 Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
732 }
733
734 // on three inner edges
VFilter16i_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)735 static void VFilter16i_SSE2(uint8_t* p, int stride,
736 int thresh, int ithresh, int hev_thresh) {
737 int k;
738 __m128i p3, p2, p1, p0; // loop invariants
739
740 LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue
741
742 for (k = 3; k > 0; --k) {
743 __m128i mask, tmp1, tmp2;
744 uint8_t* const b = p + 2 * stride; // beginning of p1
745 p += 4 * stride;
746
747 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
748 LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
749 MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
750
751 // p3 and p2 are not just temporary variables here: they will be
752 // re-used for next span. And q2/q3 will become p1/p0 accordingly.
753 ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
754 DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
755
756 // Store
757 _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
758 _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
759 _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
760 _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
761
762 // rotate samples
763 p1 = tmp1;
764 p0 = tmp2;
765 }
766 }
767
HFilter16i_SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)768 static void HFilter16i_SSE2(uint8_t* p, int stride,
769 int thresh, int ithresh, int hev_thresh) {
770 int k;
771 __m128i p3, p2, p1, p0; // loop invariants
772
773 Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue
774
775 for (k = 3; k > 0; --k) {
776 __m128i mask, tmp1, tmp2;
777 uint8_t* const b = p + 2; // beginning of p1
778
779 p += 4; // beginning of q0 (and next span)
780
781 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
782 Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
783 MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
784
785 ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
786 DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
787
788 Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
789
790 // rotate samples
791 p1 = tmp1;
792 p0 = tmp2;
793 }
794 }
795
796 // 8-pixels wide variant, for chroma filtering
VFilter8_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)797 static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
798 int thresh, int ithresh, int hev_thresh) {
799 __m128i mask;
800 __m128i t1, p2, p1, p0, q0, q1, q2;
801
802 // Load p3, p2, p1, p0
803 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
804 MAX_DIFF1(t1, p2, p1, p0, mask);
805
806 // Load q0, q1, q2, q3
807 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
808 MAX_DIFF2(t1, q2, q1, q0, mask);
809
810 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
811 DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
812
813 // Store
814 STOREUV(p2, u, v, -3 * stride);
815 STOREUV(p1, u, v, -2 * stride);
816 STOREUV(p0, u, v, -1 * stride);
817 STOREUV(q0, u, v, 0 * stride);
818 STOREUV(q1, u, v, 1 * stride);
819 STOREUV(q2, u, v, 2 * stride);
820 }
821
HFilter8_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)822 static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
823 int thresh, int ithresh, int hev_thresh) {
824 __m128i mask;
825 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
826
827 uint8_t* const tu = u - 4;
828 uint8_t* const tv = v - 4;
829 Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
830 MAX_DIFF1(p3, p2, p1, p0, mask);
831
832 Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
833 MAX_DIFF2(q3, q2, q1, q0, mask);
834
835 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
836 DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
837
838 Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
839 Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
840 }
841
VFilter8i_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)842 static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
843 int thresh, int ithresh, int hev_thresh) {
844 __m128i mask;
845 __m128i t1, t2, p1, p0, q0, q1;
846
847 // Load p3, p2, p1, p0
848 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
849 MAX_DIFF1(t2, t1, p1, p0, mask);
850
851 u += 4 * stride;
852 v += 4 * stride;
853
854 // Load q0, q1, q2, q3
855 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
856 MAX_DIFF2(t2, t1, q1, q0, mask);
857
858 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
859 DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
860
861 // Store
862 STOREUV(p1, u, v, -2 * stride);
863 STOREUV(p0, u, v, -1 * stride);
864 STOREUV(q0, u, v, 0 * stride);
865 STOREUV(q1, u, v, 1 * stride);
866 }
867
HFilter8i_SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)868 static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
869 int thresh, int ithresh, int hev_thresh) {
870 __m128i mask;
871 __m128i t1, t2, p1, p0, q0, q1;
872 Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
873 MAX_DIFF1(t2, t1, p1, p0, mask);
874
875 u += 4; // beginning of q0
876 v += 4;
877 Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
878 MAX_DIFF2(t2, t1, q1, q0, mask);
879
880 ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
881 DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
882
883 u -= 2; // beginning of p1
884 v -= 2;
885 Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
886 }
887
888 //------------------------------------------------------------------------------
889 // 4x4 predictions
890
891 #define DST(x, y) dst[(x) + (y) * BPS]
892 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
893
894 // We use the following 8b-arithmetic tricks:
895 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
896 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
897 // and:
898 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
899 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
900 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
901
VE4_SSE2(uint8_t * dst)902 static void VE4_SSE2(uint8_t* dst) { // vertical
903 const __m128i one = _mm_set1_epi8(1);
904 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
905 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
906 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
907 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
908 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
909 const __m128i b = _mm_subs_epu8(a, lsb);
910 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
911 const uint32_t vals = _mm_cvtsi128_si32(avg);
912 int i;
913 for (i = 0; i < 4; ++i) {
914 WebPUint32ToMem(dst + i * BPS, vals);
915 }
916 }
917
LD4_SSE2(uint8_t * dst)918 static void LD4_SSE2(uint8_t* dst) { // Down-Left
919 const __m128i one = _mm_set1_epi8(1);
920 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
921 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
922 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
923 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
924 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
925 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
926 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
927 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
928 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
929 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
930 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
931 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
932 }
933
VR4_SSE2(uint8_t * dst)934 static void VR4_SSE2(uint8_t* dst) { // Vertical-Right
935 const __m128i one = _mm_set1_epi8(1);
936 const int I = dst[-1 + 0 * BPS];
937 const int J = dst[-1 + 1 * BPS];
938 const int K = dst[-1 + 2 * BPS];
939 const int X = dst[-1 - BPS];
940 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
941 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
942 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
943 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
944 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
945 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
946 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
947 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
948 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
949 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
950 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
951 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
952 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
953
954 // these two are hard to implement in SSE2, so we keep the C-version:
955 DST(0, 2) = AVG3(J, I, X);
956 DST(0, 3) = AVG3(K, J, I);
957 }
958
VL4_SSE2(uint8_t * dst)959 static void VL4_SSE2(uint8_t* dst) { // Vertical-Left
960 const __m128i one = _mm_set1_epi8(1);
961 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
962 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
963 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
964 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
965 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
966 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
967 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
968 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
969 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
970 const __m128i abbc = _mm_or_si128(ab, bc);
971 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
972 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
973 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
974 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
975 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
976 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
977 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
978
979 // these two are hard to get and irregular
980 DST(3, 2) = (extra_out >> 0) & 0xff;
981 DST(3, 3) = (extra_out >> 8) & 0xff;
982 }
983
RD4_SSE2(uint8_t * dst)984 static void RD4_SSE2(uint8_t* dst) { // Down-right
985 const __m128i one = _mm_set1_epi8(1);
986 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
987 const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
988 const uint32_t I = dst[-1 + 0 * BPS];
989 const uint32_t J = dst[-1 + 1 * BPS];
990 const uint32_t K = dst[-1 + 2 * BPS];
991 const uint32_t L = dst[-1 + 3 * BPS];
992 const __m128i LKJI_____ =
993 _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
994 const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
995 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
996 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
997 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
998 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
999 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1000 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1001 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
1002 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1003 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1004 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1005 }
1006
1007 #undef DST
1008 #undef AVG3
1009
1010 //------------------------------------------------------------------------------
1011 // Luma 16x16
1012
TrueMotion_SSE2(uint8_t * dst,int size)1013 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1014 const uint8_t* top = dst - BPS;
1015 const __m128i zero = _mm_setzero_si128();
1016 int y;
1017 if (size == 4) {
1018 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1019 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1020 for (y = 0; y < 4; ++y, dst += BPS) {
1021 const int val = dst[-1] - top[-1];
1022 const __m128i base = _mm_set1_epi16(val);
1023 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1024 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1025 }
1026 } else if (size == 8) {
1027 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1028 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1029 for (y = 0; y < 8; ++y, dst += BPS) {
1030 const int val = dst[-1] - top[-1];
1031 const __m128i base = _mm_set1_epi16(val);
1032 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1033 _mm_storel_epi64((__m128i*)dst, out);
1034 }
1035 } else {
1036 const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1037 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1038 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1039 for (y = 0; y < 16; ++y, dst += BPS) {
1040 const int val = dst[-1] - top[-1];
1041 const __m128i base = _mm_set1_epi16(val);
1042 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1043 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1044 const __m128i out = _mm_packus_epi16(out_0, out_1);
1045 _mm_storeu_si128((__m128i*)dst, out);
1046 }
1047 }
1048 }
1049
TM4_SSE2(uint8_t * dst)1050 static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); }
TM8uv_SSE2(uint8_t * dst)1051 static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
TM16_SSE2(uint8_t * dst)1052 static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); }
1053
VE16_SSE2(uint8_t * dst)1054 static void VE16_SSE2(uint8_t* dst) {
1055 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1056 int j;
1057 for (j = 0; j < 16; ++j) {
1058 _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1059 }
1060 }
1061
HE16_SSE2(uint8_t * dst)1062 static void HE16_SSE2(uint8_t* dst) { // horizontal
1063 int j;
1064 for (j = 16; j > 0; --j) {
1065 const __m128i values = _mm_set1_epi8(dst[-1]);
1066 _mm_storeu_si128((__m128i*)dst, values);
1067 dst += BPS;
1068 }
1069 }
1070
Put16_SSE2(uint8_t v,uint8_t * dst)1071 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1072 int j;
1073 const __m128i values = _mm_set1_epi8(v);
1074 for (j = 0; j < 16; ++j) {
1075 _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1076 }
1077 }
1078
DC16_SSE2(uint8_t * dst)1079 static void DC16_SSE2(uint8_t* dst) { // DC
1080 const __m128i zero = _mm_setzero_si128();
1081 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1082 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1083 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1084 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1085 int left = 0;
1086 int j;
1087 for (j = 0; j < 16; ++j) {
1088 left += dst[-1 + j * BPS];
1089 }
1090 {
1091 const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1092 Put16_SSE2(DC >> 5, dst);
1093 }
1094 }
1095
DC16NoTop_SSE2(uint8_t * dst)1096 static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable
1097 int DC = 8;
1098 int j;
1099 for (j = 0; j < 16; ++j) {
1100 DC += dst[-1 + j * BPS];
1101 }
1102 Put16_SSE2(DC >> 4, dst);
1103 }
1104
DC16NoLeft_SSE2(uint8_t * dst)1105 static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable
1106 const __m128i zero = _mm_setzero_si128();
1107 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1108 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1109 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1110 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1111 const int DC = _mm_cvtsi128_si32(sum) + 8;
1112 Put16_SSE2(DC >> 4, dst);
1113 }
1114
DC16NoTopLeft_SSE2(uint8_t * dst)1115 static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples
1116 Put16_SSE2(0x80, dst);
1117 }
1118
1119 //------------------------------------------------------------------------------
1120 // Chroma
1121
VE8uv_SSE2(uint8_t * dst)1122 static void VE8uv_SSE2(uint8_t* dst) { // vertical
1123 int j;
1124 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1125 for (j = 0; j < 8; ++j) {
1126 _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1127 }
1128 }
1129
1130 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)1131 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1132 int j;
1133 const __m128i values = _mm_set1_epi8(v);
1134 for (j = 0; j < 8; ++j) {
1135 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1136 }
1137 }
1138
DC8uv_SSE2(uint8_t * dst)1139 static void DC8uv_SSE2(uint8_t* dst) { // DC
1140 const __m128i zero = _mm_setzero_si128();
1141 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1142 const __m128i sum = _mm_sad_epu8(top, zero);
1143 int left = 0;
1144 int j;
1145 for (j = 0; j < 8; ++j) {
1146 left += dst[-1 + j * BPS];
1147 }
1148 {
1149 const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1150 Put8x8uv_SSE2(DC >> 4, dst);
1151 }
1152 }
1153
DC8uvNoLeft_SSE2(uint8_t * dst)1154 static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples
1155 const __m128i zero = _mm_setzero_si128();
1156 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1157 const __m128i sum = _mm_sad_epu8(top, zero);
1158 const int DC = _mm_cvtsi128_si32(sum) + 4;
1159 Put8x8uv_SSE2(DC >> 3, dst);
1160 }
1161
DC8uvNoTop_SSE2(uint8_t * dst)1162 static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples
1163 int dc0 = 4;
1164 int i;
1165 for (i = 0; i < 8; ++i) {
1166 dc0 += dst[-1 + i * BPS];
1167 }
1168 Put8x8uv_SSE2(dc0 >> 3, dst);
1169 }
1170
DC8uvNoTopLeft_SSE2(uint8_t * dst)1171 static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing
1172 Put8x8uv_SSE2(0x80, dst);
1173 }
1174
1175 //------------------------------------------------------------------------------
1176 // Entry point
1177
1178 extern void VP8DspInitSSE2(void);
1179
VP8DspInitSSE2(void)1180 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1181 VP8Transform = Transform_SSE2;
1182 #if (USE_TRANSFORM_AC3 == 1)
1183 VP8TransformAC3 = TransformAC3_SSE2;
1184 #endif
1185
1186 VP8VFilter16 = VFilter16_SSE2;
1187 VP8HFilter16 = HFilter16_SSE2;
1188 VP8VFilter8 = VFilter8_SSE2;
1189 VP8HFilter8 = HFilter8_SSE2;
1190 VP8VFilter16i = VFilter16i_SSE2;
1191 VP8HFilter16i = HFilter16i_SSE2;
1192 VP8VFilter8i = VFilter8i_SSE2;
1193 VP8HFilter8i = HFilter8i_SSE2;
1194
1195 VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1196 VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1197 VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1198 VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1199
1200 VP8PredLuma4[1] = TM4_SSE2;
1201 VP8PredLuma4[2] = VE4_SSE2;
1202 VP8PredLuma4[4] = RD4_SSE2;
1203 VP8PredLuma4[5] = VR4_SSE2;
1204 VP8PredLuma4[6] = LD4_SSE2;
1205 VP8PredLuma4[7] = VL4_SSE2;
1206
1207 VP8PredLuma16[0] = DC16_SSE2;
1208 VP8PredLuma16[1] = TM16_SSE2;
1209 VP8PredLuma16[2] = VE16_SSE2;
1210 VP8PredLuma16[3] = HE16_SSE2;
1211 VP8PredLuma16[4] = DC16NoTop_SSE2;
1212 VP8PredLuma16[5] = DC16NoLeft_SSE2;
1213 VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1214
1215 VP8PredChroma8[0] = DC8uv_SSE2;
1216 VP8PredChroma8[1] = TM8uv_SSE2;
1217 VP8PredChroma8[2] = VE8uv_SSE2;
1218 VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1219 VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1220 VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1221 }
1222
1223 #else // !WEBP_USE_SSE2
1224
1225 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1226
1227 #endif // WEBP_USE_SSE2
1228