// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 4 == 0 $assert BATCH_TILE >= 4 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include $if BLEND: #include $else: #include #include #include void xnn_f32_sigmoid_ukernel__${"sse41" if BLEND else "sse2"}_p5_div_x${BATCH_TILE}( size_t n, const float* x, float* y, const void* params) { assert(n % sizeof(float) == 0); const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f); // The smallest x for which sigmoidf(x) is normalized. // This number is also the smallest x for which expf(x) is normalized. const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f); const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f); // Last 7 bits are zeroes const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f); const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f); const __m128 vone = _mm_set1_ps(1.0f); const __m128 vsign_mask = _mm_set1_ps(-0.0f); const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f); const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f); const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f); const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f); const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f); $if BATCH_TILE > 4: for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { const __m128 vx${ABC[0:4]} = _mm_loadu_ps(x); $for N in range(4, BATCH_TILE, 4): const __m128 vx${ABC[N:N+4]} = _mm_loadu_ps(x + ${N}); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), // then replace result with 1 - f[z] if x >= 0. $for N in range(0, BATCH_TILE, 4): const __m128 vz${ABC[N:N+4]} = _mm_or_ps(vx${ABC[N:N+4]}, vsign_mask); // Compute reduced argument n := round(z / log(2)). // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of // the algorithm. $for N in range(0, BATCH_TILE, 4): __m128 vn${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vz${ABC[N:N+4]}, vlog2e), vmagic_bias); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly. $for N in range(0, BATCH_TILE, 4): const __m128 vs${ABC[N:N+4]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn${ABC[N:N+4]}), 23)); // Subtract the large number back to get final n := round(z / log(2)). $for N in range(0, BATCH_TILE, 4): vn${ABC[N:N+4]} = _mm_sub_ps(vn${ABC[N:N+4]}, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(0, BATCH_TILE, 4): __m128 vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_hi), vz${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_lo), vt${ABC[N:N+4]}); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(0, BATCH_TILE, 4): __m128 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vc5, vt${ABC[N:N+4]}), vc4); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc3); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc2); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc1); // Reconstruct the exp(z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = _mm_mul_ps(vt${ABC[N:N+4]}, vs${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): __m128 ve${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}), vs${ABC[N:N+4]}); // Denominator of the sigmoid fraction: 1.0 + exp(z) $for N in range(0, BATCH_TILE, 4): __m128 vd${ABC[N:N+4]} = _mm_add_ps(ve${ABC[N:N+4]}, vone); // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z)) $for N in range(0, BATCH_TILE, 4): __m128 vf${ABC[N:N+4]} = _mm_div_ps(ve${ABC[N:N+4]}, vd${ABC[N:N+4]}); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = _mm_andnot_ps(_mm_cmplt_ps(vz${ABC[N:N+4]}, vdenorm_cutoff), vf${ABC[N:N+4]}); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) $if BLEND: $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = _mm_blendv_ps(_mm_sub_ps(vone, vf${ABC[N:N+4]}), vf${ABC[N:N+4]}, vx${ABC[N:N+4]}); $else: $for N in range(0, BATCH_TILE, 4): __m128 vm${ABC[N:N+4]} = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx${ABC[N:N+4]}))); $for N in range(0, BATCH_TILE, 4): vf${ABC[N:N+4]} = _mm_or_ps(_mm_and_ps(vf${ABC[N:N+4]}, vm${ABC[N:N+4]}), _mm_andnot_ps(vm${ABC[N:N+4]}, _mm_sub_ps(vone, vf${ABC[N:N+4]}))); _mm_storeu_ps(y, vf${ABC[0:4]}); $for N in range(4, BATCH_TILE, 4): _mm_storeu_ps(y + ${N}, vf${ABC[N:N+4]}); x += ${BATCH_TILE}; y += ${BATCH_TILE}; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const __m128 vx = _mm_loadu_ps(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), // then replace result with 1 - f[z] if x >= 0. const __m128 vz = _mm_or_ps(vx, vsign_mask); // Compute reduced argument n := round(z / log(2)). // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of // the algorithm. __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly. const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23)); // Subtract the large number back to get final n := round(z / log(2)). vn = _mm_sub_ps(vn, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1); // Reconstruct the exp(z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm_mul_ps(vt, vs); __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs); // Denominator of the sigmoid fraction: 1.0 + exp(z) __m128 vd = _mm_add_ps(ve, vone); // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z)) __m128 vf = _mm_div_ps(ve, vd); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) $if BLEND: vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx); $else: __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx))); vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf))); _mm_storeu_ps(y, vf); x += 4; y += 4; } if XNN_UNLIKELY(n != 0) { const __m128 vx = _mm_loadu_ps(x); // General structure of the algorithm: // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), // then replace result with 1 - f[z] if x >= 0. const __m128 vz = _mm_or_ps(vx, vsign_mask); // Compute reduced argument n := round(z / log(2)). // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of // the algorithm. __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly. const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23)); // Subtract the large number back to get final n := round(z / log(2)). vn = _mm_sub_ps(vn, vmagic_bias); // Compute reduced argument t := z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2); vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1); // Reconstruct the exp(z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm_mul_ps(vt, vs); __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs); // Denominator of the sigmoid fraction: 1.0 + exp(z) __m128 vd = _mm_add_ps(ve, vone); // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z)) __m128 vf = _mm_div_ps(ve, vd); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) $if BLEND: vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx); $else: __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx))); vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf))); if (n & (2 * sizeof(float))) { _mm_storel_pi((__m64*) y, vf); vf = _mm_movehl_ps(vf, vf); y += 2; } if (n & (1 * sizeof(float))) { _mm_store_ss(y, vf); } } }