// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 4 == 0 $assert BATCH_TILE >= 4 $assert RR_STEPS in [1, 2] $assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"] $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" $VMULSUBQ_F32 = "vfmsq_f32" if FMA else "vmlsq_f32" #include #include #include #include extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64]; void xnn_f32_sigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${RR_STEPS}_lut64_p2_${DIV_ALGO}_x${BATCH_TILE}( size_t n, const float* x, float* y, const void* params) { assert(n % sizeof(float) == 0); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f); const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f); $if RR_STEPS == 1: const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f); $else: $if FMA: const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.62E43p-7f); const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.05C61p-35f); $else: // Last 13 bits are zeroes const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f); const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); $if BATCH_TILE > 4: for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { $for N in range(0, BATCH_TILE, 4): const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. $for N in range(0, BATCH_TILE, 4): const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]}); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. $for N in range(0, BATCH_TILE, 4): float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). $for N in range(0, BATCH_TILE, 4): const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). $for N in range(0, BATCH_TILE, 4): const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask)); $for N in range(0, BATCH_TILE, 4): const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0); const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1); float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N:N+2]}]); float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N+2:N+4]}]); $for N in range(0, BATCH_TILE, 4): vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1); vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1); const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]}); // Adjust exponent of the value l fetched from the table to get the final s value. $for N in range(0, BATCH_TILE, 4): const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]})); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. $for N in range(0, BATCH_TILE, 4): vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. $if RR_STEPS == 1: $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o64); $else: // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy. $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o64_hi); $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o64_lo); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) $for N in range(0, BATCH_TILE, 4): float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc2); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = ${VMULSUBQ_F32}(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p $for N in range(0, BATCH_TILE, 4): const float32x4_t vy${ABC[N:N+4]} = ${VMULSUBQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]}); // Denominator of the sigmoid fraction: 1.0 + exp(-z) $for N in range(0, BATCH_TILE, 4): const float32x4_t vd${ABC[N:N+4]} = vaddq_f32(vy${ABC[N:N+4]}, vone); $if DIV_ALGO == "div": // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) $for N in range(0, BATCH_TILE, 4): float32x4_t vf${ABC[N:N+4]} = vdivq_f32(vy${ABC[N:N+4]}, vd${ABC[N:N+4]}); $else: // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. $for N in range(0, BATCH_TILE, 4): float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]}); $if DIV_ALGO == "nr2fma": $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $else: $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $if DIV_ALGO == "nr2recps": $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); $else: $for N in range(0, BATCH_TILE, 4): vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]})); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) $for N in range(0, BATCH_TILE, 4): float32x4_t vf${ABC[N:N+4]} = vmulq_f32(vy${ABC[N:N+4]}, vr${ABC[N:N+4]}); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) $for N in range(0, BATCH_TILE, 4): const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f)); $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]})); $for N in range(0, BATCH_TILE, 4): vst1q_f32(y, vf${ABC[N:N+4]}); y += 4; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(x); x += 4; // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. $if RR_STEPS == 1: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o64); $else: // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy. float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o64_hi); vt = ${VMULADDQ_F32}(vt, vn, vln2_o64_lo); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULSUBQ_F32}(vt, vp, vt); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p const float32x4_t vy = ${VMULSUBQ_F32}(vs, vs, vp); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd = vaddq_f32(vy, vone); $if DIV_ALGO == "div": // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vdivq_f32(vy, vd); $else: // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); $if DIV_ALGO == "nr2fma": vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); $else: vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $if DIV_ALGO == "nr2recps": vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $else: vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(vy, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(y, vf); y += 4; } if XNN_UNLIKELY(n != 0) { const float32x4_t vx = vld1q_f32(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e. // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the // very end of the algorithm. float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e_x64); // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) = // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17); // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); // Adjust exponent of the value l fetched from the table to get the final s value. const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64. $if RR_STEPS == 1: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o64); $else: // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy. float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o64_hi); vt = ${VMULADDQ_F32}(vt, vn, vln2_o64_lo); // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128]. // P1(t) = 1 + t * (-1 + t * c2) float32x4_t vp = vmulq_f32(vt, vc2); vp = ${VMULSUBQ_F32}(vt, vp, vt); // Reconstruct the exp(-z) value: // f = s * (1 + t * (-1 + t * c2)) // = s * (1 - t + t * (t * c2)) // = s - s * (t - t * (t * c2)) // = s - s * p const float32x4_t vy = ${VMULSUBQ_F32}(vs, vs, vp); // Denominator of the sigmoid fraction: 1.0 + exp(-z) const float32x4_t vd = vaddq_f32(vy, vone); $if DIV_ALGO == "div": // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vdivq_f32(vy, vd); $else: // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); $if DIV_ALGO == "nr2fma": vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); $else: vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $if DIV_ALGO == "nr2recps": vr = vmulq_f32(vr, vrecpsq_f32(vr, vd)); $else: vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(vy, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (n & (2 * sizeof(float))) { vst1_f32(y, vf_lo); y += 2; vf_lo = vget_high_f32(vf); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vf_lo, 0); } } }