• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *  Copyright 2014 The Android Open Source Project
4  *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights
5  *                        reserved.
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License");
8  *  you may not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at:
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS,
15  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  *
19  ******************************************************************************/
20 
21 /*******************************************************************************
22   $Revision: #1 $
23  ******************************************************************************/
24 
25 /** @file
26 @ingroup codec_internal
27 */
28 
29 /**@addgroup codec_internal*/
30 /**@{*/
31 
32 /*
33  * Performs an 8-point Type-II scaled DCT using the Arai-Agui-Nakajima
34  * factorization. The scaling factors are folded into the windowing
35  * constants. 29 adds and 5 16x32 multiplies per 8 samples.
36  */
37 
38 #include "oi_codec_sbc_private.h"
39 
40 #define AAN_C4_FIX (759250125) /* S1.30  759250125   0.707107*/
41 
42 #define AAN_C6_FIX (410903207) /* S1.30  410903207   0.382683*/
43 
44 #define AAN_Q0_FIX (581104888) /* S1.30  581104888   0.541196*/
45 
46 #define AAN_Q1_FIX (1402911301) /* S1.30 1402911301   1.306563*/
47 
48 /** Scales x by y bits to the right, adding a rounding factor.
49  */
50 #ifndef SCALE
51 #define SCALE(x, y) (((x) + (1 << ((y)-1))) >> (y))
52 #endif
53 
54 /**
55  * Default C language implementation of a 32x32->32 multiply. This function may
56  * be replaced by a platform-specific version for speed.
57  *
58  * @param u A signed 32-bit multiplicand
59  * @param v A signed 32-bit multiplier
60 
61  * @return  A signed 32-bit value corresponding to the 32 most significant bits
62  * of the 64-bit product of u and v.
63  */
default_mul_32s_32s_hi(int32_t u,int32_t v)64 INLINE int32_t default_mul_32s_32s_hi(int32_t u, int32_t v) {
65   uint32_t u0, v0;
66   int32_t u1, v1, w1, w2, t;
67 
68   u0 = u & 0xFFFF;
69   u1 = u >> 16;
70   v0 = v & 0xFFFF;
71   v1 = v >> 16;
72   t = u0 * v0;
73   t = u1 * v0 + ((uint32_t)t >> 16);
74   w1 = t & 0xFFFF;
75   w2 = t >> 16;
76   w1 = u0 * v1 + w1;
77   return u1 * v1 + w2 + (w1 >> 16);
78 }
79 
80 #define MUL_32S_32S_HI(_x, _y) default_mul_32s_32s_hi(_x, _y)
81 
82 #ifdef DEBUG_DCT
float_dct2_8(float * RESTRICT out,int32_t const * RESTRICT in)83 PRIVATE void float_dct2_8(float* RESTRICT out, int32_t const* RESTRICT in) {
84 #define FIX(x, bits) \
85   (((int)floor(0.5f + ((x) * ((float)(1 << bits))))) / ((float)(1 << bits)))
86 #define FLOAT_BUTTERFLY(x, y) \
87   x += y;                     \
88   y = x - (y * 2);            \
89   OI_ASSERT(VALID_INT32(x));  \
90   OI_ASSERT(VALID_INT32(y));
91 #define FLOAT_MULT_DCT(K, sample) (FIX(K, 20) * sample)
92 #define FLOAT_SCALE(x, y) (((x) / (double)(1 << (y))))
93 
94   double L00, L01, L02, L03, L04, L05, L06, L07;
95   double L25;
96 
97   double in0, in1, in2, in3;
98   double in4, in5, in6, in7;
99 
100   in0 = FLOAT_SCALE(in[0], DCTII_8_SHIFT_IN);
101   OI_ASSERT(VALID_INT32(in0));
102   in1 = FLOAT_SCALE(in[1], DCTII_8_SHIFT_IN);
103   OI_ASSERT(VALID_INT32(in1));
104   in2 = FLOAT_SCALE(in[2], DCTII_8_SHIFT_IN);
105   OI_ASSERT(VALID_INT32(in2));
106   in3 = FLOAT_SCALE(in[3], DCTII_8_SHIFT_IN);
107   OI_ASSERT(VALID_INT32(in3));
108   in4 = FLOAT_SCALE(in[4], DCTII_8_SHIFT_IN);
109   OI_ASSERT(VALID_INT32(in4));
110   in5 = FLOAT_SCALE(in[5], DCTII_8_SHIFT_IN);
111   OI_ASSERT(VALID_INT32(in5));
112   in6 = FLOAT_SCALE(in[6], DCTII_8_SHIFT_IN);
113   OI_ASSERT(VALID_INT32(in6));
114   in7 = FLOAT_SCALE(in[7], DCTII_8_SHIFT_IN);
115   OI_ASSERT(VALID_INT32(in7));
116 
117   L00 = (in0 + in7);
118   OI_ASSERT(VALID_INT32(L00));
119   L01 = (in1 + in6);
120   OI_ASSERT(VALID_INT32(L01));
121   L02 = (in2 + in5);
122   OI_ASSERT(VALID_INT32(L02));
123   L03 = (in3 + in4);
124   OI_ASSERT(VALID_INT32(L03));
125 
126   L04 = (in3 - in4);
127   OI_ASSERT(VALID_INT32(L04));
128   L05 = (in2 - in5);
129   OI_ASSERT(VALID_INT32(L05));
130   L06 = (in1 - in6);
131   OI_ASSERT(VALID_INT32(L06));
132   L07 = (in0 - in7);
133   OI_ASSERT(VALID_INT32(L07));
134 
135   FLOAT_BUTTERFLY(L00, L03);
136   FLOAT_BUTTERFLY(L01, L02);
137 
138   L02 += L03;
139   OI_ASSERT(VALID_INT32(L02));
140 
141   L02 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L02);
142   OI_ASSERT(VALID_INT32(L02));
143 
144   FLOAT_BUTTERFLY(L00, L01);
145 
146   out[0] = (float)FLOAT_SCALE(L00, DCTII_8_SHIFT_0);
147   OI_ASSERT(VALID_INT16(out[0]));
148   out[4] = (float)FLOAT_SCALE(L01, DCTII_8_SHIFT_4);
149   OI_ASSERT(VALID_INT16(out[4]));
150 
151   FLOAT_BUTTERFLY(L03, L02);
152   out[6] = (float)FLOAT_SCALE(L02, DCTII_8_SHIFT_6);
153   OI_ASSERT(VALID_INT16(out[6]));
154   out[2] = (float)FLOAT_SCALE(L03, DCTII_8_SHIFT_2);
155   OI_ASSERT(VALID_INT16(out[2]));
156 
157   L04 += L05;
158   OI_ASSERT(VALID_INT32(L04));
159   L05 += L06;
160   OI_ASSERT(VALID_INT32(L05));
161   L06 += L07;
162   OI_ASSERT(VALID_INT32(L06));
163 
164   L04 /= 2;
165   L05 /= 2;
166   L06 /= 2;
167   L07 /= 2;
168 
169   L05 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L05);
170   OI_ASSERT(VALID_INT32(L05));
171 
172   L25 = L06 - L04;
173   OI_ASSERT(VALID_INT32(L25));
174   L25 = FLOAT_MULT_DCT(AAN_C6_FLOAT, L25);
175   OI_ASSERT(VALID_INT32(L25));
176 
177   L04 = FLOAT_MULT_DCT(AAN_Q0_FLOAT, L04);
178   OI_ASSERT(VALID_INT32(L04));
179   L04 -= L25;
180   OI_ASSERT(VALID_INT32(L04));
181 
182   L06 = FLOAT_MULT_DCT(AAN_Q1_FLOAT, L06);
183   OI_ASSERT(VALID_INT32(L06));
184   L06 -= L25;
185   OI_ASSERT(VALID_INT32(L25));
186 
187   FLOAT_BUTTERFLY(L07, L05);
188 
189   FLOAT_BUTTERFLY(L05, L04);
190   out[3] = (float)(FLOAT_SCALE(L04, DCTII_8_SHIFT_3 - 1));
191   OI_ASSERT(VALID_INT16(out[3]));
192   out[5] = (float)(FLOAT_SCALE(L05, DCTII_8_SHIFT_5 - 1));
193   OI_ASSERT(VALID_INT16(out[5]));
194 
195   FLOAT_BUTTERFLY(L07, L06);
196   out[7] = (float)(FLOAT_SCALE(L06, DCTII_8_SHIFT_7 - 1));
197   OI_ASSERT(VALID_INT16(out[7]));
198   out[1] = (float)(FLOAT_SCALE(L07, DCTII_8_SHIFT_1 - 1));
199   OI_ASSERT(VALID_INT16(out[1]));
200 }
201 #undef BUTTERFLY
202 #endif
203 
204 /*
205  * This function calculates the AAN DCT. Its inputs are in S16.15 format, as
206  * returned by OI_SBC_Dequant. In practice, abs(in[x]) < 52429.0 / 1.38
207  * (1244918057 integer). The function it computes is an approximation to the
208  * array defined by:
209  *
210  * diag(aan_s) * AAN= C2
211  *
212  *   or
213  *
214  * AAN = diag(1/aan_s) * C2
215  *
216  * where C2 is as it is defined in the comment at the head of this file, and
217  *
218  * aan_s[i] = aan_s = 1/(2*cos(i*pi/16)) with i = 1..7, aan_s[0] = 1;
219  *
220  * aan_s[i] = [ 1.000  0.510  0.541  0.601  0.707  0.900  1.307  2.563 ]
221  *
222  * The output ranges are shown as follows:
223  *
224  * Let Y[0..7] = AAN * X[0..7]
225  *
226  * Without loss of generality, assume the input vector X consists of elements
227  * between -1 and 1. The maximum possible value of a given output element occurs
228  * with some particular combination of input vector elements each of which is -1
229  * or 1. Consider the computation of Y[i]. Y[i] = sum t=0..7 of AAN[t,i]*X[i]. Y
230  * is maximized if the sign of X[i] matches the sign of AAN[t,i], ensuring a
231  * positive contribution to the sum. Equivalently, one may simply sum
232  * abs(AAN)[t,i] over t to get the maximum possible value of Y[i].
233  *
234  * This yields approximately:
235  *  [8.00  10.05   9.66   8.52   8.00   5.70   4.00   2.00]
236  *
237  * Given the maximum magnitude sensible input value of +/-37992, this yields the
238  * following vector of maximum output magnitudes:
239  *
240  * [ 303936  381820  367003  323692  303936  216555  151968   75984 ]
241  *
242  * Ultimately, these values must fit into 16 bit signed integers, so they must
243  * be scaled. A non-uniform scaling helps maximize the kept precision. The
244  * relative number of extra bits of precision maintainable with respect to the
245  * largest value is given here:
246  *
247  * [ 0  0  0  0  0  0  1  2 ]
248  *
249  */
dct2_8(SBC_BUFFER_T * RESTRICT out,int32_t const * RESTRICT in)250 PRIVATE void dct2_8(SBC_BUFFER_T* RESTRICT out, int32_t const* RESTRICT in) {
251 #define BUTTERFLY(x, y) \
252   x += (y);             \
253   (y) = (x) - ((y) << 1);
254 #define FIX_MULT_DCT(K, x) (MUL_32S_32S_HI(K, x) << 2)
255 
256   int32_t L00, L01, L02, L03, L04, L05, L06, L07;
257   int32_t L25;
258 
259   int32_t in0, in1, in2, in3;
260   int32_t in4, in5, in6, in7;
261 
262 #if DCTII_8_SHIFT_IN != 0
263   in0 = SCALE(in[0], DCTII_8_SHIFT_IN);
264   in1 = SCALE(in[1], DCTII_8_SHIFT_IN);
265   in2 = SCALE(in[2], DCTII_8_SHIFT_IN);
266   in3 = SCALE(in[3], DCTII_8_SHIFT_IN);
267   in4 = SCALE(in[4], DCTII_8_SHIFT_IN);
268   in5 = SCALE(in[5], DCTII_8_SHIFT_IN);
269   in6 = SCALE(in[6], DCTII_8_SHIFT_IN);
270   in7 = SCALE(in[7], DCTII_8_SHIFT_IN);
271 #else
272   in0 = in[0];
273   in1 = in[1];
274   in2 = in[2];
275   in3 = in[3];
276   in4 = in[4];
277   in5 = in[5];
278   in6 = in[6];
279   in7 = in[7];
280 #endif
281 
282   L00 = in0 + in7;
283   L01 = in1 + in6;
284   L02 = in2 + in5;
285   L03 = in3 + in4;
286 
287   L04 = in3 - in4;
288   L05 = in2 - in5;
289   L06 = in1 - in6;
290   L07 = in0 - in7;
291 
292   BUTTERFLY(L00, L03);
293   BUTTERFLY(L01, L02);
294 
295   L02 += L03;
296 
297   L02 = FIX_MULT_DCT(AAN_C4_FIX, L02);
298 
299   BUTTERFLY(L00, L01);
300 
301   out[0] = (int16_t)SCALE(L00, DCTII_8_SHIFT_0);
302   out[4] = (int16_t)SCALE(L01, DCTII_8_SHIFT_4);
303 
304   BUTTERFLY(L03, L02);
305   out[6] = (int16_t)SCALE(L02, DCTII_8_SHIFT_6);
306   out[2] = (int16_t)SCALE(L03, DCTII_8_SHIFT_2);
307 
308   L04 += L05;
309   L05 += L06;
310   L06 += L07;
311 
312   L04 /= 2;
313   L05 /= 2;
314   L06 /= 2;
315   L07 /= 2;
316 
317   L05 = FIX_MULT_DCT(AAN_C4_FIX, L05);
318 
319   L25 = L06 - L04;
320   L25 = FIX_MULT_DCT(AAN_C6_FIX, L25);
321 
322   L04 = FIX_MULT_DCT(AAN_Q0_FIX, L04);
323   L04 -= L25;
324 
325   L06 = FIX_MULT_DCT(AAN_Q1_FIX, L06);
326   L06 -= L25;
327 
328   BUTTERFLY(L07, L05);
329 
330   BUTTERFLY(L05, L04);
331   out[3] = (int16_t)SCALE(L04, DCTII_8_SHIFT_3 - 1);
332   out[5] = (int16_t)SCALE(L05, DCTII_8_SHIFT_5 - 1);
333 
334   BUTTERFLY(L07, L06);
335   out[7] = (int16_t)SCALE(L06, DCTII_8_SHIFT_7 - 1);
336   out[1] = (int16_t)SCALE(L07, DCTII_8_SHIFT_1 - 1);
337 #undef BUTTERFLY
338 
339 #ifdef DEBUG_DCT
340   {
341     float float_out[8];
342     float_dct2_8(float_out, in);
343   }
344 #endif
345 }
346 
347 /**@}*/
348