/* * ***************************************************************************** * * Copyright (c) 2018-2019 Gavin D. Howard and contributors. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * The second bc math library. * */ define r(x,p){ auto t,n if(x==0)return x p=abs(p)$ n=(x<0) x=abs(x) t=x@p if(p=5>>p+1)t+=1>>p if(n)t=-t return t } define ceil(x,p){ auto t,n if(x==0)return x p=abs(p)$ n=(x<0) x=abs(x) t=(x+(9>>p+1))@p if(n)t=-t return t } define f(n){ auto r n=abs(n)$ for(r=1;n>1;--n)r*=n return r } define perm(n,k){ auto f,g,s if(k>n)return 0 n=abs(n)$ k=abs(k)$ f=f(n) g=f(n-k) s=scale scale=0 f/=g scale=s return f } define comb(n,r){ auto s,f,g,h if(r>n)return 0 n=abs(n)$ r=abs(r)$ s=scale scale=0 f=f(n) h=f(r) g=f(n-r) f/=h*g scale=s return f } define log(x,b){ auto p,s s=scale if(scalescale)scale=scale(x) scale*=2 p=l(x)/l(b) scale=s return p } define l2(x){return log(x,2)} define l10(x){return log(x,A)} define root(x,n){ auto s,m,r,q,p if(n<0)sqrt(n) n=abs(n)$ if(n==0)x/n if(n==1)return x if(n==2)return sqrt(x) s=scale scale=0 if(x<0&&n%2==0)sqrt(x) scale=s+2 m=(x<0) x=abs(x) p=n-1 q=10^ceil((length(x$)/n)$,0) while(r!=q){ r=q q=(p*r+x/r^p)/n } if(m)r=-r scale=s return r@s } define cbrt(x){return root(x,3)} define pi(s){ auto t,v if(s==0)return 3 s=abs(s)$ t=scale scale=s+1 v=4*a(1) scale=t return v@s } define t(x){ auto s,c,l l=scale scale+=2 s=s(x) c=c(x) scale=l return s/c } define a2(y,x){ auto a,p if(!x&&!y)y/x if(x<=0){ p=pi(scale+2) if(y<0)p=-p } if(x==0)a=p/2 else{ scale+=2 a=a(y/x)+p scale-=2 } return a@scale } define sin(x){return s(x)} define cos(x){return c(x)} define atan(x){return a(x)} define tan(x){return t(x)} define atan2(y,x){return a2(y,x)} define r2d(x){ auto r,i,s s=scale scale+=5 i=ibase ibase=A r=x*180/pi(scale) ibase=i scale=s return r@s } define d2r(x){ auto r,i,s s=scale scale+=5 i=ibase ibase=A r=x*pi(scale)/180 ibase=i scale=s return r@s } define void output(x,b){ auto c c=obase obase=b x obase=c } define void hex(x){output(x,G)} define void binary(x){output(x,2)} define ubytes(x){ auto p,b,i b=ibase ibase=A x=abs(x)$ i=2^8 for(p=1;i-1p||(!z&&x==p))n*=2 ibase=b return n } define void output_byte(x,i){ auto j,p,y,b j=ibase ibase=A s=scale scale=0 x=abs(x)$ b=x/(2^(i*8)) b%=2^8 y=log(256,obase)$ if(b>1)p=log(b,obase)$+1 else p=b for(i=y-p;i>0;--i)print 0 if(b)print b scale=s ibase=j } define void output_uint(x,n){ auto i,b b=ibase ibase=A for(i=n-1;i>=0;--i){ output_byte(x,i) if(i)print" " else print"\n" } ibase=b } define void hex_uint(x,n){ auto o o=obase obase=G output_uint(x,n) obase=o } define void binary_uint(x,n){ auto o o=obase obase=2 output_uint(x,n) obase=o } define void uintn(x,n){ if(scale(x)){ print"Error: ",x," is not an integer.\n" return } if(x<0){ print"Error: ",x," is negative.\n" return } if(x>=2^(n*8)){ print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n" return } binary_uint(x,n) hex_uint(x,n) } define void intn(x,n){ auto t if(scale(x)){ print"Error: ",x," is not an integer.\n" return } t=2^(n*8-1) if(abs(x)>=t&&(x>0||x!=-t)){ print "Error: ",x," cannot fit into ",n," signed byte(s).\n" return } if(x<0)x=2^(n*8)-(-x) binary_uint(x,n) hex_uint(x,n) } define void uint8(x){uintn(x,1)} define void int8(x){intn(x,1)} define void uint16(x){uintn(x,2)} define void int16(x){intn(x,2)} define void uint32(x){uintn(x,4)} define void int32(x){intn(x,4)} define void uint64(x){uintn(x,8)} define void int64(x){intn(x,8)} define void uint(x){uintn(x,ubytes(x))} define void int(x){intn(x,sbytes(x))}