# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for reshape.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_reshape_tests(options): """Make a set of tests to do reshape.""" # All shapes below are suitable for tensors with 420 elements. test_parameters = [{ "dtype": [tf.float32, tf.int32], "input_shape": [[3, 4, 5, 7], [4, 105], [21, 5, 2, 2], [420]], "output_shape": [[15, 28], [420], [1, -1, 5, 7], [-1]], "constant_shape": [True, False], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[1]], "output_shape": [[]], "constant_shape": [True, False], "fully_quantize": [False], }, { "dtype": [tf.float32], "input_shape": [[3, 4, 5, 7], [4, 105], [21, 5, 2, 2], [420]], "output_shape": [[15, 28], [420], [1, -1, 5, 7], [-1]], "constant_shape": [True], "fully_quantize": [True], }] def build_graph(parameters): """Build the graph for reshape tests.""" input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input", shape=parameters["input_shape"]) # Get shape as either a placeholder or constants. if parameters["constant_shape"]: output_shape = parameters["output_shape"] input_tensors = [input_tensor] else: # The shape of the shape tensor. shape_tensor_shape = [len(parameters["output_shape"])] output_shape = tf.compat.v1.placeholder( dtype=tf.int32, name="output_shape", shape=shape_tensor_shape) input_tensors = [input_tensor, output_shape] out = tf.reshape(input_tensor, shape=output_shape) return input_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): """Build inputs for reshape op.""" values = [ create_tensor_data( parameters["dtype"], parameters["input_shape"], min_value=-1, max_value=1) ] if not parameters["constant_shape"]: values.append(np.array(parameters["output_shape"])) return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)