# Copyright 2020 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os.path import its.caps import its.device import its.image import its.objects from matplotlib import pylab import matplotlib.pyplot import numpy as np JPEG_APPN_MARKERS = [[255, 224], [255, 225], [255, 226], [255, 227], [255, 228], [255, 235]] JPEG_DHT_MARKER = [255, 196] # JPEG Define Huffman Table JPEG_DQT_MARKER = [255, 219] # JPEG Define Quantization Table JPEG_DQT_TOL = 0.8 # -20% for each +20 in jpeg.quality (empirical number) JPEG_EOI_MARKER = [255, 217] # JPEG End of Image JPEG_SOI_MARKER = [255, 216] # JPEG Start of Image JPEG_SOS_MARKER = [255, 218] # JPEG Start of Scan NAME = os.path.basename(__file__).split('.')[0] QUALITIES = [25, 45, 65, 85] SYMBOLS = ['o', 's', 'v', '^', '<', '>'] def is_square(integer): root = math.sqrt(integer) return integer == int(root + 0.5) ** 2 def strip_soi_marker(jpeg): """strip off start of image marker. SOI is of form [xFF xD8] and JPEG needs to start with marker. Args: jpeg: 1-D numpy int [0:255] array; values from JPEG capture Returns: jpeg with SOI marker stripped off. """ soi = jpeg[0:2] assert list(soi) == JPEG_SOI_MARKER, 'JPEG has no Start Of Image marker' return jpeg[2:] def strip_appn_data(jpeg): """strip off application specific data at beginning of JPEG. APPN markers are of form [xFF, xE*, size_msb, size_lsb] and should follow SOI marker. Args: jpeg: 1-D numpy int [0:255] array; values from JPEG capture Returns: jpeg with APPN marker(s) and data stripped off. """ length = 0 i = 0 # find APPN markers and strip off payloads at beginning of jpeg while i < len(jpeg)-1: if [jpeg[i], jpeg[i+1]] in JPEG_APPN_MARKERS: length = jpeg[i+2] * 256 + jpeg[i+3] + 2 print ' stripped APPN length:', length jpeg = np.concatenate((jpeg[0:i], jpeg[length:]), axis=None) elif ([jpeg[i], jpeg[i+1]] == JPEG_DQT_MARKER or [jpeg[i], jpeg[i+1]] == JPEG_DHT_MARKER): break else: i += 1 return jpeg def find_dqt_markers(marker, jpeg): """Find location(s) of marker list in jpeg. DQT marker is of form [xFF, xDB]. Args: marker: list; marker values jpeg: 1-D numpy int [0:255] array; JPEG capture w/ SOI & APPN stripped Returns: locs: list; marker locations in jpeg """ locs = [] marker_len = len(marker) for i in xrange(len(jpeg)-marker_len+1): if list(jpeg[i:i+marker_len]) == marker: locs.append(i) return locs def extract_dqts(jpeg, debug=False): """Find and extract the DQT info in the JPEG. SOI marker and APPN markers plus data are stripped off front of JPEG. DQT marker is of form [xFF, xDB] followed by [size_msb, size_lsb]. Size includes the size values, but not the marker values. Luma DQT is prefixed by 0, Chroma DQT by 1. DQTs can have both luma & chroma or each individually. There can be more than one DQT table for luma and chroma. Args: jpeg: 1-D numpy int [0:255] array; values from JPEG capture debug: bool; command line flag to print debug data Returns: lumas, chromas: lists of numpy means of luma & chroma DQT matrices. Higher values represent higher compression. """ dqt_markers = find_dqt_markers(JPEG_DQT_MARKER, jpeg) print 'DQT header loc(s):', dqt_markers lumas = [] chromas = [] for i, dqt in enumerate(dqt_markers): if debug: print '\n DQT %d start: %d, marker: %s, length: %s' % ( i, dqt, jpeg[dqt:dqt+2], jpeg[dqt+2:dqt+4]) dqt_size = jpeg[dqt+2]*256 + jpeg[dqt+3] - 2 # strip off size marker if dqt_size % 2 == 0: # even payload means luma & chroma print ' both luma & chroma DQT matrices in marker' dqt_size = (dqt_size - 2) / 2 # subtact off luma/chroma markers assert is_square(dqt_size), 'DQT size: %d' % dqt_size luma_start = dqt + 5 # skip header, length, & matrix id chroma_start = luma_start + dqt_size + 1 # skip lumen & matrix_id luma = np.array(jpeg[luma_start:luma_start+dqt_size]) chroma = np.array(jpeg[chroma_start:chroma_start+dqt_size]) lumas.append(np.mean(luma)) chromas.append(np.mean(chroma)) if debug: h = int(math.sqrt(dqt_size)) print ' luma:', luma.reshape(h, h) print ' chroma:', chroma.reshape(h, h) else: # odd payload means only 1 matrix print ' single DQT matrix in marker' dqt_size = dqt_size - 1 # subtract off luma/chroma marker assert is_square(dqt_size), 'DQT size: %d' % dqt_size start = dqt + 5 matrix = np.array(jpeg[start:start+dqt_size]) if jpeg[dqt+4]: # chroma == 1 chromas.append(np.mean(matrix)) if debug: h = int(math.sqrt(dqt_size)) print ' chroma:', matrix.reshape(h, h) else: # luma == 0 lumas.append(np.mean(matrix)) if debug: h = int(math.sqrt(dqt_size)) print ' luma:', matrix.reshape(h, h) return lumas, chromas def plot_data(qualities, lumas, chromas): """Create plot of data.""" print 'qualities: %s' % str(qualities) print 'luma DQT avgs: %s' % str(lumas) print 'chroma DQT avgs: %s' % str(chromas) pylab.title(NAME) for i in range(lumas.shape[1]): pylab.plot(qualities, lumas[:, i], '-g'+SYMBOLS[i], label='luma_dqt'+str(i)) pylab.plot(qualities, chromas[:, i], '-r'+SYMBOLS[i], label='chroma_dqt'+str(i)) pylab.xlim([0, 100]) pylab.ylim([0, None]) pylab.xlabel('jpeg.quality') pylab.ylabel('DQT luma/chroma matrix averages') pylab.legend(loc='upper right', numpoints=1, fancybox=True) matplotlib.pyplot.savefig('%s_plot.png' % NAME) def main(): """Test the camera JPEG compression quality. Step JPEG qualities through android.jpeg.quality. Ensure quanitization matrix decreases with quality increase. Matrix should decrease as the matrix represents the division factor. Higher numbers --> fewer quantization levels. """ # determine debug debug = its.caps.debug_mode() # init variables lumas = [] chromas = [] with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.jpeg_quality(props)) cam.do_3a() # do captures over jpeg quality range req = its.objects.auto_capture_request() for q in QUALITIES: print '\njpeg.quality: %.d' % q req['android.jpeg.quality'] = q cap = cam.do_capture(req, cam.CAP_JPEG) jpeg = cap['data'] # strip off start of image jpeg = strip_soi_marker(jpeg) # strip off application specific data jpeg = strip_appn_data(jpeg) print 'remaining JPEG header:', jpeg[0:4] # find and extract DQTs lumas_i, chromas_i = extract_dqts(jpeg, debug) lumas.append(lumas_i) chromas.append(chromas_i) # save JPEG image img = its.image.convert_capture_to_rgb_image(cap, props=props) its.image.write_image(img, '%s_%d.jpg' % (NAME, q)) # turn lumas/chromas into np array to ease multi-dimensional plots/asserts lumas = np.array(lumas) chromas = np.array(chromas) # create plot of luma & chroma averages vs quality plot_data(QUALITIES, lumas, chromas) # assert decreasing luma/chroma with improved jpeg quality for i in range(lumas.shape[1]): l = lumas[:, i] c = chromas[:, i] emsg = 'luma DQT avgs: %s, TOL: %.1f' % (str(l), JPEG_DQT_TOL) assert all(y < x * JPEG_DQT_TOL for x, y in zip(l, l[1:])), emsg emsg = 'chroma DQT avgs: %s, TOL: %.1f' % (str(c), JPEG_DQT_TOL) assert all(y < x * JPEG_DQT_TOL for x, y in zip(c, c[1:])), emsg if __name__ == '__main__': main()