# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for utilities working with arbitrarily nested structures.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.util import random_seed as data_random_seed from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import test_util from tensorflow.python.platform import test class RandomSeedTest(test.TestCase): @test_util.run_in_graph_and_eager_modes def testRandomSeed(self): zero_t = constant_op.constant(0, dtype=dtypes.int64, name='zero') one_t = constant_op.constant(1, dtype=dtypes.int64, name='one') intmax_t = constant_op.constant( 2**31 - 1, dtype=dtypes.int64, name='intmax') test_cases = [ # Each test case is a tuple with input to get_seed: # (input_graph_seed, input_op_seed) # and output from get_seed: # (output_graph_seed, output_op_seed) ((None, None), (0, 0)), ((None, 1), (random_seed.DEFAULT_GRAPH_SEED, 1)), ((1, 1), (1, 1)), ((0, 0), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output ((2**31 - 1, 0), (0, 2**31 - 1)), # Don't wrap to (0, 0) either ((0, 2**31 - 1), (0, 2**31 - 1)), # Wrapping for the other argument # Once more, with tensor-valued arguments ((None, one_t), (random_seed.DEFAULT_GRAPH_SEED, 1)), ((1, one_t), (1, 1)), ((0, zero_t), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output ((2**31 - 1, zero_t), (0, 2**31 - 1)), # Don't wrap to (0, 0) either ((0, intmax_t), (0, 2**31 - 1)), # Wrapping for the other argument ] for tc in test_cases: tinput, toutput = tc[0], tc[1] random_seed.set_random_seed(tinput[0]) g_seed, op_seed = data_random_seed.get_seed(tinput[1]) g_seed = self.evaluate(g_seed) op_seed = self.evaluate(op_seed) msg = 'test_case = {0}, got {1}, want {2}'.format( tinput, (g_seed, op_seed), toutput) self.assertEqual((g_seed, op_seed), toutput, msg=msg) random_seed.set_random_seed(None) if not context.executing_eagerly(): random_seed.set_random_seed(1) tinput = (1, None) toutput = (1, ops.get_default_graph()._last_id) # pylint: disable=protected-access random_seed.set_random_seed(tinput[0]) g_seed, op_seed = data_random_seed.get_seed(tinput[1]) g_seed = self.evaluate(g_seed) op_seed = self.evaluate(op_seed) msg = 'test_case = {0}, got {1}, want {2}'.format(1, (g_seed, op_seed), toutput) self.assertEqual((g_seed, op_seed), toutput, msg=msg) random_seed.set_random_seed(None) if __name__ == '__main__': test.main()