// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 8 == 0 $assert ELEMENTS_TILE >= 8 $SIMD_TILE = ELEMENTS_TILE // 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x${ELEMENTS_TILE}( size_t elements, const float* x, float* y, float scale_value, float scale_exp) { assert(elements % sizeof(float) == 0); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest elements such that 2**elements is considered non-negligible. // For smaller elements, 2**elements is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(x); $for N in range(1, SIMD_TILE): const __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8}); x += ${ELEMENTS_TILE}; // Compute reduced argument elements := round(x / log(2)). $for N in range(SIMD_TILE): const __m256 vn${N} = _mm256_round_ps(_mm256_mul_ps(vx${N}, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(SIMD_TILE): __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); $for N in range(SIMD_TILE): vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(SIMD_TILE): __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) $for N in range(SIMD_TILE): __m256 vf${N} = _mm256_mul_ps(vp${N}, vscalev); $for N in range(SIMD_TILE): __m256 ve${N} = _mm256_add_ps(vn${N}, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 $for N in range(SIMD_TILE): ve${N} = _mm256_max_ps(ve${N}, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 $for N in range(SIMD_TILE): const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve${N}, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. $for N in range(SIMD_TILE): vf${N} = _mm256_mul_ps(vf${N}, vs${N}); // Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time. _mm256_storeu_ps(y, vf0); $for N in range(1, SIMD_TILE): _mm256_storeu_ps(y + ${N * 8}, vf${N}); y += ${ELEMENTS_TILE}; } for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(x); x += 8; // Compute reduced argument elements := round(x / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(y, vf); y += 8; } if XNN_UNLIKELY(elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(x, vmask); // Compute reduced argument elements := round(x / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(y, vmask, vf); } _mm256_zeroupper(); }