; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -instcombine < %s | FileCheck %s define float @exact_inverse(float %x) { ; CHECK-LABEL: @exact_inverse( ; CHECK-NEXT: [[DIV:%.*]] = fmul float [[X:%.*]], 1.250000e-01 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv float %x, 8.0 ret float %div } ; Min normal float = 1.17549435E-38 define float @exact_inverse2(float %x) { ; CHECK-LABEL: @exact_inverse2( ; CHECK-NEXT: [[DIV:%.*]] = fmul float [[X:%.*]], 0x47D0000000000000 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv float %x, 0x3810000000000000 ret float %div } ; Max exponent = 1.70141183E+38; don't transform to multiply with denormal. define float @exact_inverse_but_denorm(float %x) { ; CHECK-LABEL: @exact_inverse_but_denorm( ; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[X:%.*]], 0x47E0000000000000 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv float %x, 0x47E0000000000000 ret float %div } ; Denormal = float 1.40129846E-45; inverse can't be represented. define float @not_exact_inverse2(float %x) { ; CHECK-LABEL: @not_exact_inverse2( ; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[X:%.*]], 0x36A0000000000000 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv float %x, 0x36A0000000000000 ret float %div } ; Fast math allows us to replace this fdiv. define float @not_exact_but_allow_recip(float %x) { ; CHECK-LABEL: @not_exact_but_allow_recip( ; CHECK-NEXT: [[DIV:%.*]] = fmul arcp float [[X:%.*]], 0x3FD5555560000000 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv arcp float %x, 3.0 ret float %div } ; Fast math allows us to replace this fdiv, but we don't to avoid a denormal. ; TODO: What if the function attributes tell us that denormals are flushed? define float @not_exact_but_allow_recip_but_denorm(float %x) { ; CHECK-LABEL: @not_exact_but_allow_recip_but_denorm( ; CHECK-NEXT: [[DIV:%.*]] = fdiv arcp float [[X:%.*]], 0x47E0000100000000 ; CHECK-NEXT: ret float [[DIV]] ; %div = fdiv arcp float %x, 0x47E0000100000000 ret float %div } define <2 x float> @exact_inverse_splat(<2 x float> %x) { ; CHECK-LABEL: @exact_inverse_splat( ; CHECK-NEXT: [[DIV:%.*]] = fmul <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv <2 x float> %x, ret <2 x float> %div } ; Fast math allows us to replace this fdiv. define <2 x float> @not_exact_but_allow_recip_splat(<2 x float> %x) { ; CHECK-LABEL: @not_exact_but_allow_recip_splat( ; CHECK-NEXT: [[DIV:%.*]] = fmul arcp <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv arcp <2 x float> %x, ret <2 x float> %div } define <2 x float> @exact_inverse_vec(<2 x float> %x) { ; CHECK-LABEL: @exact_inverse_vec( ; CHECK-NEXT: [[DIV:%.*]] = fmul <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv <2 x float> %x, ret <2 x float> %div } define <2 x float> @not_exact_inverse_splat(<2 x float> %x) { ; CHECK-LABEL: @not_exact_inverse_splat( ; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv <2 x float> %x, ret <2 x float> %div } define <2 x float> @not_exact_inverse_vec(<2 x float> %x) { ; CHECK-LABEL: @not_exact_inverse_vec( ; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv <2 x float> %x, ret <2 x float> %div } define <2 x float> @not_exact_inverse_vec_arcp(<2 x float> %x) { ; CHECK-LABEL: @not_exact_inverse_vec_arcp( ; CHECK-NEXT: [[DIV:%.*]] = fmul arcp <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv arcp <2 x float> %x, ret <2 x float> %div } define <2 x float> @not_exact_inverse_vec_arcp_with_undef_elt(<2 x float> %x) { ; CHECK-LABEL: @not_exact_inverse_vec_arcp_with_undef_elt( ; CHECK-NEXT: [[DIV:%.*]] = fdiv arcp <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %div = fdiv arcp <2 x float> %x, ret <2 x float> %div } ; (X / Y) / Z --> X / (Y * Z) define float @div_with_div_numerator(float %x, float %y, float %z) { ; CHECK-LABEL: @div_with_div_numerator( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc arcp float [[Y:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[DIV2:%.*]] = fdiv reassoc arcp float [[X:%.*]], [[TMP1]] ; CHECK-NEXT: ret float [[DIV2]] ; %div1 = fdiv ninf float %x, %y %div2 = fdiv arcp reassoc float %div1, %z ret float %div2 } ; Z / (X / Y) --> (Z * Y) / X define <2 x float> @div_with_div_denominator(<2 x float> %x, <2 x float> %y, <2 x float> %z) { ; CHECK-LABEL: @div_with_div_denominator( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc arcp <2 x float> [[Y:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[DIV2:%.*]] = fdiv reassoc arcp <2 x float> [[TMP1]], [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[DIV2]] ; %div1 = fdiv nnan <2 x float> %x, %y %div2 = fdiv arcp reassoc <2 x float> %z, %div1 ret <2 x float> %div2 } ; Don't create an extra multiply if we can't eliminate the first div. declare void @use_f32(float) define float @div_with_div_numerator_extra_use(float %x, float %y, float %z) { ; CHECK-LABEL: @div_with_div_numerator_extra_use( ; CHECK-NEXT: [[DIV1:%.*]] = fdiv float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[DIV2:%.*]] = fdiv fast float [[DIV1]], [[Z:%.*]] ; CHECK-NEXT: call void @use_f32(float [[DIV1]]) ; CHECK-NEXT: ret float [[DIV2]] ; %div1 = fdiv float %x, %y %div2 = fdiv fast float %div1, %z call void @use_f32(float %div1) ret float %div2 } define float @div_with_div_denominator_extra_use(float %x, float %y, float %z) { ; CHECK-LABEL: @div_with_div_denominator_extra_use( ; CHECK-NEXT: [[DIV1:%.*]] = fdiv float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[DIV2:%.*]] = fdiv fast float [[Z:%.*]], [[DIV1]] ; CHECK-NEXT: call void @use_f32(float [[DIV1]]) ; CHECK-NEXT: ret float [[DIV2]] ; %div1 = fdiv float %x, %y %div2 = fdiv fast float %z, %div1 call void @use_f32(float %div1) ret float %div2 } define float @fneg_fneg(float %x, float %y) { ; CHECK-LABEL: @fneg_fneg( ; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[DIV]] ; %x.fneg = fsub float -0.0, %x %y.fneg = fsub float -0.0, %y %div = fdiv float %x.fneg, %y.fneg ret float %div } ; The test above shows that no FMF are needed, but show that we are not dropping FMF. define float @fneg_fneg_fast(float %x, float %y) { ; CHECK-LABEL: @fneg_fneg_fast( ; CHECK-NEXT: [[DIV:%.*]] = fdiv fast float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[DIV]] ; %x.fneg = fsub float -0.0, %x %y.fneg = fsub float -0.0, %y %div = fdiv fast float %x.fneg, %y.fneg ret float %div } define <2 x float> @fneg_fneg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fneg_fneg_vec( ; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %xneg = fsub <2 x float> , %x %yneg = fsub <2 x float> , %y %div = fdiv <2 x float> %xneg, %yneg ret <2 x float> %div } define <2 x float> @fneg_fneg_vec_undef_elts(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fneg_fneg_vec_undef_elts( ; CHECK-NEXT: [[DIV:%.*]] = fdiv <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %xneg = fsub <2 x float> , %x %yneg = fsub <2 x float> , %y %div = fdiv <2 x float> %xneg, %yneg ret <2 x float> %div } define float @fneg_dividend_constant_divisor(float %x) { ; CHECK-LABEL: @fneg_dividend_constant_divisor( ; CHECK-NEXT: [[DIV:%.*]] = fdiv nsz float [[X:%.*]], -3.000000e+00 ; CHECK-NEXT: ret float [[DIV]] ; %neg = fsub float -0.0, %x %div = fdiv nsz float %neg, 3.0 ret float %div } define float @fneg_divisor_constant_dividend(float %x) { ; CHECK-LABEL: @fneg_divisor_constant_dividend( ; CHECK-NEXT: [[DIV:%.*]] = fdiv nnan float 3.000000e+00, [[X:%.*]] ; CHECK-NEXT: ret float [[DIV]] ; %neg = fsub float -0.0, %x %div = fdiv nnan float -3.0, %neg ret float %div } define <2 x float> @fneg_dividend_constant_divisor_vec(<2 x float> %x) { ; CHECK-LABEL: @fneg_dividend_constant_divisor_vec( ; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %neg = fsub <2 x float> , %x %div = fdiv ninf <2 x float> %neg, ret <2 x float> %div } define <2 x float> @fneg_dividend_constant_divisor_vec_undef_elt(<2 x float> %x) { ; CHECK-LABEL: @fneg_dividend_constant_divisor_vec_undef_elt( ; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %neg = fsub <2 x float> , %x %div = fdiv ninf <2 x float> %neg, ret <2 x float> %div } define <2 x float> @fneg_divisor_constant_dividend_vec(<2 x float> %x) { ; CHECK-LABEL: @fneg_divisor_constant_dividend_vec( ; CHECK-NEXT: [[DIV:%.*]] = fdiv afn <2 x float> , [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[DIV]] ; %neg = fsub <2 x float> , %x %div = fdiv afn <2 x float> , %neg ret <2 x float> %div } ; X / (X * Y) --> 1.0 / Y define float @div_factor(float %x, float %y) { ; CHECK-LABEL: @div_factor( ; CHECK-NEXT: [[D:%.*]] = fdiv reassoc nnan float 1.000000e+00, [[Y:%.*]] ; CHECK-NEXT: ret float [[D]] ; %m = fmul float %x, %y %d = fdiv nnan reassoc float %x, %m ret float %d; } ; We can't do the transform without 'nnan' because if x is NAN and y is a number, this should return NAN. define float @div_factor_too_strict(float %x, float %y) { ; CHECK-LABEL: @div_factor_too_strict( ; CHECK-NEXT: [[M:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[D:%.*]] = fdiv reassoc float [[X]], [[M]] ; CHECK-NEXT: ret float [[D]] ; %m = fmul float %x, %y %d = fdiv reassoc float %x, %m ret float %d } ; Commute, verify vector types, and show that we are not dropping extra FMF. ; X / (Y * X) --> 1.0 / Y define <2 x float> @div_factor_commute(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @div_factor_commute( ; CHECK-NEXT: [[D:%.*]] = fdiv reassoc nnan ninf nsz <2 x float> , [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[D]] ; %m = fmul <2 x float> %y, %x %d = fdiv nnan ninf nsz reassoc <2 x float> %x, %m ret <2 x float> %d } ; C1/(X*C2) => (C1/C2) / X define <2 x float> @div_constant_dividend1(<2 x float> %x) { ; CHECK-LABEL: @div_constant_dividend1( ; CHECK-NEXT: [[T2:%.*]] = fdiv reassoc arcp <2 x float> , [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[T2]] ; %t1 = fmul <2 x float> %x, %t2 = fdiv arcp reassoc <2 x float> , %t1 ret <2 x float> %t2 } define <2 x float> @div_constant_dividend1_arcp_only(<2 x float> %x) { ; CHECK-LABEL: @div_constant_dividend1_arcp_only( ; CHECK-NEXT: [[T1:%.*]] = fmul <2 x float> [[X:%.*]], ; CHECK-NEXT: [[T2:%.*]] = fdiv arcp <2 x float> , [[T1]] ; CHECK-NEXT: ret <2 x float> [[T2]] ; %t1 = fmul <2 x float> %x, %t2 = fdiv arcp <2 x float> , %t1 ret <2 x float> %t2 } ; C1/(X/C2) => (C1*C2) / X define <2 x float> @div_constant_dividend2(<2 x float> %x) { ; CHECK-LABEL: @div_constant_dividend2( ; CHECK-NEXT: [[T2:%.*]] = fdiv reassoc arcp <2 x float> , [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[T2]] ; %t1 = fdiv <2 x float> %x, %t2 = fdiv arcp reassoc <2 x float> , %t1 ret <2 x float> %t2 } define <2 x float> @div_constant_dividend2_reassoc_only(<2 x float> %x) { ; CHECK-LABEL: @div_constant_dividend2_reassoc_only( ; CHECK-NEXT: [[T1:%.*]] = fdiv <2 x float> [[X:%.*]], ; CHECK-NEXT: [[T2:%.*]] = fdiv reassoc <2 x float> , [[T1]] ; CHECK-NEXT: ret <2 x float> [[T2]] ; %t1 = fdiv <2 x float> %x, %t2 = fdiv reassoc <2 x float> , %t1 ret <2 x float> %t2 } ; C1/(C2/X) => (C1/C2) * X ; This tests the combination of 2 folds: (C1 * X) / C2 --> (C1 / C2) * X define <2 x float> @div_constant_dividend3(<2 x float> %x) { ; CHECK-LABEL: @div_constant_dividend3( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc arcp <2 x float> [[X:%.*]], ; CHECK-NEXT: [[T2:%.*]] = fmul reassoc arcp <2 x float> [[TMP1]], ; CHECK-NEXT: ret <2 x float> [[T2]] ; %t1 = fdiv <2 x float> , %x %t2 = fdiv arcp reassoc <2 x float> , %t1 ret <2 x float> %t2 }