// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 4 == 0 $assert CHANNEL_TILE >= 4 $assert PIXEL_TILE == 1 $ABC = "0123456789ABCDEFGHIJKLMN" $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" #include #include #include #include void xnn_f32_bilinear_ukernel__${"neonfma" if FMA else "neon"}_c${CHANNEL_TILE}${"" if PIXEL_TILE == 1 else "x%d" % PIXEL_TILE}( size_t output_pixels, size_t channels, const float**restrict input, size_t input_offset, const float*restrict weights, float*restrict output, size_t output_increment) { assert(output_pixels != 0); assert(channels != 0); assert(channels % sizeof(float) == 0); do { const float* i0 = (const float*) ((uintptr_t) input[0] + input_offset); const float* i1 = (const float*) ((uintptr_t) input[1] + input_offset); const float* i2 = (const float*) ((uintptr_t) input[2] + input_offset); const float* i3 = (const float*) ((uintptr_t) input[3] + input_offset); input += 4; const float32x2_t valphahv = vld1_f32(weights); weights += 2; $if FMA: #if XNN_ARCH_ARM const float32x4_t valphah = vdupq_lane_f32(valphahv, 0); const float32x4_t valphav = vdupq_lane_f32(valphahv, 1); #endif size_t c = channels; for (; c >= ${CHANNEL_TILE} * sizeof(float); c -= ${CHANNEL_TILE} * sizeof(float)) { $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vtl${ABC[C:C+4]} = vld1q_f32(i0); i0 += 4; const float32x4_t vtr${ABC[C:C+4]} = vld1q_f32(i1); i1 += 4; const float32x4_t vbl${ABC[C:C+4]} = vld1q_f32(i2); i2 += 4; const float32x4_t vbr${ABC[C:C+4]} = vld1q_f32(i3); i3 += 4; $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vtd${ABC[C:C+4]} = vsubq_f32(vtr${ABC[C:C+4]}, vtl${ABC[C:C+4]}); const float32x4_t vbd${ABC[C:C+4]} = vsubq_f32(vbr${ABC[C:C+4]}, vbl${ABC[C:C+4]}); $if FMA: #if XNN_ARCH_ARM $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vt${ABC[C:C+4]} = vfmaq_f32(vtl${ABC[C:C+4]}, vtd${ABC[C:C+4]}, valphah); const float32x4_t vb${ABC[C:C+4]} = vfmaq_f32(vbl${ABC[C:C+4]}, vbd${ABC[C:C+4]}, valphah); #else $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vt${ABC[C:C+4]} = vfmaq_lane_f32(vtl${ABC[C:C+4]}, vtd${ABC[C:C+4]}, valphahv, 0); const float32x4_t vb${ABC[C:C+4]} = vfmaq_lane_f32(vbl${ABC[C:C+4]}, vbd${ABC[C:C+4]}, valphahv, 0); #endif $else: $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vt${ABC[C:C+4]} = vmlaq_lane_f32(vtl${ABC[C:C+4]}, vtd${ABC[C:C+4]}, valphahv, 0); const float32x4_t vb${ABC[C:C+4]} = vmlaq_lane_f32(vbl${ABC[C:C+4]}, vbd${ABC[C:C+4]}, valphahv, 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vd${ABC[C:C+4]} = vsubq_f32(vb${ABC[C:C+4]}, vt${ABC[C:C+4]}); $if FMA: #if XNN_ARCH_ARM $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vo${ABC[C:C+4]} = vfmaq_f32(vt${ABC[C:C+4]}, vd${ABC[C:C+4]}, valphav); #else $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vo${ABC[C:C+4]} = vfmaq_lane_f32(vt${ABC[C:C+4]}, vd${ABC[C:C+4]}, valphahv, 1); #endif $else: $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vo${ABC[C:C+4]} = vmlaq_lane_f32(vt${ABC[C:C+4]}, vd${ABC[C:C+4]}, valphahv, 1); $for C in range(0, CHANNEL_TILE, 4): vst1q_f32(output, vo${ABC[C:C+4]}); output += 4; } $if CHANNEL_TILE > 4: for (; c >= 4 * sizeof(float); c -= 4 * sizeof(float)) { const float32x4_t vtl0123 = vld1q_f32(i0); i0 += 4; const float32x4_t vtr0123 = vld1q_f32(i1); i1 += 4; const float32x4_t vbl0123 = vld1q_f32(i2); i2 += 4; const float32x4_t vbr0123 = vld1q_f32(i3); i3 += 4; const float32x4_t vtd0123 = vsubq_f32(vtr0123, vtl0123); const float32x4_t vbd0123 = vsubq_f32(vbr0123, vbl0123); $if FMA: #if XNN_ARCH_ARM const float32x4_t vt0123 = vfmaq_f32(vtl0123, vtd0123, valphah); const float32x4_t vb0123 = vfmaq_f32(vbl0123, vbd0123, valphah); #else const float32x4_t vt0123 = vfmaq_lane_f32(vtl0123, vtd0123, valphahv, 0); const float32x4_t vb0123 = vfmaq_lane_f32(vbl0123, vbd0123, valphahv, 0); #endif $else: const float32x4_t vt0123 = vmlaq_lane_f32(vtl0123, vtd0123, valphahv, 0); const float32x4_t vb0123 = vmlaq_lane_f32(vbl0123, vbd0123, valphahv, 0); const float32x4_t vd0123 = vsubq_f32(vb0123, vt0123); $if FMA: #if XNN_ARCH_ARM const float32x4_t vo0123 = vfmaq_f32(vt0123, vd0123, valphav); #else const float32x4_t vo0123 = vfmaq_lane_f32(vt0123, vd0123, valphahv, 1); #endif $else: const float32x4_t vo0123 = vmlaq_lane_f32(vt0123, vd0123, valphahv, 1); vst1q_f32(output, vo0123); output += 4; } if XNN_UNLIKELY(c != 0) { const float32x4_t vtl0123 = vld1q_f32(i0); const float32x4_t vtr0123 = vld1q_f32(i1); const float32x4_t vbl0123 = vld1q_f32(i2); const float32x4_t vbr0123 = vld1q_f32(i3); const float32x4_t vtd0123 = vsubq_f32(vtr0123, vtl0123); const float32x4_t vbd0123 = vsubq_f32(vbr0123, vbl0123); $if FMA: #if XNN_ARCH_ARM const float32x4_t vt0123 = vfmaq_f32(vtl0123, vtd0123, valphah); const float32x4_t vb0123 = vfmaq_f32(vbl0123, vbd0123, valphah); #else const float32x4_t vt0123 = vfmaq_lane_f32(vtl0123, vtd0123, valphahv, 0); const float32x4_t vb0123 = vfmaq_lane_f32(vbl0123, vbd0123, valphahv, 0); #endif $else: const float32x4_t vt0123 = vmlaq_lane_f32(vtl0123, vtd0123, valphahv, 0); const float32x4_t vb0123 = vmlaq_lane_f32(vbl0123, vbd0123, valphahv, 0); const float32x4_t vd0123 = vsubq_f32(vb0123, vt0123); $if FMA: #if XNN_ARCH_ARM float32x4_t vo0123 = vfmaq_f32(vt0123, vd0123, valphav); #else float32x4_t vo0123 = vfmaq_lane_f32(vt0123, vd0123, valphahv, 1); #endif $else: const float32x4_t vo0123 = vmlaq_lane_f32(vt0123, vd0123, valphahv, 1); float32x2_t vo01 = vget_low_f32(vo0123); if (c & (2 * sizeof(float))) { vst1_f32(output, vo01); output += 2; vo01 = vget_high_f32(vo0123); } if (c & (1 * sizeof(float))) { vst1_lane_f32(output, vo01, 0); output += 1; } } output = (float*) ((uintptr_t) output + output_increment); } while (--output_pixels != 0); }