# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for pack.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_pack_tests(options): """Make a set of tests to do stack.""" test_parameters = [ # Avoid creating all combinations to keep the test size small. { "dtype": [tf.float32], "base_shape": [[3, 4, 3], [3, 4], [5]], "num_tensors": [1, 2, 3, 4, 5, 6], "axis": [0, 1, 2, 3], "additional_shape": [1, 2, 3], "fully_quantize": [False], }, { "dtype": [tf.int32], "base_shape": [[3, 4, 3], [3, 4], [5]], "num_tensors": [6], "axis": [0, 1, 2, 3], "additional_shape": [1, 2, 3], "fully_quantize": [False], }, { "dtype": [tf.int64], "base_shape": [[3, 4, 3], [3, 4], [5]], "num_tensors": [5], "axis": [0, 1, 2, 3], "additional_shape": [1, 2, 3], "fully_quantize": [False], }, { "dtype": [tf.float32], "base_shape": [[1, 4, 3], [3, 4], [5]], "num_tensors": [2, 3, 4, 5, 6], # 1 tensor would go to Reshape. "axis": [0, 1, 2, 3], "additional_shape": [1, 2, 3], "fully_quantize": [True], }, ] def get_shape(parameters): """Return a tweaked version of 'base_shape'.""" axis = parameters["axis"] shape = parameters["base_shape"][:] if axis < len(shape): shape[axis] += parameters["additional_shape"] return shape def build_graph(parameters): all_tensors = [] for n in range(0, parameters["num_tensors"]): input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name=("input%d" % n), shape=get_shape(parameters)) all_tensors.append(input_tensor) out = tf.stack(all_tensors, parameters["axis"]) return all_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): all_values = [] for _ in range(0, parameters["num_tensors"]): input_values = create_tensor_data( np.float32, get_shape(parameters), min_value=-1, max_value=1) all_values.append(input_values) return all_values, sess.run( outputs, feed_dict=dict(zip(inputs, all_values))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=117)