# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for nearest upsample.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_nearest_upsample_tests(options): """Make a set of tests to do nearest_upsample.""" # Chose a set of parameters test_parameters = [{ "input_shape": [[1, 10, 10, 64], [3, 8, 32]], "scale_n_axis": [([2, 2], [1, 2]), ([3, 4], [1, 2]), ([3], [1])], "dtype": [tf.float32, tf.int32], }] def new_shape_for_upsample(original_shape, scales, axis): """Calculate the input shape & ones shape, also the upsample shape.""" input_new_shape = [] ones_new_shape = [] upsample_new_shape = [] j = 0 for i in range(len(original_shape)): input_new_shape.append(original_shape[i]) ones_new_shape.append(1) if j < len(scales) and axis[j] == i: input_new_shape.append(1) ones_new_shape.append(scales[j]) upsample_new_shape.append(original_shape[i] * scales[j]) j += 1 else: upsample_new_shape.append(original_shape[i]) return input_new_shape, ones_new_shape, upsample_new_shape def build_graph(parameters): """Build the nearest upsample testing graph.""" input_shape = parameters["input_shape"] input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input", shape=input_shape) scales, axis = parameters["scale_n_axis"] input_new_shape, ones_new_shape, new_shape = new_shape_for_upsample( input_shape, scales, axis) out = tf.compat.v1.reshape(input_tensor, input_new_shape) * tf.compat.v1.ones( ones_new_shape, dtype=parameters["dtype"]) out = tf.compat.v1.reshape(out, new_shape) return [input_tensor], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( parameters["dtype"], parameters["input_shape"], min_value=-10, max_value=10) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)