; Tests various aspects of x86 immediate encoding. Some encodings are shorter. ; For example, the encoding is shorter for 8-bit immediates or when using EAX. ; This assumes that EAX is chosen as the first free register in O2 mode. ; RUN: %p2i --filetype=obj --disassemble -i %s --args -O2 | FileCheck %s define internal i32 @testXor8Imm8(i32 %arg) { entry: %arg_i8 = trunc i32 %arg to i8 %result_i8 = xor i8 %arg_i8, 127 %result = zext i8 %result_i8 to i32 ret i32 %result } ; CHECK-LABEL: testXor8Imm8 ; CHECK: 34 7f xor al define internal i32 @testXor8Imm8Neg(i32 %arg) { entry: %arg_i8 = trunc i32 %arg to i8 %result_i8 = xor i8 %arg_i8, -128 %result = zext i8 %result_i8 to i32 ret i32 %result } ; CHECK-LABEL: testXor8Imm8Neg ; CHECK: 34 80 xor al define internal i32 @testXor8Imm8NotEAX(i32 %arg, i32 %arg2, i32 %arg3) { entry: %arg_i8 = trunc i32 %arg to i8 %arg2_i8 = trunc i32 %arg2 to i8 %arg3_i8 = trunc i32 %arg3 to i8 %x1 = xor i8 %arg_i8, 127 %x2 = xor i8 %arg2_i8, 127 %x3 = xor i8 %arg3_i8, 127 %x4 = add i8 %x1, %x2 %x5 = add i8 %x4, %x3 %result = zext i8 %x5 to i32 ret i32 %result } ; CHECK-LABEL: testXor8Imm8NotEAX ; CHECK: 80 f{{[1-3]}} 7f xor {{[^a]}}l define internal i32 @testXor16Imm8(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %result_i16 = xor i16 %arg_i16, 127 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testXor16Imm8 ; CHECK: 66 83 f0 7f xor ax define internal i32 @testXor16Imm8Neg(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %result_i16 = xor i16 %arg_i16, -128 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testXor16Imm8Neg ; CHECK: 66 83 f0 80 xor ax define internal i32 @testXor16Imm16Eax(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = xor i16 %arg_i16, 1024 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testXor16Imm16Eax ; CHECK: 66 35 00 04 xor ax ; CHECK-NEXT: add ax,0x1 define internal i32 @testXor16Imm16NegEax(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = xor i16 %arg_i16, -256 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testXor16Imm16NegEax ; CHECK: 66 35 00 ff xor ax ; CHECK-NEXT: add ax,0x1 define internal i32 @testXor16Imm16NotEAX(i32 %arg_i32, i32 %arg2_i32, i32 %arg3_i32) { entry: %arg = trunc i32 %arg_i32 to i16 %arg2 = trunc i32 %arg2_i32 to i16 %arg3 = trunc i32 %arg3_i32 to i16 %x = xor i16 %arg, 32767 %x2 = xor i16 %arg2, 32767 %x3 = xor i16 %arg3, 32767 %add1 = add i16 %x, %x2 %add2 = add i16 %add1, %x3 %result = zext i16 %add2 to i32 ret i32 %result } ; CHECK-LABEL: testXor16Imm16NotEAX ; CHECK: 66 81 f{{[1-3]}} ff 7f xor {{[^a]}}x ; CHECK-NEXT: 66 81 f{{[1-3]}} ff 7f xor {{[^a]}}x define internal i32 @testXor32Imm8(i32 %arg) { entry: %result = xor i32 %arg, 127 ret i32 %result } ; CHECK-LABEL: testXor32Imm8 ; CHECK: 83 f0 7f xor eax define internal i32 @testXor32Imm8Neg(i32 %arg) { entry: %result = xor i32 %arg, -128 ret i32 %result } ; CHECK-LABEL: testXor32Imm8Neg ; CHECK: 83 f0 80 xor eax define internal i32 @testXor32Imm32Eax(i32 %arg) { entry: %result = xor i32 %arg, 16777216 ret i32 %result } ; CHECK-LABEL: testXor32Imm32Eax ; CHECK: 35 00 00 00 01 xor eax define internal i32 @testXor32Imm32NegEax(i32 %arg) { entry: %result = xor i32 %arg, -256 ret i32 %result } ; CHECK-LABEL: testXor32Imm32NegEax ; CHECK: 35 00 ff ff ff xor eax define internal i32 @testXor32Imm32NotEAX(i32 %arg, i32 %arg2, i32 %arg3) { entry: %x = xor i32 %arg, 32767 %x2 = xor i32 %arg2, 32767 %x3 = xor i32 %arg3, 32767 %add1 = add i32 %x, %x2 %add2 = add i32 %add1, %x3 ret i32 %add2 } ; CHECK-LABEL: testXor32Imm32NotEAX ; CHECK: 81 f{{[1-3]}} ff 7f 00 00 xor e{{[^a]}}x, ; Should be similar for add, sub, etc., so sample a few. define internal i32 @testAdd8Imm8(i32 %arg) { entry: %arg_i8 = trunc i32 %arg to i8 %result_i8 = add i8 %arg_i8, 126 %result = zext i8 %result_i8 to i32 ret i32 %result } ; CHECK-LABEL: testAdd8Imm8 ; CHECK: 04 7e add al define internal i32 @testSub8Imm8(i32 %arg) { entry: %arg_i8 = trunc i32 %arg to i8 %result_i8 = sub i8 %arg_i8, 125 %result = zext i8 %result_i8 to i32 ret i32 %result } ; CHECK-LABEL: testSub8Imm8 ; CHECK: 2c 7d sub al ; imul has some shorter 8-bit immediate encodings. ; It also has a shorter encoding for eax, but we don't do that yet. define internal i32 @testMul16Imm8(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = mul i16 %arg_i16, 99 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm8 ; CHECK: 66 6b c0 63 imul ax,ax ; CHECK-NEXT: add ax,0x1 define internal i32 @testMul16Imm8Neg(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = mul i16 %arg_i16, -111 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm8Neg ; CHECK: 66 6b c0 91 imul ax,ax ; CHECK-NEXT: add ax,0x1 define internal i32 @testMul16Imm16(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = mul i16 %arg_i16, 1025 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm16 ; CHECK: 66 69 c0 01 04 imul ax,ax ; CHECK-NEXT: add ax,0x1 define internal i32 @testMul16Imm16Neg(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = mul i16 %arg_i16, -255 %result_i16 = add i16 %tmp, 1 %result = zext i16 %result_i16 to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm16Neg ; CHECK: 66 69 c0 01 ff imul ax,ax,0xff01 ; CHECK-NEXT: add ax,0x1 define internal i32 @testMul32Imm8(i32 %arg) { entry: %result = mul i32 %arg, 99 ret i32 %result } ; CHECK-LABEL: testMul32Imm8 ; CHECK: 6b c0 63 imul eax,eax define internal i32 @testMul32Imm8Neg(i32 %arg) { entry: %result = mul i32 %arg, -111 ret i32 %result } ; CHECK-LABEL: testMul32Imm8Neg ; CHECK: 6b c0 91 imul eax,eax define internal i32 @testMul32Imm16(i32 %arg) { entry: %result = mul i32 %arg, 1025 ret i32 %result } ; CHECK-LABEL: testMul32Imm16 ; CHECK: 69 c0 01 04 00 00 imul eax,eax define internal i32 @testMul32Imm16Neg(i32 %arg) { entry: %result = mul i32 %arg, -255 ret i32 %result } ; CHECK-LABEL: testMul32Imm16Neg ; CHECK: 69 c0 01 ff ff ff imul eax,eax,0xffffff01 define internal i32 @testMul32Imm32ThreeAddress(i32 %a) { entry: %mul = mul i32 232, %a %add = add i32 %mul, %a ret i32 %add } ; CHECK-LABEL: testMul32Imm32ThreeAddress ; CHECK: 69 c8 e8 00 00 00 imul ecx,eax,0xe8 define internal i32 @testMul32Mem32Imm32ThreeAddress(i32 %addr_arg) { entry: %__1 = inttoptr i32 %addr_arg to i32* %a = load i32, i32* %__1, align 1 %mul = mul i32 232, %a ret i32 %mul } ; CHECK-LABEL: testMul32Mem32Imm32ThreeAddress ; CHECK: 69 00 e8 00 00 00 imul eax,DWORD PTR [eax],0xe8 define internal i32 @testMul32Imm8ThreeAddress(i32 %a) { entry: %mul = mul i32 127, %a %add = add i32 %mul, %a ret i32 %add } ; CHECK-LABEL: testMul32Imm8ThreeAddress ; CHECK: 6b c8 7f imul ecx,eax,0x7f define internal i32 @testMul32Mem32Imm8ThreeAddress(i32 %addr_arg) { entry: %__1 = inttoptr i32 %addr_arg to i32* %a = load i32, i32* %__1, align 1 %mul = mul i32 127, %a ret i32 %mul } ; CHECK-LABEL: testMul32Mem32Imm8ThreeAddress ; CHECK: 6b 00 7f imul eax,DWORD PTR [eax],0x7f define internal i32 @testMul16Imm16ThreeAddress(i32 %a) { entry: %arg_i16 = trunc i32 %a to i16 %mul = mul i16 232, %arg_i16 %add = add i16 %mul, %arg_i16 %result = zext i16 %add to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm16ThreeAddress ; CHECK: 66 69 c8 e8 00 imul cx,ax,0xe8 define internal i32 @testMul16Mem16Imm16ThreeAddress(i32 %addr_arg) { entry: %__1 = inttoptr i32 %addr_arg to i16* %a = load i16, i16* %__1, align 1 %mul = mul i16 232, %a %result = zext i16 %mul to i32 ret i32 %result } ; CHECK-LABEL: testMul16Mem16Imm16ThreeAddress ; CHECK: 66 69 00 e8 00 imul ax,WORD PTR [eax],0xe8 define internal i32 @testMul16Imm8ThreeAddress(i32 %a) { entry: %arg_i16 = trunc i32 %a to i16 %mul = mul i16 127, %arg_i16 %add = add i16 %mul, %arg_i16 %result = zext i16 %add to i32 ret i32 %result } ; CHECK-LABEL: testMul16Imm8ThreeAddress ; CHECK: 66 6b c8 7f imul cx,ax,0x7f define internal i32 @testMul16Mem16Imm8ThreeAddress(i32 %addr_arg) { entry: %__1 = inttoptr i32 %addr_arg to i16* %a = load i16, i16* %__1, align 1 %mul = mul i16 127, %a %result = zext i16 %mul to i32 ret i32 %result } ; CHECK-LABEL: testMul16Mem16Imm8ThreeAddress ; CHECK: 66 6b 00 7f imul ax,WORD PTR [eax],0x7f ; The GPR shift instructions either allow an 8-bit immediate or ; have a special encoding for "1". define internal i32 @testShl16Imm8(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = shl i16 %arg_i16, 13 %result = zext i16 %tmp to i32 ret i32 %result } ; CHECK-LABEL: testShl16Imm8 ; CHECK: 66 c1 e0 0d shl ax,0xd define internal i32 @testShl16Imm1(i32 %arg) { entry: %arg_i16 = trunc i32 %arg to i16 %tmp = shl i16 %arg_i16, 1 %result = zext i16 %tmp to i32 ret i32 %result } ; CHECK-LABEL: testShl16Imm1 ; CHECK: 66 d1 e0 shl ax ; Currently the "test" instruction is used for 64-bit shifts, and ; for ctlz 64-bit, so we use those to test the "test" instruction. ; One optimization for "test": the "test" instruction is essentially a ; bitwise AND that doesn't modify the two source operands, so for immediates ; under 8-bits and registers with 8-bit variants we can use the shorter form. define internal i64 @test_via_shl64Bit(i64 %a, i64 %b) { entry: %shl = shl i64 %a, %b ret i64 %shl } ; CHECK-LABEL: test_via_shl64Bit ; CHECK: 0f a5 c2 shld edx,eax,cl ; CHECK: d3 e0 shl eax,cl ; CHECK: f6 c1 20 test cl,0x20 ; Test a few register encodings of "test". declare i64 @llvm.ctlz.i64(i64, i1) define internal i64 @test_via_ctlz_64(i64 %x, i64 %y, i64 %z, i64 %w) { entry: %r = call i64 @llvm.ctlz.i64(i64 %x, i1 false) %r2 = call i64 @llvm.ctlz.i64(i64 %y, i1 false) %r3 = call i64 @llvm.ctlz.i64(i64 %z, i1 false) %r4 = call i64 @llvm.ctlz.i64(i64 %w, i1 false) %res1 = add i64 %r, %r2 %res2 = add i64 %r3, %r4 %res = add i64 %res1, %res2 ret i64 %res } ; CHECK-LABEL: test_via_ctlz_64 ; CHECK-DAG: 85 c0 test eax,eax ; CHECK-DAG: 85 db test ebx,ebx ; CHECK-DAG: 85 f6 test esi,esi