// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef sw_Types_hpp #define sw_Types_hpp #include #include #include // GCC warns against bitfields not fitting the entire range of an enum with a fixed underlying type of unsigned int, which gets promoted to an error with -Werror and cannot be suppressed. // However, GCC already defaults to using unsigned int as the underlying type of an unscoped enum without a fixed underlying type. So we can just omit it. #if defined(__GNUC__) && !defined(__clang__) namespace {enum E {}; static_assert(!std::numeric_limits::type>::is_signed, "expected unscoped enum whose underlying type is not fixed to be unsigned");} #define ENUM_UNDERLYING_TYPE_UNSIGNED_INT #else #define ENUM_UNDERLYING_TYPE_UNSIGNED_INT : unsigned int #endif #if defined(_MSC_VER) typedef signed __int8 int8_t; typedef signed __int16 int16_t; typedef signed __int32 int32_t; typedef signed __int64 int64_t; typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #define ALIGN(bytes, type) __declspec(align(bytes)) type #else #include #define ALIGN(bytes, type) type __attribute__((aligned(bytes))) #endif namespace sw { typedef ALIGN(1, uint8_t) byte; typedef ALIGN(2, uint16_t) word; typedef ALIGN(4, uint32_t) dword; typedef ALIGN(8, uint64_t) qword; typedef ALIGN(16, uint64_t) qword2[2]; typedef ALIGN(4, uint8_t) byte4[4]; typedef ALIGN(8, uint8_t) byte8[8]; typedef ALIGN(16, uint8_t) byte16[16]; typedef ALIGN(8, uint16_t) word4[4]; typedef ALIGN(8, uint32_t) dword2[2]; typedef ALIGN(16, uint32_t) dword4[4]; typedef ALIGN(16, uint64_t) xword[2]; typedef ALIGN(1, int8_t) sbyte; typedef ALIGN(4, int8_t) sbyte4[4]; typedef ALIGN(8, int8_t) sbyte8[8]; typedef ALIGN(16, int8_t) sbyte16[16]; typedef ALIGN(8, short) short4[4]; typedef ALIGN(8, unsigned short) ushort4[4]; typedef ALIGN(16, short) short8[8]; typedef ALIGN(16, unsigned short) ushort8[8]; typedef ALIGN(8, int) int2[2]; typedef ALIGN(8, unsigned int) uint2[2]; typedef ALIGN(16, unsigned int) uint4[4]; typedef ALIGN(8, float) float2[2]; ALIGN(16, struct int4 { int x; int y; int z; int w; int &operator[](int i) { return (&x)[i]; } const int &operator[](int i) const { return (&x)[i]; } bool operator!=(const int4 &rhs) { return x != rhs.x || y != rhs.y || z != rhs.z || w != rhs.w; } bool operator==(const int4 &rhs) { return x == rhs.x && y == rhs.y && z == rhs.z && w == rhs.w; } }); ALIGN(16, struct float4 { float x; float y; float z; float w; float &operator[](int i) { return (&x)[i]; } const float &operator[](int i) const { return (&x)[i]; } bool operator!=(const float4 &rhs) { return x != rhs.x || y != rhs.y || z != rhs.z || w != rhs.w; } bool operator==(const float4 &rhs) { return x == rhs.x && y == rhs.y && z == rhs.z && w == rhs.w; } }); inline float4 vector(float x, float y, float z, float w) { float4 v; v.x = x; v.y = y; v.z = z; v.w = w; return v; } inline float4 replicate(float f) { float4 v; v.x = f; v.y = f; v.z = f; v.w = f; return v; } // The OFFSET macro is a generalization of the offsetof() macro defined in . // It allows e.g. getting the offset of array elements, even when indexed dynamically. // We cast the address '32' and subtract it again, because null-dereference is undefined behavior. #define OFFSET(s,m) ((int)(size_t)&reinterpret_cast((((s*)32)->m)) - 32) } #endif // sw_Types_hpp