# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for l2norm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_l2norm_tests(options): """Make a set of tests to do l2norm.""" # Chose a set of parameters test_parameters = [{ "input_shape": [[5, 7], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], "dim": [0, 1, 2, 3, [2, 3], -2], "epsilon": [None, 1e-12, 1e-3], "fully_quantize": [False], }, { "input_shape": [[5, 7], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], "dim": [0, 1, 2, 3, [2, 3], -2], "epsilon": [None, 1e-12, 1e-3], "fully_quantize": [True], }] def build_graph(parameters): input_tensor = tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=parameters["input_shape"]) if parameters["epsilon"]: out = tf.nn.l2_normalize( input_tensor, parameters["dim"], epsilon=parameters["epsilon"]) else: out = tf.nn.l2_normalize(input_tensor, parameters["dim"]) return [input_tensor], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( np.float32, parameters["input_shape"], min_value=-1, max_value=1) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=18)