1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "images.h"
18
19 #include <limits.h>
20
21 #include <android-base/file.h>
22
23 #include "reader.h"
24 #include "utility.h"
25 #include "writer.h"
26
27 namespace android {
28 namespace fs_mgr {
29
30 using android::base::unique_fd;
31
32 #if defined(_WIN32)
33 static const int O_NOFOLLOW = 0;
34 #endif
35
ReadFromImageFile(int fd)36 std::unique_ptr<LpMetadata> ReadFromImageFile(int fd) {
37 std::unique_ptr<uint8_t[]> buffer = std::make_unique<uint8_t[]>(LP_METADATA_GEOMETRY_SIZE);
38 if (SeekFile64(fd, 0, SEEK_SET) < 0) {
39 PERROR << __PRETTY_FUNCTION__ << " lseek failed";
40 return nullptr;
41 }
42 if (!android::base::ReadFully(fd, buffer.get(), LP_METADATA_GEOMETRY_SIZE)) {
43 PERROR << __PRETTY_FUNCTION__ << " read failed";
44 return nullptr;
45 }
46 LpMetadataGeometry geometry;
47 if (!ParseGeometry(buffer.get(), &geometry)) {
48 return nullptr;
49 }
50 return ParseMetadata(geometry, fd);
51 }
52
ReadFromImageBlob(const void * data,size_t bytes)53 std::unique_ptr<LpMetadata> ReadFromImageBlob(const void* data, size_t bytes) {
54 if (bytes < LP_METADATA_GEOMETRY_SIZE) {
55 LERROR << __PRETTY_FUNCTION__ << ": " << bytes << " is smaller than geometry header";
56 return nullptr;
57 }
58
59 LpMetadataGeometry geometry;
60 if (!ParseGeometry(data, &geometry)) {
61 return nullptr;
62 }
63
64 const uint8_t* metadata_buffer =
65 reinterpret_cast<const uint8_t*>(data) + LP_METADATA_GEOMETRY_SIZE;
66 size_t metadata_buffer_size = bytes - LP_METADATA_GEOMETRY_SIZE;
67 return ParseMetadata(geometry, metadata_buffer, metadata_buffer_size);
68 }
69
ReadFromImageFile(const std::string & image_file)70 std::unique_ptr<LpMetadata> ReadFromImageFile(const std::string& image_file) {
71 unique_fd fd = GetControlFileOrOpen(image_file.c_str(), O_RDONLY | O_CLOEXEC);
72 if (fd < 0) {
73 PERROR << __PRETTY_FUNCTION__ << " open failed: " << image_file;
74 return nullptr;
75 }
76 return ReadFromImageFile(fd);
77 }
78
WriteToImageFile(int fd,const LpMetadata & input)79 bool WriteToImageFile(int fd, const LpMetadata& input) {
80 std::string geometry = SerializeGeometry(input.geometry);
81 std::string metadata = SerializeMetadata(input);
82
83 std::string everything = geometry + metadata;
84
85 if (!android::base::WriteFully(fd, everything.data(), everything.size())) {
86 PERROR << __PRETTY_FUNCTION__ << " write " << everything.size() << " bytes failed";
87 return false;
88 }
89 return true;
90 }
91
WriteToImageFile(const char * file,const LpMetadata & input)92 bool WriteToImageFile(const char* file, const LpMetadata& input) {
93 unique_fd fd(open(file, O_CREAT | O_RDWR | O_TRUNC | O_CLOEXEC, 0644));
94 if (fd < 0) {
95 PERROR << __PRETTY_FUNCTION__ << " open failed: " << file;
96 return false;
97 }
98 return WriteToImageFile(fd, input);
99 }
100
ImageBuilder(const LpMetadata & metadata,uint32_t block_size,const std::map<std::string,std::string> & images,bool sparsify)101 ImageBuilder::ImageBuilder(const LpMetadata& metadata, uint32_t block_size,
102 const std::map<std::string, std::string>& images, bool sparsify)
103 : metadata_(metadata),
104 geometry_(metadata.geometry),
105 block_size_(block_size),
106 sparsify_(sparsify),
107 images_(images) {
108 uint64_t total_size = GetTotalSuperPartitionSize(metadata);
109 if (block_size % LP_SECTOR_SIZE != 0) {
110 LERROR << "Block size must be a multiple of the sector size, " << LP_SECTOR_SIZE;
111 return;
112 }
113 if (total_size % block_size != 0) {
114 LERROR << "Device size must be a multiple of the block size, " << block_size;
115 return;
116 }
117 if (metadata.geometry.metadata_max_size % block_size != 0) {
118 LERROR << "Metadata max size must be a multiple of the block size, " << block_size;
119 return;
120 }
121 if (LP_METADATA_GEOMETRY_SIZE % block_size != 0) {
122 LERROR << "Geometry size is not a multiple of the block size, " << block_size;
123 return;
124 }
125 if (LP_PARTITION_RESERVED_BYTES % block_size != 0) {
126 LERROR << "Reserved size is not a multiple of the block size, " << block_size;
127 return;
128 }
129
130 uint64_t num_blocks = total_size / block_size;
131 if (num_blocks >= UINT_MAX) {
132 // libsparse counts blocks in unsigned 32-bit integers, so we check to
133 // make sure we're not going to overflow.
134 LERROR << "Block device is too large to encode with libsparse.";
135 return;
136 }
137
138 for (const auto& block_device : metadata.block_devices) {
139 SparsePtr file(sparse_file_new(block_size_, block_device.size), sparse_file_destroy);
140 if (!file) {
141 LERROR << "Could not allocate sparse file of size " << block_device.size;
142 return;
143 }
144 device_images_.emplace_back(std::move(file));
145 }
146 }
147
IsValid() const148 bool ImageBuilder::IsValid() const {
149 return device_images_.size() == metadata_.block_devices.size();
150 }
151
Export(const char * file)152 bool ImageBuilder::Export(const char* file) {
153 unique_fd fd(open(file, O_CREAT | O_RDWR | O_TRUNC | O_CLOEXEC, 0644));
154 if (fd < 0) {
155 PERROR << "open failed: " << file;
156 return false;
157 }
158 if (device_images_.size() > 1) {
159 LERROR << "Cannot export to a single image on retrofit builds.";
160 return false;
161 }
162 // No gzip compression; no checksum.
163 int ret = sparse_file_write(device_images_[0].get(), fd, false, sparsify_, false);
164 if (ret != 0) {
165 LERROR << "sparse_file_write failed (error code " << ret << ")";
166 return false;
167 }
168 return true;
169 }
170
ExportFiles(const std::string & output_dir)171 bool ImageBuilder::ExportFiles(const std::string& output_dir) {
172 for (size_t i = 0; i < device_images_.size(); i++) {
173 std::string name = GetBlockDevicePartitionName(metadata_.block_devices[i]);
174 std::string file_name = "super_" + name + ".img";
175 std::string file_path = output_dir + "/" + file_name;
176
177 static const int kOpenFlags = O_CREAT | O_RDWR | O_TRUNC | O_CLOEXEC | O_NOFOLLOW;
178 unique_fd fd(open(file_path.c_str(), kOpenFlags, 0644));
179 if (fd < 0) {
180 PERROR << "open failed: " << file_path;
181 return false;
182 }
183 // No gzip compression; no checksum.
184 int ret = sparse_file_write(device_images_[i].get(), fd, false, sparsify_, false);
185 if (ret != 0) {
186 LERROR << "sparse_file_write failed (error code " << ret << ")";
187 return false;
188 }
189 }
190 return true;
191 }
192
AddData(sparse_file * file,const std::string & blob,uint64_t sector)193 bool ImageBuilder::AddData(sparse_file* file, const std::string& blob, uint64_t sector) {
194 uint32_t block;
195 if (!SectorToBlock(sector, &block)) {
196 return false;
197 }
198 void* data = const_cast<char*>(blob.data());
199 int ret = sparse_file_add_data(file, data, blob.size(), block);
200 if (ret != 0) {
201 LERROR << "sparse_file_add_data failed (error code " << ret << ")";
202 return false;
203 }
204 return true;
205 }
206
SectorToBlock(uint64_t sector,uint32_t * block)207 bool ImageBuilder::SectorToBlock(uint64_t sector, uint32_t* block) {
208 // The caller must ensure that the metadata has an alignment that is a
209 // multiple of the block size. liblp will take care of the rest, ensuring
210 // that all partitions are on an aligned boundary. Therefore all writes
211 // should be block-aligned, and if they are not, the table was misconfigured.
212 // Note that the default alignment is 1MiB, which is a multiple of the
213 // default block size (4096).
214 if ((sector * LP_SECTOR_SIZE) % block_size_ != 0) {
215 LERROR << "sector " << sector << " is not aligned to block size " << block_size_;
216 return false;
217 }
218 *block = (sector * LP_SECTOR_SIZE) / block_size_;
219 return true;
220 }
221
BlockToSector(uint64_t block) const222 uint64_t ImageBuilder::BlockToSector(uint64_t block) const {
223 return (block * block_size_) / LP_SECTOR_SIZE;
224 }
225
Build()226 bool ImageBuilder::Build() {
227 if (sparse_file_add_fill(device_images_[0].get(), 0, LP_PARTITION_RESERVED_BYTES, 0) < 0) {
228 LERROR << "Could not add initial sparse block for reserved zeroes";
229 return false;
230 }
231
232 std::string geometry_blob = SerializeGeometry(geometry_);
233 std::string metadata_blob = SerializeMetadata(metadata_);
234 metadata_blob.resize(geometry_.metadata_max_size);
235
236 // Two copies of geometry, then two copies of each metadata slot.
237 all_metadata_ += geometry_blob + geometry_blob;
238 for (size_t i = 0; i < geometry_.metadata_slot_count * 2; i++) {
239 all_metadata_ += metadata_blob;
240 }
241
242 uint64_t first_sector = LP_PARTITION_RESERVED_BYTES / LP_SECTOR_SIZE;
243 if (!AddData(device_images_[0].get(), all_metadata_, first_sector)) {
244 return false;
245 }
246
247 if (!CheckExtentOrdering()) {
248 return false;
249 }
250
251 for (const auto& partition : metadata_.partitions) {
252 auto iter = images_.find(GetPartitionName(partition));
253 if (iter == images_.end()) {
254 continue;
255 }
256 if (!AddPartitionImage(partition, iter->second)) {
257 return false;
258 }
259 images_.erase(iter);
260 }
261
262 if (!images_.empty()) {
263 LERROR << "Partition image was specified but no partition was found.";
264 return false;
265 }
266 return true;
267 }
268
HasFillValue(uint32_t * buffer,size_t count)269 static inline bool HasFillValue(uint32_t* buffer, size_t count) {
270 uint32_t fill_value = buffer[0];
271 for (size_t i = 1; i < count; i++) {
272 if (fill_value != buffer[i]) {
273 return false;
274 }
275 }
276 return true;
277 }
278
AddPartitionImage(const LpMetadataPartition & partition,const std::string & file)279 bool ImageBuilder::AddPartitionImage(const LpMetadataPartition& partition,
280 const std::string& file) {
281 // Track which extent we're processing.
282 uint32_t extent_index = partition.first_extent_index;
283
284 const LpMetadataExtent& extent = metadata_.extents[extent_index];
285 if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
286 LERROR << "Partition should only have linear extents: " << GetPartitionName(partition);
287 return false;
288 }
289
290 int fd = OpenImageFile(file);
291 if (fd < 0) {
292 LERROR << "Could not open image for partition: " << GetPartitionName(partition);
293 return false;
294 }
295
296 // Make sure the image does not exceed the partition size.
297 uint64_t file_length;
298 if (!GetDescriptorSize(fd, &file_length)) {
299 LERROR << "Could not compute image size";
300 return false;
301 }
302 uint64_t partition_size = ComputePartitionSize(partition);
303 if (file_length > partition_size) {
304 LERROR << "Image for partition '" << GetPartitionName(partition)
305 << "' is greater than its size (" << file_length << ", expected " << partition_size
306 << ")";
307 return false;
308 }
309 if (SeekFile64(fd, 0, SEEK_SET)) {
310 PERROR << "lseek failed";
311 return false;
312 }
313
314 // We track the current logical sector and the position the current extent
315 // ends at.
316 uint64_t output_sector = 0;
317 uint64_t extent_last_sector = extent.num_sectors;
318
319 // We also track the output device and the current output block within that
320 // device.
321 uint32_t output_block;
322 if (!SectorToBlock(extent.target_data, &output_block)) {
323 return false;
324 }
325 sparse_file* output_device = device_images_[extent.target_source].get();
326
327 // Proceed to read the file and build sparse images.
328 uint64_t pos = 0;
329 uint64_t remaining = file_length;
330 while (remaining) {
331 // Check if we need to advance to the next extent.
332 if (output_sector == extent_last_sector) {
333 extent_index++;
334 if (extent_index >= partition.first_extent_index + partition.num_extents) {
335 LERROR << "image is larger than extent table";
336 return false;
337 }
338
339 const LpMetadataExtent& extent = metadata_.extents[extent_index];
340 extent_last_sector += extent.num_sectors;
341 output_device = device_images_[extent.target_source].get();
342 if (!SectorToBlock(extent.target_data, &output_block)) {
343 return false;
344 }
345 }
346
347 uint32_t buffer[block_size_ / sizeof(uint32_t)];
348 size_t read_size = remaining >= sizeof(buffer) ? sizeof(buffer) : size_t(remaining);
349 if (!android::base::ReadFully(fd, buffer, sizeof(buffer))) {
350 PERROR << "read failed";
351 return false;
352 }
353 if (read_size != sizeof(buffer) || !HasFillValue(buffer, read_size / sizeof(uint32_t))) {
354 int rv = sparse_file_add_fd(output_device, fd, pos, read_size, output_block);
355 if (rv) {
356 LERROR << "sparse_file_add_fd failed with code: " << rv;
357 return false;
358 }
359 } else {
360 int rv = sparse_file_add_fill(output_device, buffer[0], read_size, output_block);
361 if (rv) {
362 LERROR << "sparse_file_add_fill failed with code: " << rv;
363 return false;
364 }
365 }
366 pos += read_size;
367 remaining -= read_size;
368 output_sector += block_size_ / LP_SECTOR_SIZE;
369 output_block++;
370 }
371
372 return true;
373 }
374
ComputePartitionSize(const LpMetadataPartition & partition) const375 uint64_t ImageBuilder::ComputePartitionSize(const LpMetadataPartition& partition) const {
376 uint64_t sectors = 0;
377 for (size_t i = 0; i < partition.num_extents; i++) {
378 sectors += metadata_.extents[partition.first_extent_index + i].num_sectors;
379 }
380 return sectors * LP_SECTOR_SIZE;
381 }
382
383 // For simplicity, we don't allow serializing any configuration: extents must
384 // be ordered, such that any extent at position I in the table occurs *before*
385 // any extent after position I, for the same block device. We validate that
386 // here.
387 //
388 // Without this, it would be more difficult to find the appropriate extent for
389 // an output block. With this guarantee it is a linear walk.
CheckExtentOrdering()390 bool ImageBuilder::CheckExtentOrdering() {
391 std::vector<uint64_t> last_sectors(metadata_.block_devices.size());
392
393 for (const auto& extent : metadata_.extents) {
394 if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
395 LERROR << "Extents must all be type linear.";
396 return false;
397 }
398 if (extent.target_data <= last_sectors[extent.target_source]) {
399 LERROR << "Extents must appear in increasing order.";
400 return false;
401 }
402 if ((extent.num_sectors * LP_SECTOR_SIZE) % block_size_ != 0) {
403 LERROR << "Extents must be aligned to the block size.";
404 return false;
405 }
406 last_sectors[extent.target_source] = extent.target_data;
407 }
408 return true;
409 }
410
OpenImageFile(const std::string & file)411 int ImageBuilder::OpenImageFile(const std::string& file) {
412 android::base::unique_fd source_fd = GetControlFileOrOpen(file.c_str(), O_RDONLY | O_CLOEXEC);
413 if (source_fd < 0) {
414 PERROR << "open image file failed: " << file;
415 return -1;
416 }
417
418 SparsePtr source(sparse_file_import(source_fd, true, true), sparse_file_destroy);
419 if (!source) {
420 int fd = source_fd.get();
421 temp_fds_.push_back(std::move(source_fd));
422 return fd;
423 }
424
425 TemporaryFile tf;
426 if (tf.fd < 0) {
427 PERROR << "make temporary file failed";
428 return -1;
429 }
430
431 // We temporarily unsparse the file, rather than try to merge its chunks.
432 int rv = sparse_file_write(source.get(), tf.fd, false, false, false);
433 if (rv) {
434 LERROR << "sparse_file_write failed with code: " << rv;
435 return -1;
436 }
437 temp_fds_.push_back(android::base::unique_fd(tf.release()));
438 return temp_fds_.back().get();
439 }
440
WriteToImageFile(const char * file,const LpMetadata & metadata,uint32_t block_size,const std::map<std::string,std::string> & images,bool sparsify)441 bool WriteToImageFile(const char* file, const LpMetadata& metadata, uint32_t block_size,
442 const std::map<std::string, std::string>& images, bool sparsify) {
443 ImageBuilder builder(metadata, block_size, images, sparsify);
444 return builder.IsValid() && builder.Build() && builder.Export(file);
445 }
446
WriteSplitImageFiles(const std::string & output_dir,const LpMetadata & metadata,uint32_t block_size,const std::map<std::string,std::string> & images,bool sparsify)447 bool WriteSplitImageFiles(const std::string& output_dir, const LpMetadata& metadata,
448 uint32_t block_size, const std::map<std::string, std::string>& images,
449 bool sparsify) {
450 ImageBuilder builder(metadata, block_size, images, sparsify);
451 return builder.IsValid() && builder.Build() && builder.ExportFiles(output_dir);
452 }
453
454 } // namespace fs_mgr
455 } // namespace android
456